mirror of
https://github.com/mpv-player/mpv
synced 2024-12-20 22:02:59 +00:00
82361d50d0
Patch by me and Emanuele Giaquinta git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@18142 b3059339-0415-0410-9bf9-f77b7e298cf2
520 lines
16 KiB
C
520 lines
16 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** $Id: common.c,v 1.22 2004/09/08 09:43:11 gcp Exp $
|
|
**/
|
|
|
|
/* just some common functions that could be used anywhere */
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#include <stdlib.h>
|
|
#include "syntax.h"
|
|
|
|
|
|
/* Returns the sample rate index based on the samplerate */
|
|
uint8_t get_sr_index(const uint32_t samplerate)
|
|
{
|
|
if (92017 <= samplerate) return 0;
|
|
if (75132 <= samplerate) return 1;
|
|
if (55426 <= samplerate) return 2;
|
|
if (46009 <= samplerate) return 3;
|
|
if (37566 <= samplerate) return 4;
|
|
if (27713 <= samplerate) return 5;
|
|
if (23004 <= samplerate) return 6;
|
|
if (18783 <= samplerate) return 7;
|
|
if (13856 <= samplerate) return 8;
|
|
if (11502 <= samplerate) return 9;
|
|
if (9391 <= samplerate) return 10;
|
|
if (16428320 <= samplerate) return 11;
|
|
|
|
return 11;
|
|
}
|
|
|
|
/* Returns the sample rate based on the sample rate index */
|
|
uint32_t get_sample_rate(const uint8_t sr_index)
|
|
{
|
|
static const uint32_t sample_rates[] =
|
|
{
|
|
96000, 88200, 64000, 48000, 44100, 32000,
|
|
24000, 22050, 16000, 12000, 11025, 8000
|
|
};
|
|
|
|
if (sr_index < 12)
|
|
return sample_rates[sr_index];
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint8_t max_pred_sfb(const uint8_t sr_index)
|
|
{
|
|
static const uint8_t pred_sfb_max[] =
|
|
{
|
|
33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34
|
|
};
|
|
|
|
|
|
if (sr_index < 12)
|
|
return pred_sfb_max[sr_index];
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type,
|
|
const uint8_t is_short)
|
|
{
|
|
/* entry for each sampling rate
|
|
* 1 Main/LC long window
|
|
* 2 Main/LC short window
|
|
* 3 SSR long window
|
|
* 4 SSR short window
|
|
*/
|
|
static const uint8_t tns_sbf_max[][4] =
|
|
{
|
|
{31, 9, 28, 7}, /* 96000 */
|
|
{31, 9, 28, 7}, /* 88200 */
|
|
{34, 10, 27, 7}, /* 64000 */
|
|
{40, 14, 26, 6}, /* 48000 */
|
|
{42, 14, 26, 6}, /* 44100 */
|
|
{51, 14, 26, 6}, /* 32000 */
|
|
{46, 14, 29, 7}, /* 24000 */
|
|
{46, 14, 29, 7}, /* 22050 */
|
|
{42, 14, 23, 8}, /* 16000 */
|
|
{42, 14, 23, 8}, /* 12000 */
|
|
{42, 14, 23, 8}, /* 11025 */
|
|
{39, 14, 19, 7}, /* 8000 */
|
|
{39, 14, 19, 7}, /* 7350 */
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0}
|
|
};
|
|
uint8_t i = 0;
|
|
|
|
if (is_short) i++;
|
|
if (object_type == SSR) i += 2;
|
|
|
|
return tns_sbf_max[sr_index][i];
|
|
}
|
|
|
|
/* Returns 0 if an object type is decodable, otherwise returns -1 */
|
|
int8_t can_decode_ot(const uint8_t object_type)
|
|
{
|
|
switch (object_type)
|
|
{
|
|
case LC:
|
|
return 0;
|
|
case MAIN:
|
|
#ifdef MAIN_DEC
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
case SSR:
|
|
#ifdef SSR_DEC
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
case LTP:
|
|
#ifdef LTP_DEC
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
|
|
/* ER object types */
|
|
#ifdef ERROR_RESILIENCE
|
|
case ER_LC:
|
|
#ifdef DRM
|
|
case DRM_ER_LC:
|
|
#endif
|
|
return 0;
|
|
case ER_LTP:
|
|
#ifdef LTP_DEC
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
case LD:
|
|
#ifdef LD_DEC
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void *faad_malloc(size_t size)
|
|
{
|
|
#if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
|
|
return _aligned_malloc(size, 16);
|
|
#else // #ifdef 0
|
|
return malloc(size);
|
|
#endif // #ifdef 0
|
|
}
|
|
|
|
/* common free function */
|
|
void faad_free(void *b)
|
|
{
|
|
#if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
|
|
_aligned_free(b);
|
|
#else
|
|
free(b);
|
|
}
|
|
#endif
|
|
|
|
static const uint8_t Parity [256] = { // parity
|
|
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
|
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
|
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
|
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
|
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
|
|
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
|
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
|
|
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
|
|
};
|
|
|
|
static uint32_t __r1 = 1;
|
|
static uint32_t __r2 = 1;
|
|
|
|
|
|
/*
|
|
* This is a simple random number generator with good quality for audio purposes.
