mpv/postproc/yuv2rgb.c

504 lines
12 KiB
C

/*
* yuv2rgb.c, Software YUV to RGB coverter
*
* Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
* All Rights Reserved.
*
* Functions broken out from display_x11.c and several new modes
* added by Håkan Hjort <d95hjort@dtek.chalmers.se>
*
* 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
*
* This file is part of mpeg2dec, a free MPEG-2 video decoder
*
* mpeg2dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* mpeg2dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support)
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "config.h"
//#include "video_out.h"
#include "rgb2rgb.h"
#include "../cpudetect.h"
#include "../mangle.h"
#include "../mp_msg.h"
#ifdef HAVE_MLIB
#include "yuv2rgb_mlib.c"
#endif
#define DITHER1XBPP // only for mmx
#ifdef ARCH_X86
#define CAN_COMPILE_X86_ASM
#endif
#ifdef CAN_COMPILE_X86_ASM
/* hope these constant values are cache line aligned */
uint64_t __attribute__((aligned(8))) mmx_80w = 0x0080008000800080;
uint64_t __attribute__((aligned(8))) mmx_10w = 0x1010101010101010;
uint64_t __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ff;
uint64_t __attribute__((aligned(8))) mmx_Y_coeff = 0x253f253f253f253f;
/* hope these constant values are cache line aligned */
uint64_t __attribute__((aligned(8))) mmx_U_green = 0xf37df37df37df37d;
uint64_t __attribute__((aligned(8))) mmx_U_blue = 0x4093409340934093;
uint64_t __attribute__((aligned(8))) mmx_V_red = 0x3312331233123312;
uint64_t __attribute__((aligned(8))) mmx_V_green = 0xe5fce5fce5fce5fc;
/* hope these constant values are cache line aligned */
uint64_t __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8;
uint64_t __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfc;
uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
// the volatile is required because gcc otherwise optimizes some writes away not knowing that these
// are read in the asm block
volatile uint64_t __attribute__((aligned(8))) b5Dither;
volatile uint64_t __attribute__((aligned(8))) g5Dither;
volatile uint64_t __attribute__((aligned(8))) g6Dither;
volatile uint64_t __attribute__((aligned(8))) r5Dither;
uint64_t __attribute__((aligned(8))) dither4[2]={
0x0103010301030103LL,
0x0200020002000200LL,};
uint64_t __attribute__((aligned(8))) dither8[2]={
0x0602060206020602LL,
0x0004000400040004LL,};
#undef HAVE_MMX
#undef ARCH_X86
//MMX versions
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _MMX
#include "yuv2rgb_template.c"
//MMX2 versions
#undef RENAME
#define HAVE_MMX
#define HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _MMX2
#include "yuv2rgb_template.c"
#endif // CAN_COMPILE_X86_ASM
uint32_t matrix_coefficients = 6;
const int32_t Inverse_Table_6_9[8][4] = {
{117504, 138453, 13954, 34903}, /* no sequence_display_extension */
{117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
{104597, 132201, 25675, 53279}, /* unspecified */
{104597, 132201, 25675, 53279}, /* reserved */
{104448, 132798, 24759, 53109}, /* FCC */
{104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
{104597, 132201, 25675, 53279}, /* SMPTE 170M */
{117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
};
static void yuv2rgb_c_init (int bpp, int mode);
yuv2rgb_fun yuv2rgb;
static void (* yuv2rgb_c_internal) (uint8_t *, uint8_t *,
uint8_t *, uint8_t *,
void *, void *, int);
static void yuv2rgb_c (void * dst, uint8_t * py,
uint8_t * pu, uint8_t * pv,
int h_size, int v_size,
int rgb_stride, int y_stride, int uv_stride)
{
v_size >>= 1;
while (v_size--) {
