1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-16 03:45:23 +00:00
mpv/vidix/drivers/nvidia_vid.c
lumag 0a29f9acde Fix "panning" display
Ease multibuffer.
Cosmetics.


git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@11784 b3059339-0415-0410-9bf9-f77b7e298cf2
2004-01-12 13:43:30 +00:00

890 lines
27 KiB
C

/*
nvidia_vid - VIDIX based video driver for NVIDIA chips
Copyrights 2003 Sascha Sommer. This file is based on sources from
RIVATV (rivatv.sf.net)
Licence: GPL
WARNING: THIS DRIVER IS IN BETA STAGE
multi buffer support and TNT2 fixes by Dmitry Baryshkov
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <unistd.h>
#include "../vidix.h"
#include "../fourcc.h"
#include "../../libdha/libdha.h"
#include "../../libdha/pci_ids.h"
#include "../../libdha/pci_names.h"
#include "../../config.h"
#include "../../bswap.h"
pciinfo_t pci_info;
#define MAX_FRAMES 3
#define NV04_BES_SIZE 1024*2000*4
static vidix_capability_t nvidia_cap = {
"NVIDIA RIVA OVERLAY DRIVER",
"Sascha Sommer <saschasommer@freenet.de>",
TYPE_OUTPUT,
{ 0, 0, 0, 0 },
2046,
2046,
4,
4,
-1,
FLAG_UPSCALER|FLAG_DOWNSCALER,
VENDOR_NVIDIA2,
-1,
{ 0, 0, 0, 0 }
};
unsigned int vixGetVersion(void){
return(VIDIX_VERSION);
}
#define NV_ARCH_03 0x03
#define NV_ARCH_04 0x04
#define NV_ARCH_10 0x10
#define NV_ARCH_20 0x20
#define NV_ARCH_30 0x30
struct nvidia_cards {
unsigned short chip_id;
unsigned short arch;
};
static struct nvidia_cards nvidia_card_ids[] = {
/*NV03*/
{DEVICE_NVIDIA2_RIVA128, NV_ARCH_03},
{DEVICE_NVIDIA2_RIVA128ZX,NV_ARCH_03},
/*NV04*/
{DEVICE_NVIDIA_NV4_RIVA_TNT,NV_ARCH_04},
{DEVICE_NVIDIA_NV5_RIVA_TNT2,NV_ARCH_04},
{DEVICE_NVIDIA_NV5_RIVA_TNT22,NV_ARCH_04},
{DEVICE_NVIDIA_NV5_RIVA_TNT23,NV_ARCH_04},
{DEVICE_NVIDIA_NV5_RIVA_TNT24,NV_ARCH_04},
{DEVICE_NVIDIA_NV6_VANTA,NV_ARCH_04},
{DEVICE_NVIDIA_RIVA_TNT2_MODEL,NV_ARCH_04},
{DEVICE_NVIDIA_NV6_VANTA2,NV_ARCH_04},
{DEVICE_NVIDIA_NV6_VANTA3,NV_ARCH_04},
{DEVICE_NVIDIA_NV5_RIVA_TNT25,NV_ARCH_04},
{DEVICE_NVIDIA2_TNT,NV_ARCH_04},
{DEVICE_NVIDIA2_TNT2,NV_ARCH_04},
{DEVICE_NVIDIA2_VTNT2,NV_ARCH_04},
{DEVICE_NVIDIA2_UTNT2 ,NV_ARCH_04},
{DEVICE_NVIDIA2_ITNT2,NV_ARCH_04},
/*NV10*/
{DEVICE_NVIDIA_NV10_GEFORCE_256,NV_ARCH_10},
{DEVICE_NVIDIA_NV10_GEFORCE_2562,NV_ARCH_10},
{DEVICE_NVIDIA_NV11_GEFORCE2_MX,NV_ARCH_10},
{DEVICE_NVIDIA_NV11_GEFORCE2_MX2,NV_ARCH_10},
{DEVICE_NVIDIA_NV11_GEFORCE2_GO,NV_ARCH_10},
{DEVICE_NVIDIA_NV11_GEFORCE2_MXR ,NV_ARCH_10},
{DEVICE_NVIDIA_NV15_GEFORCE2_GTS,NV_ARCH_10},
{DEVICE_NVIDIA_NV15_GEFORCE2_TI,NV_ARCH_10},
{DEVICE_NVIDIA_NV15_GEFORCE2_ULTRA,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_MX460,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_MX440,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_MX420,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_440,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_420,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_4202,NV_ARCH_10},
{DEVICE_NVIDIA_NV17_GEFORCE4_4402,NV_ARCH_10},
{DEVICE_NVIDIA_NV18_GEFORCE4_MX440,NV_ARCH_10},