|
|
* It consists of two polycounters with opposite rotation direction and different
|
|
* periods. The periods are coprime, so the total period is the product of both.
|
|
*
|
|
* -------------------------------------------------------------------------------------------------
|
|
* +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
|
|
* | -------------------------------------------------------------------------------------------------
|
|
* | | | | | | |
|
|
* | +--+--+--+-XOR-+--------+
|
|
* | |
|
|
* +--------------------------------------------------------------------------------------+
|
|
*
|
|
* -------------------------------------------------------------------------------------------------
|
|
* |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
|
|
* ------------------------------------------------------------------------------------------------- |
|
|
* | | | | |
|
|
* +--+----XOR----+--+ |
|
|
* | |
|
|
* +----------------------------------------------------------------------------------------+
|
|
*
|
|
*
|
|
* The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
|
|
* which gives a period of 18.410.713.077.675.721.215. The result is the
|
|
* XORed values of both generators.
|
|
*/
|
|
uint32_t random_int(void)
|
|
{
|
|
uint32_t t1, t2, t3, t4;
|
|
|
|
t3 = t1 = __r1; t4 = t2 = __r2; // Parity calculation is done via table lookup, this is also available
|
|
t1 &= 0xF5; t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable
|
|
t1 = Parity [t1]; t2 &= 0x63; // jumps and slow rotate through the carry flag operations.
|
|
t1 <<= 31; t2 = Parity [t2];
|
|
|
|
return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 );
|
|
}
|
|
|
|
uint32_t ones32(uint32_t x)
|
|
{
|
|
x -= ((x >> 1) & 0x55555555);
|
|
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
|
|
x = (((x >> 4) + x) & 0x0f0f0f0f);
|
|
x += (x >> 8);
|
|
x += (x >> 16);
|
|
|
|
return (x & 0x0000003f);
|
|
}
|
|
|
|
uint32_t floor_log2(uint32_t x)
|
|
{
|
|
#if 1
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
|
|
return (ones32(x) - 1);
|
|
#else
|
|
uint32_t count = 0;
|
|
|
|
while (x >>= 1)
|
|
count++;
|
|
|
|
return count;
|
|
#endif
|
|
}
|
|
|
|
/* returns position of first bit that is not 0 from msb,
|
|
* starting count at lsb */
|
|
uint32_t wl_min_lzc(uint32_t x)
|
|
{
|
|
#if 1
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
|
|
return (ones32(x));
|
|
#else
|
|
uint32_t count = 0;
|
|
|
|
while (x >>= 1)
|
|
count++;
|
|
|
|
return (count + 1);
|
|
#endif
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
#define TABLE_BITS 6
|
|
/* just take the maximum number of bits for interpolation */
|
|
#define INTERP_BITS (REAL_BITS-TABLE_BITS)
|
|
|
|
static const real_t pow2_tab[] = {
|
|
REAL_CONST(1.000000000000000), REAL_CONST(1.010889286051701), REAL_CONST(1.021897148654117),
|
|
REAL_CONST(1.033024879021228), REAL_CONST(1.044273782427414), REAL_CONST(1.055645178360557),
|
|
REAL_CONST(1.067140400676824), REAL_CONST(1.078760797757120), REAL_CONST(1.090507732665258),
|
|
REAL_CONST(1.102382583307841), REAL_CONST(1.114386742595892), REAL_CONST(1.126521618608242),
|
|
REAL_CONST(1.138788634756692), REAL_CONST(1.151189229952983), REAL_CONST(1.163724858777578),
|
|
REAL_CONST(1.176396991650281), REAL_CONST(1.189207115002721), REAL_CONST(1.202156731452703),
|
|
REAL_CONST(1.215247359980469), REAL_CONST(1.228480536106870), REAL_CONST(1.241857812073484),
|
|
