1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-19 05:41:16 +00:00
mpv/audio/out/buffer.c
wm4 08b198aab4 audio: further simplify internal audio API somewhat
Instead of the relatively subtle underflow handling, simply signal
whether the stream is in a playing state. Should make it more robust.

Should affect ao_alsa and ao_pulse only (and ao_openal, but it's
broken).

For ao_pulse, I'm just guessing. How the hell do you query whether a
stream is playing? Who knows. Seems to work, judging from very
superficial testing.
2020-06-02 20:43:49 +02:00

713 lines
21 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <pthread.h>
#include <inttypes.h>
#include <math.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include "ao.h"
#include "internal.h"
#include "audio/aframe.h"
#include "audio/format.h"
#include "common/msg.h"
#include "common/common.h"
#include "input/input.h"
#include "osdep/io.h"
#include "osdep/timer.h"
#include "osdep/threads.h"
#include "osdep/atomic.h"
#include "misc/ring.h"
struct buffer_state {
// Buffer and AO
pthread_mutex_t lock;
pthread_cond_t wakeup;
// Playthread sleep
pthread_mutex_t pt_lock;
pthread_cond_t pt_wakeup;
// Access from AO driver's thread only.
char *convert_buffer;
// --- protected by lock
struct mp_ring *buffers[MP_NUM_CHANNELS];
bool streaming; // AO streaming active
bool playing; // logically playing audio from buffer
bool paused; // logically paused; implies playing=true
bool final_chunk; // if buffer contains EOF
int64_t end_time_us; // absolute output time of last played sample
int64_t underflow; // number of samples missing since last check
bool initial_unblocked;
// "Push" AOs only (AOs with driver->write).
bool still_playing;
bool hw_paused; // driver->set_pause() was used successfully
bool recover_pause; // non-hw_paused: needs to recover delay
bool draining;
bool ao_wait_low_buffer;
struct mp_pcm_state prepause_state;
pthread_t thread; // thread shoveling data to AO
bool thread_valid; // thread is running
struct mp_aframe *temp_buf;
// --- protected by pt_lock
bool need_wakeup;
bool terminate; // exit thread
};
static void *playthread(void *arg);
void ao_wakeup_playthread(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->pt_lock);
p->need_wakeup = true;
pthread_cond_broadcast(&p->pt_wakeup);
pthread_mutex_unlock(&p->pt_lock);
}
// called locked
static void get_dev_state(struct ao *ao, struct mp_pcm_state *state)
{
struct buffer_state *p = ao->buffer_state;
if (p->paused) {
*state = p->prepause_state;
return;
}
*state = (struct mp_pcm_state){
.free_samples = -1,
.queued_samples = -1,
.delay = -1,
};
ao->driver->get_state(ao, state);
}
static int unlocked_get_space(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
int space = mp_ring_available(p->buffers[0]) / ao->sstride;
// The following code attempts to keep the total buffered audio at
// ao->buffer in order to improve latency.
if (ao->driver->write) {
struct mp_pcm_state state;
get_dev_state(ao, &state);
int align = af_format_sample_alignment(ao->format);
int device_space = MPMAX(state.free_samples, 0);
int device_buffered = ao->device_buffer - device_space;
int soft_buffered = mp_ring_size(p->buffers[0]) / ao->sstride - space;
// The extra margin helps avoiding too many wakeups if the AO is fully
// byte based and doesn't do proper chunked processing.
int min_buffer = ao->buffer + 64;
int missing = min_buffer - device_buffered - soft_buffered;
missing = (missing + align - 1) / align * align;
// But always keep the device's buffer filled as much as we can.