{DEVICE_NVIDIA_NV15_GEFORCE2,NV_ARCH_10},
/*NV20*/
{DEVICE_NVIDIA_NV20_GEFORCE3,NV_ARCH_20},
{DEVICE_NVIDIA_NV20_GEFORCE3_TI200,NV_ARCH_20},
{DEVICE_NVIDIA_NV20_GEFORCE3_TI500,NV_ARCH_20},
{DEVICE_NVIDIA_NV25_GEFORCE4_TI4600,NV_ARCH_20},
{DEVICE_NVIDIA_NV25_GEFORCE4_TI4400,NV_ARCH_20},
{DEVICE_NVIDIA_NV25_GEFORCE4_TI4200,NV_ARCH_20},
};
static int find_chip(unsigned chip_id){
unsigned i;
for(i = 0;i < sizeof(nvidia_card_ids)/sizeof(struct nvidia_cards);i++)
{
if(chip_id == nvidia_card_ids[i].chip_id)return i;
}
return -1;
}
int vixProbe(int verbose, int force){
pciinfo_t lst[MAX_PCI_DEVICES];
unsigned i,num_pci;
int err;
if (force)
printf("[nvidia_vid]: warning: forcing not supported yet!\n");
err = pci_scan(lst,&num_pci);
if(err){
printf("[nvidia_vid] Error occurred during pci scan: %s\n",strerror(err));
return err;
}
else {
err = ENXIO;
for(i=0; i < num_pci; i++){
if(lst[i].vendor == VENDOR_NVIDIA2 || lst[i].vendor == VENDOR_NVIDIA){
int idx;
const char *dname;
idx = find_chip(lst[i].device);
if(idx == -1)
continue;
dname = pci_device_name(lst[i].vendor, lst[i].device);
dname = dname ? dname : "Unknown chip";
printf("[nvidia_vid] Found chip: %s\n", dname);
if ((lst[i].command & PCI_COMMAND_IO) == 0){
printf("[nvidia_vid] Device is disabled, ignoring\n");
continue;
}
nvidia_cap.device_id = lst[i].device;
err = 0;
memcpy(&pci_info, &lst[i], sizeof(pciinfo_t));
break;
}
}
}
if(err && verbose) printf("[nvidia_vid] Can't find chip\n");
return err;
}
/*
* PCI-Memory IO access macros.
*/
#define VID_WR08(p,i,val) (((uint8_t *)(p))[(i)]=(val))
#define VID_RD08(p,i) (((uint8_t *)(p))[(i)])
#define VID_WR32(p,i,val) (((uint32_t *)(p))[(i)/4]=(val))
#define VID_RD32(p,i) (((uint32_t *)(p))[(i)/4])
#ifndef USE_RMW_CYCLES
/*
* Can be used to inhibit READ-MODIFY-WRITE cycles. On by default.
*/
#define MEM_BARRIER() __asm__ __volatile__ ("" : : : "memory")
#undef VID_WR08
#define VID_WR08(p,i,val) ({ MEM_BARRIER(); ((uint8_t *)(p))[(i)]=(val); })
#undef VID_RD08
#define VID_RD08(p,i) ({ MEM_BARRIER(); ((uint8_t *)(p))[(i)]; })
#undef VID_WR32
#define VID_WR32(p,i,val) ({ MEM_BARRIER(); ((uint32_t *)(p))[(i)/4]=(val); })
#undef VID_RD32
#define VID_RD32(p,i) ({ MEM_BARRIER(); ((uint32_t *)(p))[(i)/4]; })
#endif /* USE_RMW_CYCLES */
#define VID_AND32(p,i,val) VID_WR32(p,i,VID_RD32(p,i)&(val))
#define VID_OR32(p,i,val) VID_WR32(p,i,VID_RD32(p,i)|(val))
#define VID_XOR32(p,i,val) VID_WR32(p,i,VID_RD32(p,i)^(val))
struct rivatv_chip {
volatile uint32_t *PMC; /* general control */
volatile uint32_t *PME; /* multimedia port */
volatile uint32_t *PFB; /* framebuffer control */
volatile uint32_t *PVIDEO; /* overlay control */
volatile uint8_t *PCIO; /* SVGA (CRTC, ATTR) registers */
volatile uint8_t *PVIO; /* SVGA (MISC, GRAPH, SEQ) registers */
volatile uint32_t *PRAMIN; /* instance memory */
volatile uint32_t *PRAMHT; /* hash table */
volatile uint32_t *PRAMFC; /* fifo context table */
volatile uint32_t *PRAMRO; /* fifo runout table */
volatile uint32_t *PFIFO; /* fifo control region */