yuv2rgb_c_internal (py, py + y_stride, pu, pv, dst, dst + rgb_stride,
h_size);
py += 2 * y_stride;
pu += uv_stride;
pv += uv_stride;
dst += 2 * rgb_stride;
}
}
void yuv2rgb_init (int bpp, int mode)
{
yuv2rgb = NULL;
#ifdef CAN_COMPILE_X86_ASM
if(gCpuCaps.hasMMX2)
{
if (yuv2rgb == NULL /*&& (config.flags & VO_MMX_ENABLE)*/) {
yuv2rgb = yuv2rgb_init_MMX2 (bpp, mode);
if (yuv2rgb != NULL)
mp_msg(MSGT_SWS,MSGL_INFO,"Using MMX2 for colorspace transform\n");
else
mp_msg(MSGT_SWS,MSGL_WARN,"Cannot init MMX2 colorspace transform\n");
}
}
else if(gCpuCaps.hasMMX)
{
if (yuv2rgb == NULL /*&& (config.flags & VO_MMX_ENABLE)*/) {
yuv2rgb = yuv2rgb_init_MMX (bpp, mode);
if (yuv2rgb != NULL)
mp_msg(MSGT_SWS,MSGL_INFO,"Using MMX for colorspace transform\n");
else
mp_msg(MSGT_SWS,MSGL_WARN,"Cannot init MMX colorspace transform\n");
}
}
#endif
#ifdef HAVE_MLIB
if (yuv2rgb == NULL /*&& (config.flags & VO_MLIB_ENABLE)*/) {
yuv2rgb = yuv2rgb_init_mlib (bpp, mode);
if (yuv2rgb != NULL)
mp_msg(MSGT_SWS,MSGL_INFO,"Using mlib for colorspace transform\n");
}
#endif
if (yuv2rgb == NULL) {
mp_msg(MSGT_SWS,MSGL_INFO,"No accelerated colorspace conversion found\n");
yuv2rgb_c_init (bpp, mode);
yuv2rgb = (yuv2rgb_fun)yuv2rgb_c;
}
}
void * table_rV[256];
void * table_gU[256];
int table_gV[256];
void * table_bU[256];
#define RGB(i) \
U = pu[i]; \
V = pv[i]; \
r = table_rV[V]; \
g = table_gU[U] + table_gV[V]; \
b = table_bU[U];
#define DST1(i) \
Y = py_1[2*i]; \
dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
Y = py_1[2*i+1]; \
dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
#define DST2(i) \
Y = py_2[2*i]; \
dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
Y = py_2[2*i+1]; \
dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
#define DST1RGB(i) \
Y = py_1[2*i]; \
dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
Y = py_1[2*i+1]; \
dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
#define DST2RGB(i) \
Y = py_2[2*i]; \
dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
Y = py_2[2*i+1]; \
dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
#define DST1BGR(i) \
Y = py_1[2*i]; \
dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
Y = py_1[2*i+1]; \
dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
#define DST2BGR(i) \
Y = py_2[2*i]; \
dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
Y = py_2[2*i+1]; \
dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
static void yuv2rgb_c_32 (uint8_t * py_1, uint8_t * py_2,
uint8_t * pu, uint8_t * pv,
void * _dst_1, void * _dst_2, int h_size)
{
int U, V, Y;
uint32_t * r, * g, * b;
uint32_t * dst_1, * dst_2;
h_size >>= 3;
dst_1 = _dst_1;
dst_2 = _dst_2;
while (h_size--) {
RGB(0);
DST1(0);
DST2(0);
RGB(1);
DST2(1);
DST1(1);
RGB(2);
DST1(2);
DST2(2);
RGB(3);
DST2(3);
DST1(3);
pu += 4;
pv += 4;
py_1 += 8;
py_2 += 8;
dst_1 += 8;
dst_2 += 8;
}
}
// This is very near from the yuv2rgb_c_32 code
static void yuv2rgb_c_24_rgb (uint8_t * py_1, uint8_t * py_2,
uint8_t * pu, uint8_t * pv,
void * _dst_1, void * _dst_2, int h_size)
{
int U, V, Y;
uint8_t * r, * g, * b;
uint8_t * dst_1, * dst_2;
h_size >>= 3;
dst_1 = _dst_1;
dst_2 = _dst_2;
while (h_size--) {
RGB(0);
DST1RGB(0);
DST2RGB(0);
RGB(1);
DST2RGB(1);
DST1RGB(1);
RGB(2);
DST1RGB(2);
DST2RGB(2);
RGB(3);
DST2RGB(3);
DST1RGB(3);
pu += 4;
pv += 4;
py_1 += 8;
py_2 += 8;
dst_1 += 24;
dst_2 += 24;
}
}
// only trivial mods from yuv2rgb_c_24_rgb
static void yuv2rgb_c_24_bgr (uint8_t * py_1, uint8_t * py_2,
uint8_t * pu, uint8_t * pv,
void * _dst_1, void * _dst_2, int h_size)
{
int U, V, Y;
uint8_t * r, * g, * b;
uint8_t * dst_1, * dst_2;