int device_missing = device_space - soft_buffered;
missing = MPMAX(missing, device_missing);
space = MPMIN(space, missing);
space = MPMAX(0, space);
}
return space;
}
int ao_get_space(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
int space = unlocked_get_space(ao);
pthread_mutex_unlock(&p->lock);
return space;
}
int ao_play(struct ao *ao, void **data, int samples, int flags)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
int write_samples = mp_ring_available(p->buffers[0]) / ao->sstride;
write_samples = MPMIN(write_samples, samples);
int write_bytes = write_samples * ao->sstride;
for (int n = 0; n < ao->num_planes; n++) {
int r = mp_ring_write(p->buffers[n], data[n], write_bytes);
assert(r == write_bytes);
}
p->paused = false;
p->final_chunk = write_samples == samples && (flags & PLAYER_FINAL_CHUNK);
if (p->underflow)
MP_DBG(ao, "Audio underrun by %lld samples.\n", (long long)p->underflow);
p->underflow = 0;
if (write_samples) {
p->playing = true;
p->still_playing = true;
p->draining = false;
if (!ao->driver->write && !p->streaming) {
p->streaming = true;
ao->driver->start(ao);
}
}
pthread_mutex_unlock(&p->lock);
if (write_samples)
ao_wakeup_playthread(ao);
return write_samples;
}
// Read the given amount of samples in the user-provided data buffer. Returns
// the number of samples copied. If there is not enough data (buffer underrun
// or EOF), return the number of samples that could be copied, and fill the
// rest of the user-provided buffer with silence.
// This basically assumes that the audio device doesn't care about underruns.
// If this is called in paused mode, it will always return 0.
// The caller should set out_time_us to the expected delay until the last sample
// reaches the speakers, in microseconds, using mp_time_us() as reference.
int ao_read_data(struct ao *ao, void **data, int samples, int64_t out_time_us)
{
struct buffer_state *p = ao->buffer_state;
int full_bytes = samples * ao->sstride;
bool need_wakeup = false;
int bytes = 0;
pthread_mutex_lock(&p->lock);
if (!p->playing || p->paused)
goto end;
int buffered_bytes = mp_ring_buffered(p->buffers[0]);
bytes = MPMIN(buffered_bytes, full_bytes);
if (full_bytes > bytes && !p->final_chunk) {
p->underflow += (full_bytes - bytes) / ao->sstride;
ao_add_events(ao, AO_EVENT_UNDERRUN);
}
if (bytes > 0)
p->end_time_us = out_time_us;
for (int n = 0; n < ao->num_planes; n++)
mp_ring_read(p->buffers[n], data[n], bytes);
// Half of the buffer played -> request more.
if (!ao->driver->write)
need_wakeup = buffered_bytes - bytes <= mp_ring_size(p->buffers[0]) / 2;
end:
pthread_mutex_unlock(&p->lock);
if (need_wakeup)
ao->wakeup_cb(ao->wakeup_ctx);
// pad with silence (underflow/paused/eof)
for (int n = 0; n < ao->num_planes; n++)
af_fill_silence((char *)data[n] + bytes, full_bytes - bytes, ao->format);
ao_post_process_data(ao, data, samples);
return bytes / ao->sstride;
}
// Same as ao_read_data(), but convert data according to *fmt.
// fmt->src_fmt and fmt->channels must be the same as the AO parameters.