REAL_CONST(1.255380757024691), REAL_CONST(1.269050957191733), REAL_CONST(1.282870016078778),
|
|
REAL_CONST(1.296839554651010), REAL_CONST(1.310961211524764), REAL_CONST(1.325236643159741),
|
|
REAL_CONST(1.339667524053303), REAL_CONST(1.354255546936893), REAL_CONST(1.369002422974591),
|
|
REAL_CONST(1.383909881963832), REAL_CONST(1.398979672538311), REAL_CONST(1.414213562373095),
|
|
REAL_CONST(1.429613338391970), REAL_CONST(1.445180806977047), REAL_CONST(1.460917794180647),
|
|
REAL_CONST(1.476826145939499), REAL_CONST(1.492907728291265), REAL_CONST(1.509164427593423),
|
|
REAL_CONST(1.525598150744538), REAL_CONST(1.542210825407941), REAL_CONST(1.559004400237837),
|
|
REAL_CONST(1.575980845107887), REAL_CONST(1.593142151342267), REAL_CONST(1.610490331949254),
|
|
REAL_CONST(1.628027421857348), REAL_CONST(1.645755478153965), REAL_CONST(1.663676580326736),
|
|
REAL_CONST(1.681792830507429), REAL_CONST(1.700106353718524), REAL_CONST(1.718619298122478),
|
|
REAL_CONST(1.737333835273706), REAL_CONST(1.756252160373300), REAL_CONST(1.775376492526521),
|
|
REAL_CONST(1.794709075003107), REAL_CONST(1.814252175500399), REAL_CONST(1.834008086409342),
|
|
REAL_CONST(1.853979125083386), REAL_CONST(1.874167634110300), REAL_CONST(1.894575981586966),
|
|
REAL_CONST(1.915206561397147), REAL_CONST(1.936061793492294), REAL_CONST(1.957144124175400),
|
|
REAL_CONST(1.978456026387951), REAL_CONST(2.000000000000000)
|
|
};
|
|
|
|
static const real_t log2_tab[] = {
|
|
REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453),
|
|
REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169),
|
|
REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312),
|
|
REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881),
|
|
REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248),
|
|
REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625),
|
|
REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760),
|
|
REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728),
|
|
REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675),
|
|
REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031),
|
|
REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156),
|
|
REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610),
|
|
REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496),
|
|
REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123),
|
|
REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469),
|
|
REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106),
|
|
REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742),
|
|
REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405),
|
|
REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519),
|
|
REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240),
|
|
REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917),
|
|
REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000)
|
|
};
|
|
|
|
real_t pow2_fix(real_t val)
|
|
{
|
|
uint32_t x1, x2;
|
|
uint32_t errcorr;
|
|
uint32_t index_frac;
|
|
real_t retval;
|
|
int32_t whole = (val >> REAL_BITS);
|
|
|
|
/* rest = [0..1] */
|
|
int32_t rest = val - (whole << REAL_BITS);
|
|
|
|
/* index into pow2_tab */
|
|
int32_t index = rest >> (REAL_BITS-TABLE_BITS);
|
|
|
|
|
|
if (val == 0)
|
|
return (1<<REAL_BITS);
|
|
|
|
/* leave INTERP_BITS bits */
|
|
index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
|
|
index_frac = index_frac & ((1<<INTERP_BITS)-1);
|
|
|
|
if (whole > 0)
|
|
{
|
|
retval = 1 << whole;
|
|
} else {