volatile uint32_t *FIFO; /* fifo channels (USER) */
volatile uint32_t *PGRAPH; /* graphics engine */
unsigned long fbsize; /* framebuffer size */
int arch; /* compatible NV_ARCH_XX define */
int realarch; /* real architecture */
void (* lock) (struct rivatv_chip *, int);
};
typedef struct rivatv_chip rivatv_chip;
struct rivatv_info {
unsigned int use_colorkey;
unsigned int colorkey; /* saved xv colorkey*/
unsigned int vidixcolorkey; /*currently used colorkey*/
unsigned int depth;
unsigned int format;
unsigned int pitch;
unsigned int width,height;
unsigned int d_width,d_height; /*scaled width && height*/
unsigned int wx,wy; /*window x && y*/
unsigned int screen_x; /*screen width*/
unsigned int screen_y; /*screen height*/
unsigned long buffer_size; /* size of the image buffer */
struct rivatv_chip chip; /* NV architecture structure */
void* video_base; /* virtual address of control region */
void* control_base; /* virtual address of fb region */
unsigned long picture_base; /* direct pointer to video picture */
unsigned long picture_offset; /* offset of video picture in frame buffer */
// struct rivatv_dma dma; /* DMA structure */
unsigned int cur_frame;
unsigned int num_frames; /* number of buffers */
int bps; /* bytes per line */
};
typedef struct rivatv_info rivatv_info;
//framebuffer size funcs
static unsigned long rivatv_fbsize_nv03 (struct rivatv_chip *chip){
if (VID_RD32 (chip->PFB, 0) & 0x00000020) {
if (((VID_RD32 (chip->PMC, 0) & 0xF0) == 0x20)
&& ((VID_RD32 (chip->PMC, 0) & 0x0F) >= 0x02)) {
/* SDRAM 128 ZX. */
return ((1 << (VID_RD32 (chip->PFB, 0) & 0x03)) * 1024 * 1024);
}
else {
return 1024 * 1024 * 8;
}
}
else {
/* SGRAM 128. */
switch (chip->PFB[0x00000000] & 0x00000003) {
case 0:
return 1024 * 1024 * 8;
break;
case 2:
return 1024 * 1024 * 4;
break;
default:
return 1024 * 1024 * 2;
break;
}
}
}
static unsigned long rivatv_fbsize_nv04 (struct rivatv_chip *chip){
if (VID_RD32 (chip->PFB, 0) & 0x00000100) {
return ((VID_RD32 (chip->PFB, 0) >> 12) & 0x0F) * 1024 * 1024 * 2
+ 1024 * 1024 * 2;
} else {
switch (VID_RD32 (chip->PFB, 0) & 0x00000003) {
case 0:
return 1024 * 1024 * 32;
break;
case 1:
return 1024 * 1024 * 4;
break;
case 2:
return 1024 * 1024 * 8;
break;
case 3:
default:
return 1024 * 1024 * 16;
break;
}
}
}
static unsigned long rivatv_fbsize_nv10 (struct rivatv_chip *chip){
return ((VID_RD32 (chip->PFB, 0x20C) >> 20) & 0x000000FF) * 1024 * 1024;
}
//lock funcs
static void rivatv_lock_nv03 (struct rivatv_chip *chip, int LockUnlock){
VID_WR08 (chip->PVIO, 0x3C4, 0x06);
VID_WR08 (chip->PVIO, 0x3C5, LockUnlock ? 0x99 : 0x57);
}
static void rivatv_lock_nv04 (struct rivatv_chip *chip, int LockUnlock){
VID_WR08 (chip->PCIO, 0x3C4, 0x06);
VID_WR08 (chip->PCIO, 0x3C5, LockUnlock ? 0x99 : 0x57);
VID_WR08 (chip->PCIO, 0x3D4, 0x1F);
VID_WR08 (chip->PCIO, 0x3D5, LockUnlock ? 0x99 : 0x57);
}
/* Enable PFB (Framebuffer), PVIDEO (Overlay unit) and PME (Mediaport) if neccessary. */
static void rivatv_enable_PMEDIA (struct rivatv_info *info){
uint32_t reg;