int ao_read_data_converted(struct ao *ao, struct ao_convert_fmt *fmt,
void **data, int samples, int64_t out_time_us)
{
struct buffer_state *p = ao->buffer_state;
void *ndata[MP_NUM_CHANNELS] = {0};
if (!ao_need_conversion(fmt))
return ao_read_data(ao, data, samples, out_time_us);
assert(ao->format == fmt->src_fmt);
assert(ao->channels.num == fmt->channels);
bool planar = af_fmt_is_planar(fmt->src_fmt);
int planes = planar ? fmt->channels : 1;
int plane_samples = samples * (planar ? 1: fmt->channels);
int src_plane_size = plane_samples * af_fmt_to_bytes(fmt->src_fmt);
int dst_plane_size = plane_samples * fmt->dst_bits / 8;
int needed = src_plane_size * planes;
if (needed > talloc_get_size(p->convert_buffer) || !p->convert_buffer) {
talloc_free(p->convert_buffer);
p->convert_buffer = talloc_size(NULL, needed);
}
for (int n = 0; n < planes; n++)
ndata[n] = p->convert_buffer + n * src_plane_size;
int res = ao_read_data(ao, ndata, samples, out_time_us);
ao_convert_inplace(fmt, ndata, samples);
for (int n = 0; n < planes; n++)
memcpy(data[n], ndata[n], dst_plane_size);
return res;
}
int ao_control(struct ao *ao, enum aocontrol cmd, void *arg)
{
struct buffer_state *p = ao->buffer_state;
int r = CONTROL_UNKNOWN;
if (ao->driver->control) {
pthread_mutex_lock(&p->lock);
r = ao->driver->control(ao, cmd, arg);
pthread_mutex_unlock(&p->lock);
}
return r;
}
static double unlocked_get_delay(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
double driver_delay = 0;
if (ao->driver->write) {
struct mp_pcm_state state;
get_dev_state(ao, &state);
driver_delay = state.delay;
} else {
int64_t end = p->end_time_us;
int64_t now = mp_time_us();
driver_delay += MPMAX(0, (end - now) / (1000.0 * 1000.0));
}
return mp_ring_buffered(p->buffers[0]) / (double)ao->bps + driver_delay;
}
double ao_get_delay(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
double delay = unlocked_get_delay(ao);
pthread_mutex_unlock(&p->lock);
return delay;
}
void ao_reset(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
bool wakeup = false;
pthread_mutex_lock(&p->lock);
for (int n = 0; n < ao->num_planes; n++)
mp_ring_reset(p->buffers[n]);
if (!ao->stream_silence && ao->driver->reset) {
ao->driver->reset(ao); // assumes the audio callback thread is stopped
p->streaming = false;
}
p->paused = false;
p->playing = false;
p->recover_pause = false;
p->hw_paused = false;
wakeup = p->still_playing || p->draining;
p->draining = false;
p->still_playing = false;
p->end_time_us = 0;
atomic_fetch_and(&ao->events_, ~(unsigned int)AO_EVENT_UNDERRUN);
pthread_mutex_unlock(&p->lock);
if (wakeup)
ao_wakeup_playthread(ao);
}
void ao_pause(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
bool wakeup = false;
pthread_mutex_lock(&p->lock);
if (p->playing && !p->paused) {
if (p->streaming && !ao->stream_silence) {
if (ao->driver->write) {
if (!p->recover_pause)
get_dev_state(ao, &p->prepause_state);
if (ao->driver->set_pause && ao->driver->set_pause(ao, true)) {
p->hw_paused = true;
} else {
ao->driver->reset(ao);
p->streaming = false;
}
} else if (ao->driver->reset) {
ao->driver->reset(ao);
p->streaming = false;
}
}
p->paused = true;
wakeup = true;
}
pthread_mutex_unlock(&p->lock);
if (wakeup)
ao_wakeup_playthread(ao);
}
void ao_resume(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
bool wakeup = false;
pthread_mutex_lock(&p->lock);
if (p->playing && p->paused) {
if (ao->driver->write) {
if (p->streaming && p->hw_paused) {
ao->driver->set_pause(ao, false);
} else {
p->recover_pause = true;
}
p->hw_paused = false;
} else {
if (!p->streaming)
ao->driver->start(ao);
p->streaming = true;
}
p->paused = false;
wakeup = true;
}
pthread_mutex_unlock(&p->lock);
if (wakeup)
ao_wakeup_playthread(ao);
}
bool ao_eof_reached(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
bool eof = !p->playing;
if (ao->driver->write) {
eof |= !p->still_playing;
} else {
// For simplicity, ignore the latency. Otherwise, we would have to run
// an extra thread to time it.
eof |= mp_ring_buffered(p->buffers[0]) == 0;
}
pthread_mutex_unlock(&p->lock);
return eof;
}
// Block until the current audio buffer has played completely.
void ao_drain(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
p->final_chunk = true;
while (!p->paused && p->still_playing && p->streaming) {
if (ao->driver->write) {
if (p->draining) {
// Wait for EOF signal from AO.