h_size >>= 3;
dst_1 = _dst_1;
dst_2 = _dst_2;
while (h_size--) {
RGB(0);
DST1BGR(0);
DST2BGR(0);
RGB(1);
DST2BGR(1);
DST1BGR(1);
RGB(2);
DST1BGR(2);
DST2BGR(2);
RGB(3);
DST2BGR(3);
DST1BGR(3);
pu += 4;
pv += 4;
py_1 += 8;
py_2 += 8;
dst_1 += 24;
dst_2 += 24;
}
}
// This is exactly the same code as yuv2rgb_c_32 except for the types of
// r, g, b, dst_1, dst_2
static void yuv2rgb_c_16 (uint8_t * py_1, uint8_t * py_2,
uint8_t * pu, uint8_t * pv,
void * _dst_1, void * _dst_2, int h_size)
{
int U, V, Y;
uint16_t * r, * g, * b;
uint16_t * dst_1, * dst_2;
h_size >>= 3;
dst_1 = _dst_1;
dst_2 = _dst_2;
while (h_size--) {
RGB(0);
DST1(0);
DST2(0);
RGB(1);
DST2(1);
DST1(1);
RGB(2);
DST1(2);
DST2(2);
RGB(3);
DST2(3);
DST1(3);
pu += 4;
pv += 4;
py_1 += 8;
py_2 += 8;
dst_1 += 8;
dst_2 += 8;
}
}
static int div_round (int dividend, int divisor)
{
if (dividend > 0)
return (dividend + (divisor>>1)) / divisor;
else
return -((-dividend + (divisor>>1)) / divisor);
}
static void yuv2rgb_c_init (int bpp, int mode)
{
int i;
uint8_t table_Y[1024];
uint32_t *table_32 = 0;
uint16_t *table_16 = 0;
uint8_t *table_8 = 0;
int entry_size = 0;
void *table_r = 0, *table_g = 0, *table_b = 0;
int crv = Inverse_Table_6_9[matrix_coefficients][0];
int cbu = Inverse_Table_6_9[matrix_coefficients][1];
int cgu = -Inverse_Table_6_9[matrix_coefficients][2];
int cgv = -Inverse_Table_6_9[matrix_coefficients][3];
for (i = 0; i < 1024; i++) {
int j;
j = (76309 * (i - 384 - 16) + 32768) >> 16;
j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
table_Y[i] = j;
}
switch (bpp) {
case 32:
yuv2rgb_c_internal = yuv2rgb_c_32;
table_32 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
entry_size = sizeof (uint32_t);
table_r = table_32 + 197;
table_b = table_32 + 197 + 685;
table_g = table_32 + 197 + 2*682;
for (i = -197; i < 256+197; i++)
((uint32_t *)table_r)[i] = table_Y[i+384] << ((mode==MODE_RGB) ? 16 : 0);
for (i = -132; i < 256+132; i++)
((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
for (i = -232; i < 256+232; i++)
((uint32_t *)table_b)[i] = table_Y[i+384] << ((mode==MODE_RGB) ? 0 : 16);
break;
case 24:
// yuv2rgb_c_internal = (mode==MODE_RGB) ? yuv2rgb_c_24_rgb : yuv2rgb_c_24_bgr;
yuv2rgb_c_internal = (mode!=MODE_RGB) ? yuv2rgb_c_24_rgb : yuv2rgb_c_24_bgr;
table_8 = malloc ((256 + 2*232) * sizeof (uint8_t));
entry_size = sizeof (uint8_t);
table_r = table_g = table_b = table_8 + 232;
for (i = -232; i < 256+232; i++)
((uint8_t * )table_b)[i] = table_Y[i+384];
break;
case 15:
case 16:
yuv2rgb_c_internal = yuv2rgb_c_16;
table_16 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
entry_size = sizeof (uint16_t);
table_r = table_16 + 197;
table_b = table_16 + 197 + 685;
table_g = table_16 + 197 + 2*682;
for (i = -197; i < 256+197; i++) {
int j = table_Y[i+384] >> 3;
if (mode == MODE_RGB)
j <<= ((bpp==16) ? 11 : 10);
((uint16_t *)table_r)[i] = j;
}
for (i = -132; i < 256+132; i++) {
int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
((uint16_t *)table_g)[i] = j << 5;
}
for (i = -232; i < 256+232; i++) {
int j = table_Y[i+384] >> 3;
if (mode == MODE_BGR)
j <<= ((bpp==16) ? 11 : 10);
((uint16_t *)table_b)[i] = j;
}
break;
default:
mp_msg(MSGT_SWS,MSGL_ERR,"%ibpp not supported by yuv2rgb\n", bpp);
//exit (1);
}
for (i = 0; i < 256; i++) {
table_rV[i] = table_r + entry_size * div_round (crv * (i-128), 76309);
table_gU[i] = table_g + entry_size * div_round (cgu * (i-128), 76309);
table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
table_bU[i] = table_b + entry_size * div_round (cbu * (i-128), 76309);
}
}