|
|
retval = REAL_CONST(1) >> -whole;
|
|
}
|
|
|
|
x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
|
|
x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
|
|
errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
|
|
|
|
if (whole > 0)
|
|
{
|
|
retval = retval * (errcorr + x1);
|
|
} else {
|
|
retval = MUL_R(retval, (errcorr + x1));
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int32_t pow2_int(real_t val)
|
|
{
|
|
uint32_t x1, x2;
|
|
uint32_t errcorr;
|
|
uint32_t index_frac;
|
|
real_t retval;
|
|
int32_t whole = (val >> REAL_BITS);
|
|
|
|
/* rest = [0..1] */
|
|
int32_t rest = val - (whole << REAL_BITS);
|
|
|
|
/* index into pow2_tab */
|
|
int32_t index = rest >> (REAL_BITS-TABLE_BITS);
|
|
|
|
|
|
if (val == 0)
|
|
return 1;
|
|
|
|
/* leave INTERP_BITS bits */
|
|
index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
|
|
index_frac = index_frac & ((1<<INTERP_BITS)-1);
|
|
|
|
if (whole > 0)
|
|
retval = 1 << whole;
|
|
else
|
|
retval = 0;
|
|
|
|
x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
|
|
x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
|
|
errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
|
|
|
|
retval = MUL_R(retval, (errcorr + x1));
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
|
|
int32_t log2_int(uint32_t val)
|
|
{
|
|
uint32_t frac;
|
|
uint32_t whole = (val);
|
|
int32_t exp = 0;
|
|
uint32_t index;
|
|
uint32_t index_frac;
|
|
uint32_t x1, x2;
|
|
uint32_t errcorr;
|
|
|
|
/* error */
|
|
if (val == 0)
|
|
return -10000;
|
|
|
|
exp = floor_log2(val);
|
|
exp -= REAL_BITS;
|
|
|
|
/* frac = [1..2] */
|
|
if (exp >= 0)
|
|
frac = val >> exp;
|
|
else
|
|
frac = val << -exp;
|
|
|
|
/* index in the log2 table */
|
|
index = frac >> (REAL_BITS-TABLE_BITS);
|
|
|
|
/* leftover part for linear interpolation */
|
|
index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
|
|
|
|
/* leave INTERP_BITS bits */
|
|
index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
|
|
|
|
x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
|
|
x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
|
|
|
|
/* linear interpolation */
|
|
/* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
|
|
|
|
errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
|
|
|
|
return ((exp+REAL_BITS) << REAL_BITS) + errcorr + x1;
|
|
}
|
|
|
|
/* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
|
|
real_t log2_fix(uint32_t val)
|
|
{
|
|
uint32_t frac;
|
|
uint32_t whole = (val >> REAL_BITS);
|
|
int8_t exp = 0;
|
|
uint32_t index;
|
|
uint32_t index_frac;
|
|
uint32_t x1, x2;
|
|
uint32_t errcorr;
|
|
|
|
/* error */
|
|
if (val == 0)
|
|
return -100000;
|
|
|
|
exp = floor_log2(val);
|
|
exp -= REAL_BITS;
|
|
|
|
/* frac = [1..2] */
|
|
if (exp >= 0)
|
|
frac = val >> exp;
|
|
else
|
|
frac = val << -exp;
|
|
|
|
/* index in the log2 table */
|
|
index = frac >> (REAL_BITS-TABLE_BITS);
|
|
|
|
/* leftover part for linear interpolation */
|
|
index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
|
|
|
|
/* leave INTERP_BITS bits */
|
|
index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
|
|
|
|
x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
|
|
x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
|
|
|
|
/* linear interpolation */
|
|
/* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
|
|
|
|
errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
|
|
|
|
return (exp << REAL_BITS) + errcorr + x1;
|
|
}
|
|
#endif
|