pthread_cond_wait(&p->wakeup, &p->lock);
} else {
p->draining = true;
MP_VERBOSE(ao, "waiting for draining...\n");
pthread_mutex_unlock(&p->lock);
ao_wakeup_playthread(ao);
pthread_mutex_lock(&p->lock);
}
} else {
double left = mp_ring_buffered(p->buffers[0]) / (double)ao->bps * 1e6;
pthread_mutex_unlock(&p->lock);
if (left > 0) {
// Wait for lower bound.
mp_sleep_us(left);
// And then poll for actual end. No other way.
// Limit to arbitrary ~250ms max. waiting for robustness.
int64_t max = mp_time_us() + 250000;
while (mp_time_us() < max && !ao_eof_reached(ao))
mp_sleep_us(1);
} else {
p->still_playing = false;
}
pthread_mutex_lock(&p->lock);
}
}
pthread_mutex_unlock(&p->lock);
ao_reset(ao);
}
void ao_uninit(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
if (p->thread_valid) {
pthread_mutex_lock(&p->pt_lock);
p->terminate = true;
pthread_cond_broadcast(&p->pt_wakeup);
pthread_mutex_unlock(&p->pt_lock);
pthread_join(p->thread, NULL);
p->thread_valid = false;
}
if (ao->driver_initialized)
ao->driver->uninit(ao);
talloc_free(p->convert_buffer);
talloc_free(p->temp_buf);
pthread_cond_destroy(&p->wakeup);
pthread_mutex_destroy(&p->lock);
pthread_cond_destroy(&p->pt_wakeup);
pthread_mutex_destroy(&p->pt_lock);
talloc_free(ao);
}
void init_buffer_pre(struct ao *ao)
{
ao->buffer_state = talloc_zero(ao, struct buffer_state);
}
bool init_buffer_post(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
assert(ao->driver->start);
if (ao->driver->write) {
assert(ao->driver->reset);
assert(ao->driver->get_state);
}
for (int n = 0; n < ao->num_planes; n++)
p->buffers[n] = mp_ring_new(ao, ao->buffer * ao->sstride);
mpthread_mutex_init_recursive(&p->lock);
pthread_cond_init(&p->wakeup, NULL);
pthread_mutex_init(&p->pt_lock, NULL);
pthread_cond_init(&p->pt_wakeup, NULL);
if (ao->driver->write) {
p->thread_valid = true;
if (pthread_create(&p->thread, NULL, playthread, ao)) {
p->thread_valid = false;
return false;
}
} else {
if (ao->stream_silence) {
ao->driver->start(ao);
p->streaming = true;
}
}
return true;
}
static bool realloc_buf(struct ao *ao, int samples)
{
struct buffer_state *p = ao->buffer_state;
samples = MPMAX(1, samples);
if (!p->temp_buf || samples > mp_aframe_get_size(p->temp_buf)) {
TA_FREEP(&p->temp_buf);
p->temp_buf = mp_aframe_create();
if (!mp_aframe_set_format(p->temp_buf, ao->format) ||
!mp_aframe_set_chmap(p->temp_buf, &ao->channels) ||
!mp_aframe_set_rate(p->temp_buf, ao->samplerate) ||
!mp_aframe_alloc_data(p->temp_buf, samples))
{
TA_FREEP(&p->temp_buf);
return false;
}
}
return true;
}
// called locked
static void ao_play_data(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
struct mp_pcm_state state;
get_dev_state(ao, &state);
if (p->streaming && !state.playing && !ao->untimed) {
if (p->draining) {
MP_VERBOSE(ao, "underrun signaled for audio end\n");
p->still_playing = false;
pthread_cond_broadcast(&p->wakeup);
} else {
ao_add_events(ao, AO_EVENT_UNDERRUN);
}
p->streaming = false;
}
// Round free space to period sizes to reduce number of write() calls.