/* switch off interrupts once for a while */
// VID_WR32 (info->chip.PME, 0x200140, 0x00);
// VID_WR32 (info->chip.PMC, 0x000140, 0x00);
reg = VID_RD32 (info->chip.PMC, 0x000200);
/* NV3 (0x10100010): NV03_PMC_ENABLE_PMEDIA, NV03_PMC_ENABLE_PFB, NV03_PMC_ENABLE_PVIDEO */
if ((reg & 0x10100010) != 0x10100010) {
printf("PVIDEO and PFB disabled, enabling...\n");
VID_OR32 (info->chip.PMC, 0x000200, 0x10100010);
}
/* save the current colorkey */
switch (info->chip.arch ) {
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
/* NV_PVIDEO_COLOR_KEY */
info->colorkey = VID_RD32 (info->chip.PVIDEO, 0xB00);
break;
case NV_ARCH_03:
case NV_ARCH_04:
/* NV_PVIDEO_KEY */
info->colorkey = VID_RD32 (info->chip.PVIDEO, 0x240);
break;
}
/* re-enable interrupts again */
// VID_WR32 (info->chip.PMC, 0x000140, 0x01);
// VID_WR32 (info->chip.PME, 0x200140, 0x01);
}
/* Stop overlay video. */
void rivatv_overlay_stop (struct rivatv_info *info) {
switch (info->chip.arch ) {
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
/* NV_PVIDEO_COLOR_KEY */
/* Xv-Extension-Hack: Restore previously saved value. */
VID_WR32 (info->chip.PVIDEO, 0xB00, info->colorkey);
/* NV_PVIDEO_STOP */
VID_OR32 (info->chip.PVIDEO, 0x704, 0x11);
/* NV_PVIDEO_BUFFER */
VID_AND32 (info->chip.PVIDEO, 0x700, ~0x11);
/* NV_PVIDEO_INTR_EN_BUFFER */
// VID_AND32 (info->chip.PVIDEO, 0x140, ~0x11);
break;
case NV_ARCH_03:
case NV_ARCH_04:
/* NV_PVIDEO_KEY */
VID_WR32 (info->chip.PVIDEO, 0x240, info->colorkey);
/* NV_PVIDEO_OVERLAY_VIDEO_OFF */
VID_AND32 (info->chip.PVIDEO, 0x244, ~0x01);
/* NV_PVIDEO_INTR_EN_0_NOTIFY */
// VID_AND32 (info->chip.PVIDEO, 0x140, ~0x01);
/* NV_PVIDEO_OE_STATE */
VID_WR32 (info->chip.PVIDEO, 0x224, 0);
/* NV_PVIDEO_SU_STATE */
VID_WR32 (info->chip.PVIDEO, 0x228, 0);
/* NV_PVIDEO_RM_STATE */
VID_WR32 (info->chip.PVIDEO, 0x22C, 0);
break;
}
}
/* Get pan offset of the physical screen. */
static uint32_t rivatv_overlay_pan (struct rivatv_info *info){
uint32_t pan;
info->chip.lock (&info->chip, 0);
VID_WR08 (info->chip.PCIO, 0x3D4, 0x0D);
pan = VID_RD08 (info->chip.PCIO, 0x3D5);
VID_WR08 (info->chip.PCIO, 0x3D4, 0x0C);
pan |= VID_RD08 (info->chip.PCIO, 0x3D5) << 8;
VID_WR08 (info->chip.PCIO, 0x3D4, 0x19);
pan |= (VID_RD08 (info->chip.PCIO, 0x3D5) & 0x1F) << 16;
VID_WR08 (info->chip.PCIO, 0x3D4, 0x2D);
pan |= (VID_RD08 (info->chip.PCIO, 0x3D5) & 0x60) << 16;
return pan << 2;
}
/* Compute and set colorkey depending on the colour depth. */
static void rivatv_overlay_colorkey (rivatv_info* info, unsigned int chromakey){
uint32_t r, g, b, key = 0;
r = (chromakey & 0x00FF0000) >> 16;
g = (chromakey & 0x0000FF00) >> 8;
b = chromakey & 0x000000FF;
switch (info->depth) {
case 15:
key = ((r >> 3) << 10) | ((g >> 3) << 5) | ((b >> 3));
#ifndef WIN32
key = key | 0x00008000;
#endif
break;
case 16: // XXX unchecked
key = ((r >> 3) << 11) | ((g >> 2) << 5) | ((b >> 3));
#ifndef WIN32
key = key | 0x00008000;
#endif
break;
case 24: // XXX unchecked, maybe swap order of masking - FIXME Can the card be in 24 bit mode anyway?
key = (chromakey & 0x00FFFFFF) | 0x00800000;
break;
case 32:
key = chromakey;
#ifndef WIN32
key = key | 0x80000000;
#endif
break;
}
//printf("[nvidia_vid] depth=%d %08X \n", info->depth, chromakey);
switch (info->chip.arch) {
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
VID_WR32 (info->chip.PVIDEO, 0xB00, key);
break;
case NV_ARCH_03:
case NV_ARCH_04:
VID_WR32 (info->chip.PVIDEO, 0x240, key);
break;
}
}
static void nv_getscreenproperties(struct rivatv_info *info){
uint32_t bpp=0;
info->chip.lock(&info->chip, 0);
/*get screen depth*/
VID_WR08(info->chip.PCIO, 0x03D4,0x28);
bpp = VID_RD08(info->chip.PCIO,0x03D5)&0x3;
if(bpp==3)bpp=4;
if((bpp == 2) && (info->chip.PVIDEO[0x00000600/4] & 0x00001000) == 0x0)info->depth=15;
else info->depth = bpp*8;
/*get screen width*/
VID_WR08(info->chip.PCIO, 0x03D4, 0x1);
info->screen_x = (1 + VID_RD08(info->chip.PCIO, 0x3D5)) * 8;
/*get screen height*/
/* get first 8 bits in VT_DISPLAY_END*/
VID_WR08(info->chip.PCIO, 0x03D4, 0x12);
info->screen_y = VID_RD08(info->chip.PCIO,0x03D5);
VID_WR08(info->chip.PCIO,0x03D4,0x07);
/* get 9th bit in CRTC_OVERFLOW*/
info->screen_y |= (VID_RD08(info->chip.PCIO,0x03D5) &0x02)<<7;
/* and the 10th in CRTC_OVERFLOW*/
info->screen_y |=(VID_RD08(info->chip.PCIO,0x03D5) &0x40)<<3;
++info->screen_y;
}
/* Start overlay video. */
void rivatv_overlay_start (struct rivatv_info *info,int bufno){
uint32_t base, size, offset, xscale, yscale, pan;
uint32_t value;
int x=info->wx?info->wx:8, y=info->wy?info->wy:8;
int lwidth=info->d_width, lheight=info->d_height;
int bps;
int i;
size = info->buffer_size;
base = info->picture_offset;
offset = bufno*size;
/*update depth & dimensions here because it may change with vo vesa or vo fbdev*/
nv_getscreenproperties(info);
if(info->depth){
// bps = info->screen_x * ((info->depth+1)/8);
/* get pan offset of the physical screen */
pan = rivatv_overlay_pan (info);
/* adjust window position depending on the pan offset */
bps = 0;
info->chip.lock (&info->chip, 0);
for (i = 0; (i < 1024) && (bps == 0); i++)
{
if (info->chip.arch != NV_ARCH_03)
bps = info->chip.PGRAPH[0x00000670/4];
else
bps = info->chip.PGRAPH[0x00000650/4];
}
if (bps == 0)
{
fprintf(stderr, "[nvidia_vid] reading bps returned 0!!!\n");
if (info->bps != 0)
bps = info->bps;
}
else
{
info->bps = bps;
}
if (bps != 0)
{
x = info->wx - (pan % bps) * 8 / info->depth;
y = info->wy - (pan / bps);
}
}
/* adjust negative output window variables */
if (x < 0) {
lwidth = info->d_width + x;
offset += (-x * info->width / info->d_width) << 1;
// offset += (-window->x * port->vld_width / window->width) << 1;
x = 0;
}
if (y < 0) {
lheight = info->d_height + y;
offset += (-y * info->height / info->d_height * info->width) << 1;
// offset += (-window->y * port->vld_height / window->height * port->org_width) << 1;
y = 0;
}
switch (info->chip.arch) {
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
/* NV_PVIDEO_BASE */
VID_WR32 (info->chip.PVIDEO, 0x900 + 0, base + offset);
//VID_WR32 (info->chip.PVIDEO, 0x900 + 4, base);
/* NV_PVIDEO_LIMIT */
VID_WR32 (info->chip.PVIDEO, 0x908 + 0, base + offset + size - 1);
//VID_WR32 (info->chip.PVIDEO, 0x908 + 4, base + size - 1);
/* extra code for NV20 && NV30 architectures */
if (info->chip.arch == NV_ARCH_20 || info->chip.arch == NV_ARCH_30) {
VID_WR32 (info->chip.PVIDEO, 0x800 + 0, base + offset);
//VID_WR32 (info->chip.PVIDEO, 0x800 + 4, base);
VID_WR32 (info->chip.PVIDEO, 0x808 + 0, base + offset + size - 1);