int space = state.free_samples / ao->period_size * ao->period_size;
bool play_silence = p->paused || (ao->stream_silence && !p->still_playing);
space = MPMAX(space, 0);
if (!realloc_buf(ao, space)) {
MP_ERR(ao, "Failed to allocate buffer.\n");
return;
}
void **planes = (void **)mp_aframe_get_data_rw(p->temp_buf);
assert(planes);
int samples = mp_ring_buffered(p->buffers[0]) / ao->sstride;
if (samples > space)
samples = space;
if (play_silence)
samples = space;
if (p->recover_pause) {
samples = MPCLAMP(p->prepause_state.delay * ao->samplerate, 0, space);
p->recover_pause = false;
mp_aframe_set_silence(p->temp_buf, 0, space);
} else {
samples = ao_read_data(ao, planes, samples, 0);
}
if (play_silence)
samples = space; // ao_read_data() sets remainder to silent
bool is_eof = p->final_chunk && samples < space;
bool ok = true;
int written = 0;
if (samples) {
p->draining = is_eof;
MP_STATS(ao, "start ao fill");
ok = ao->driver->write(ao, planes, samples);
MP_STATS(ao, "end ao fill");
}
if (!ok)
MP_ERR(ao, "Error writing audio to device.\n");
if (samples > 0 && ok) {
written = samples;
if (!p->streaming) {
MP_VERBOSE(ao, "starting AO\n");
ao->driver->start(ao);
p->streaming = true;
}
p->still_playing = !play_silence;
}
if (p->draining && p->still_playing && ao->untimed) {
p->still_playing = false;
pthread_cond_broadcast(&p->wakeup);
}
// Wait until space becomes available. Also wait if we actually wrote data,
// so the AO wakes us up properly if it needs more data.
p->ao_wait_low_buffer = space == 0 || written > 0 || p->draining;
// Request more data if we're below some random buffer level.
int needed = unlocked_get_space(ao);
bool more = needed >= ao->device_buffer / 4 && !p->final_chunk;
if (more)
ao->wakeup_cb(ao->wakeup_ctx); // request more data
MP_TRACE(ao, "in=%d eof=%d space=%d r=%d wa/pl/dr=%d/%d/%d needed=%d more=%d\n",
samples, is_eof, space, written, p->ao_wait_low_buffer,
p->still_playing, p->draining, needed, more);
}
static void *playthread(void *arg)
{
struct ao *ao = arg;
struct buffer_state *p = ao->buffer_state;
mpthread_set_name("ao");
while (1) {
pthread_mutex_lock(&p->lock);
bool blocked = ao->driver->initially_blocked && !p->initial_unblocked;
bool playing = !p->paused && (p->playing || ao->stream_silence);
if (playing && !blocked)
ao_play_data(ao);
// Wait until the device wants us to write more data to it.
// Fallback to guessing.
double timeout = INFINITY;
if (p->ao_wait_low_buffer) {
struct mp_pcm_state state;
get_dev_state(ao, &state);
timeout = state.delay * 0.25; // wake up if 25% played
p->ao_wait_low_buffer = false;
// If the AO doesn't tell us, we need to guess.
if (p->draining)
timeout = MPMAX(timeout, 0.1);
}
pthread_mutex_unlock(&p->lock);
pthread_mutex_lock(&p->pt_lock);
if (p->terminate) {
pthread_mutex_unlock(&p->pt_lock);
break;
}
if (!p->need_wakeup) {
MP_STATS(ao, "start audio wait");
struct timespec ts = mp_rel_time_to_timespec(timeout);
pthread_cond_timedwait(&p->pt_wakeup, &p->pt_lock, &ts);
MP_STATS(ao, "end audio wait");
}
p->need_wakeup = false;
pthread_mutex_unlock(&p->pt_lock);
}
return NULL;
}
void ao_unblock(struct ao *ao)
{
if (ao->driver->write) {
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
p->initial_unblocked = true;
pthread_mutex_unlock(&p->lock);
ao_wakeup_playthread(ao);
}
}