//VID_WR32 (info->chip.PVIDEO, 0x808 + 4, base + size - 1);
}
/* NV_PVIDEO_LUMINANCE */
VID_WR32 (info->chip.PVIDEO, 0x910 + 0, 0x00001000);
//VID_WR32 (info->chip.PVIDEO, 0x910 + 4, 0x00001000);
/* NV_PVIDEO_CHROMINANCE */
VID_WR32 (info->chip.PVIDEO, 0x918 + 0, 0x00001000);
//VID_WR32 (info->chip.PVIDEO, 0x918 + 4, 0x00001000);
/* NV_PVIDEO_OFFSET */
VID_WR32 (info->chip.PVIDEO, 0x920 + 0, 0x0);
//VID_WR32 (info->chip.PVIDEO, 0x920 + 4, offset + pitch);
/* NV_PVIDEO_SIZE_IN */
VID_WR32 (info->chip.PVIDEO, 0x928 + 0, ((info->height) << 16) | info->width);
//VID_WR32 (info->chip.PVIDEO, 0x928 + 4, ((port->org_height/2) << 16) | port->org_width);
/* NV_PVIDEO_POINT_IN */
VID_WR32 (info->chip.PVIDEO, 0x930 + 0, 0x00000000);
//VID_WR32 (info->chip.PVIDEO, 0x930 + 4, 0x00000000);
/* NV_PVIDEO_DS_DX_RATIO */
VID_WR32 (info->chip.PVIDEO, 0x938 + 0, (info->width << 20) / info->d_width);
//VID_WR32 (info->chip.PVIDEO, 0x938 + 4, (port->org_width << 20) / window->width);
/* NV_PVIDEO_DT_DY_RATIO */
VID_WR32 (info->chip.PVIDEO, 0x940 + 0, ((info->height) << 20) / info->d_height);
//VID_WR32 (info->chip.PVIDEO, 0x940 + 4, ((port->org_height/2) << 20) / window->height);
/* NV_PVIDEO_POINT_OUT */
VID_WR32 (info->chip.PVIDEO, 0x948 + 0, ((y + 0) << 16) | x);
//VID_WR32 (info->chip.PVIDEO, 0x948 + 4, ((y + 0) << 16) | x);
/* NV_PVIDEO_SIZE_OUT */
VID_WR32 (info->chip.PVIDEO, 0x950 + 0, (lheight << 16) | lwidth);
//VID_WR32 (info->chip.PVIDEO, 0x950 + 4, (height << 16) | width);
/* NV_PVIDEO_FORMAT */
value = info->pitch;
if(info->use_colorkey)value |= 1 << 20;
if(info->format == IMGFMT_YUY2)value |= 1 << 16;
VID_WR32 (info->chip.PVIDEO, 0x958 + 0, value);
//VID_WR32 (info->chip.PVIDEO, 0x958 + 4, (pitch << 1) | 0x00100000);
/* NV_PVIDEO_INTR_EN_BUFFER */
// VID_OR32 (info->chip.PVIDEO, 0x140, 0x01/*0x11*/);
/* NV_PVIDEO_STOP */
VID_WR32 (info->chip.PVIDEO, 0x704,0x0);
/* NV_PVIDEO_BUFFER */
VID_WR32 (info->chip.PVIDEO, 0x700, 0x01/*0x11*/);
break;
case NV_ARCH_03:
case NV_ARCH_04:
/* NV_PVIDEO_OE_STATE */
VID_WR32 (info->chip.PVIDEO, 0x224, 0);
/* NV_PVIDEO_SU_STATE */
VID_WR32 (info->chip.PVIDEO, 0x228, 0);
/* NV_PVIDEO_RM_STATE */
VID_WR32 (info->chip.PVIDEO, 0x22C, 0);
/* NV_PVIDEO_BUFF0_START_ADDRESS */
VID_WR32 (info->chip.PVIDEO, 0x20C + 0, base + offset + 0);
VID_WR32 (info->chip.PVIDEO, 0x20C + 4, base + offset + 0);
/* NV_PVIDEO_BUFF0_PITCH_LENGTH */
VID_WR32 (info->chip.PVIDEO, 0x214 + 0, info->pitch);
VID_WR32 (info->chip.PVIDEO, 0x214 + 4, info->pitch);
/* NV_PVIDEO_WINDOW_START */
VID_WR32 (info->chip.PVIDEO, 0x230, (y << 16) | x);
/* NV_PVIDEO_WINDOW_SIZE */
VID_WR32 (info->chip.PVIDEO, 0x234, (lheight << 16) | lwidth);
/* NV_PVIDEO_STEP_SIZE */
yscale = ((info->height - 1) << 11) / (info->d_height - 1);
xscale = ((info->width - 1) << 11) / (info->d_width - 1);
VID_WR32 (info->chip.PVIDEO, 0x200, (yscale << 16) | xscale);
/* NV_PVIDEO_RED_CSC_OFFSET */
VID_WR32 (info->chip.PVIDEO, 0x280, 0x69);
/* NV_PVIDEO_GREEN_CSC_OFFSET */
VID_WR32 (info->chip.PVIDEO, 0x284, 0x3e);
/* NV_PVIDEO_BLUE_CSC_OFFSET */
VID_WR32 (info->chip.PVIDEO, 0x288, 0x89);
/* NV_PVIDEO_CSC_ADJUST */
VID_WR32 (info->chip.PVIDEO, 0x28C, 0x00000); /* No colour correction! */
/* NV_PVIDEO_CONTROL_Y (BLUR_ON, LINE_HALF) */
VID_WR32 (info->chip.PVIDEO, 0x204, 0x001);
/* NV_PVIDEO_CONTROL_X (WEIGHT_HEAVY, SHARPENING_ON, SMOOTHING_ON) */
VID_WR32 (info->chip.PVIDEO, 0x208, 0x111); /*directx overlay 0x110 */
/* NV_PVIDEO_FIFO_BURST_LENGTH */
VID_WR32 (info->chip.PVIDEO, 0x23C, 0x03);
/* NV_PVIDEO_FIFO_THRES_SIZE */
VID_WR32 (info->chip.PVIDEO, 0x238, 0x38); /*windows uses 0x40*/
/* NV_PVIDEO_BUFF0_OFFSET */
VID_WR32 (info->chip.PVIDEO, 0x21C + 0, 0);
VID_WR32 (info->chip.PVIDEO, 0x21C + 4, 0);
/* NV_PVIDEO_INTR_EN_0_NOTIFY_ENABLED */
// VID_OR32 (info->chip.PVIDEO, 0x140, 0x01);
/* NV_PVIDEO_OVERLAY (KEY_ON, VIDEO_ON, FORMAT_CCIR) */
value = 0x1; /*video on*/
if(info->format==IMGFMT_YUY2)value |= 0x100;
if(info->use_colorkey)value |=0x10;
VID_WR32 (info->chip.PVIDEO, 0x244, value);
/* NV_PVIDEO_SU_STATE */
VID_XOR32 (info->chip.PVIDEO, 0x228, 1 << 16);
break;
}
/*set colorkey*/
rivatv_overlay_colorkey(info,info->vidixcolorkey);
}
static rivatv_info* info;
int vixInit(void){
int mtrr;
info = (rivatv_info*)calloc(1,sizeof(rivatv_info));
info->control_base = map_phys_mem(pci_info.base0, 0x00C00000 + 0x00008000);
info->chip.arch = nvidia_card_ids[find_chip(pci_info.device)].arch;
printf("[nvidia_vid] arch %x register base %x\n",info->chip.arch,(unsigned int)info->control_base);
info->chip.PFIFO = (uint32_t *) (info->control_base + 0x00002000);
info->chip.FIFO = (uint32_t *) (info->control_base + 0x00800000);
info->chip.PMC = (uint32_t *) (info->control_base + 0x00000000);
info->chip.PFB = (uint32_t *) (info->control_base + 0x00100000);
info->chip.PME = (uint32_t *) (info->control_base + 0x00000000);
info->chip.PCIO = (uint8_t *) (info->control_base + 0x00601000);
info->chip.PVIO = (uint8_t *) (info->control_base + 0x000C0000);
info->chip.PGRAPH = (uint32_t *) (info->control_base + 0x00400000);
/* setup chip specific functions */
switch (info->chip.arch) {
case NV_ARCH_03:
info->chip.lock = rivatv_lock_nv03;
info->chip.fbsize = rivatv_fbsize_nv03 (&info->chip);
info->chip.PVIDEO = (uint32_t *) (info->control_base + 0x00680000);
break;
case NV_ARCH_04:
info->chip.lock = rivatv_lock_nv04;
info->chip.fbsize = rivatv_fbsize_nv04 (&info->chip);
info->chip.PRAMIN = (uint32_t *) (info->control_base + 0x00700000);
info->chip.PVIDEO = (uint32_t *) (info->control_base + 0x00680000);
break;
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
info->chip.lock = rivatv_lock_nv04;
info->chip.fbsize = rivatv_fbsize_nv10 (&info->chip);
info->chip.PRAMIN = (uint32_t *) (info->control_base + 0x00700000);
info->chip.PVIDEO = (uint32_t *) (info->control_base + 0x00008000);
break;
}
switch (info->chip.arch) {
case NV_ARCH_03:
{
/* This maps framebuffer @6MB, thus 2MB are left for video. */
info->video_base = map_phys_mem(pci_info.base1, info->chip.fbsize);
/* This may trash your screen for resolutions greater than 1024x768, sorry. */
info->picture_offset = 1024*768* 4 * ((info->chip.fbsize > 4194304)?2:1);
info->picture_base = (uint32_t) info->video_base + info->picture_offset;
info->chip.PRAMIN = (uint32_t *) (info->video_base + 0x00C00000);
break;
}
case NV_ARCH_04:
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
{
info->video_base = map_phys_mem(pci_info.base1, info->chip.fbsize);
info->picture_offset = info->chip.fbsize - NV04_BES_SIZE;
// info->picture_base = (unsigned long)map_phys_mem(pci_info.base1+info->picture_offset,NV04_BES_SIZE);
info->picture_base = (uint32_t) info->video_base + info->picture_offset;
break;
}
}
printf("[nvidia_vid] detected memory size %u MB\n",(uint32_t)(info->chip.fbsize /1024/1024));
if ((mtrr = mtrr_set_type(pci_info.base1, info->chip.fbsize, MTRR_TYPE_WRCOMB))!= 0)
printf("[nvidia_vid] unable to setup MTRR: %s\n", strerror(mtrr));
else
printf("[nvidia_vid] MTRR set up\n");
nv_getscreenproperties(info);
if(!info->depth)printf("[nvidia_vid] text mode: %ux%u\n",info->screen_x,info->screen_y);
else printf("[nvidia_vid] video mode: %ux%u@%u\n",info->screen_x,info->screen_y, info->depth);
rivatv_enable_PMEDIA(info);
info->cur_frame = 0;
info->use_colorkey = 0;
return 0;
}
void vixDestroy(void){
unmap_phys_mem(info->control_base ,0x00C00000 + 0x00008000);
unmap_phys_mem(info->video_base, info->chip.fbsize);
free(info);
}
int vixGetCapability(vidix_capability_t *to){
memcpy(to, &nvidia_cap, sizeof(vidix_capability_t));
return 0;
}
inline static int is_supported_fourcc(uint32_t fourcc)
{
if (fourcc == IMGFMT_UYVY || fourcc == IMGFMT_YUY2)
return 1;
else
return 0;
}
int vixQueryFourcc(vidix_fourcc_t *to){
if(is_supported_fourcc(to->fourcc)){
to->depth = VID_DEPTH_1BPP | VID_DEPTH_2BPP |
VID_DEPTH_4BPP | VID_DEPTH_8BPP |
VID_DEPTH_12BPP| VID_DEPTH_15BPP|
VID_DEPTH_16BPP| VID_DEPTH_24BPP|
VID_DEPTH_32BPP;
to->flags = VID_CAP_EXPAND | VID_CAP_SHRINK | VID_CAP_COLORKEY;
return 0;
}
else to->depth = to->flags = 0;
return ENOSYS;
}
int vixConfigPlayback(vidix_playback_t *vinfo){
uint32_t i;
printf("called %s\n", __FUNCTION__);
if (! is_supported_fourcc(vinfo->fourcc))
return ENOSYS;
info->width = vinfo->src.w;
info->height = vinfo->src.h;
info->d_width = vinfo->dest.w;
info->d_height = vinfo->dest.h;
info->wx = vinfo->dest.x;
info->wy = vinfo->dest.y;
info->format = vinfo->fourcc;
printf("[nvidia_vid] setting up a %dx%d-%dx%d video window (src %dx%d), format 0x%X\n",
info->d_width, info->d_height, info->wx, info->wy, info->width, info->height, vinfo->fourcc);
vinfo->dga_addr=(void*)(info->picture_base);
switch (vinfo->fourcc)
{
case IMGFMT_YUY2:
case IMGFMT_UYVY:
vinfo->dest.pitch.y = 16;
vinfo->dest.pitch.u = 0;
vinfo->dest.pitch.v = 0;
vinfo->offset.y = 0;
vinfo->offset.v = 0;
vinfo->offset.u = 0;
info->pitch = info->width << 1;
vinfo->frame_size = info->pitch * info->height;
break;
case IMGFMT_YV12:
vinfo->dest.pitch.y = 1;
vinfo->dest.pitch.u = 1;
vinfo->dest.pitch.v = 1;
vinfo->offset.y = 0;
vinfo->offset.v = (info->width) * info->height;
vinfo->offset.u = vinfo->offset.v * 5 / 4;
info->pitch = info->width + (info->width >> 1);
vinfo->frame_size = info->pitch * info->height;
break;
}
info->buffer_size = vinfo->frame_size;
info->num_frames = vinfo->num_frames= (info->chip.fbsize - info->picture_offset)/vinfo->frame_size;
if(vinfo->num_frames > MAX_FRAMES)vinfo->num_frames = MAX_FRAMES;
// vinfo->num_frames = 1;
// printf("[nvidia_vid] Number of frames %i\n",vinfo->num_frames);
for(i=0;i <vinfo->num_frames;i++)vinfo->offsets[i] = vinfo->frame_size*i;
return 0;
}
int vixPlaybackOn(void){
rivatv_overlay_start(info,info->cur_frame);
return 0;
}
int vixPlaybackOff(void){
rivatv_overlay_stop(info);
return 0;
}
int vixSetGrKeys( const vidix_grkey_t * grkey){
if (grkey->ckey.op == CKEY_FALSE)
{
info->use_colorkey = 0;
printf("[nvidia_vid] colorkeying disabled\n");
}
else {
info->use_colorkey = 1;
info->vidixcolorkey = ((grkey->ckey.red<<16)|(grkey->ckey.green<<8)|grkey->ckey.blue);
printf("[nvidia_vid] set colorkey 0x%x\n",info->vidixcolorkey);
}
if(info->d_width && info->d_height)rivatv_overlay_start(info,0);
return 0;
}
int vixPlaybackFrameSelect(unsigned int frame){
// printf("selecting buffer %d\n", frame);
rivatv_overlay_start(info, frame);
if (info->num_frames >= 1)
info->cur_frame = frame/*(frame+1)%info->num_frames*/;
return 0;
}