/* * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * You can alternatively redistribute this file and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include "config.h" #include #ifdef CONFIG_LCMS2 #include #include "stream/stream.h" #endif #include "talloc.h" #include "core/mp_common.h" #include "core/bstr.h" #include "core/mp_msg.h" #include "core/subopt-helper.h" #include "vo.h" #include "video/vfcap.h" #include "video/mp_image.h" #include "sub/sub.h" #include "bitmap_packer.h" #include "gl_common.h" #include "gl_osd.h" #include "filter_kernels.h" #include "aspect.h" #include "video/memcpy_pic.h" static const char vo_opengl_shaders[] = // Generated from libvo/vo_opengl_shaders.glsl #include "video/out/vo_opengl_shaders.h" ; // Pixel width of 1D lookup textures. #define LOOKUP_TEXTURE_SIZE 256 // Texture units 0-2 are used by the video, with unit 0 for free use. // Units 3-4 are used for scaler LUTs. #define TEXUNIT_SCALERS 3 #define TEXUNIT_3DLUT 5 #define TEXUNIT_DITHER 6 // lscale/cscale arguments that map directly to shader filter routines. // Note that the convolution filters are not included in this list. static const char *fixed_scale_filters[] = { "bilinear", "bicubic_fast", "sharpen3", "sharpen5", NULL }; struct lut_tex_format { int pixels; GLint internal_format; GLenum format; }; // Indexed with filter_kernel->size. // This must match the weightsN functions in the shader. // Each entry uses (size+3)/4 pixels per LUT entry, and size/pixels components // per pixel. struct lut_tex_format lut_tex_formats[] = { [2] = {1, GL_RG16F, GL_RG}, [4] = {1, GL_RGBA16F, GL_RGBA}, [6] = {2, GL_RGB16F, GL_RGB}, [8] = {2, GL_RGBA16F, GL_RGBA}, [12] = {3, GL_RGBA16F, GL_RGBA}, [16] = {4, GL_RGBA16F, GL_RGBA}, }; // must be sorted, and terminated with 0 static const int filter_sizes[] = {2, 4, 6, 8, 12, 16, 0}; struct vertex { float position[2]; uint8_t color[4]; float texcoord[2]; }; #define VERTEX_ATTRIB_POSITION 0 #define VERTEX_ATTRIB_COLOR 1 #define VERTEX_ATTRIB_TEXCOORD 2 // 2 triangles primitives per quad = 6 vertices per quad // (GL_QUAD is deprecated, strips can't be used with OSD image lists) #define VERTICES_PER_QUAD 6 struct texplane { int shift_x, shift_y; GLuint gl_texture; int gl_buffer; int buffer_size; void *buffer_ptr; }; struct scaler { int index; const char *name; float params[2]; struct filter_kernel *kernel; GLuint gl_lut; const char *lut_name; // kernel points here struct filter_kernel kernel_storage; }; struct fbotex { GLuint fbo; GLuint texture; int tex_w, tex_h; // size of .texture int vp_w, vp_h; // viewport of fbo / used part of the texture }; struct gl_priv { struct vo *vo; MPGLContext *glctx; GL *gl; int use_indirect; int use_gamma; int use_srgb; int use_scale_sep; int use_fancy_downscaling; int use_lut_3d; int use_npot; int use_pbo; int use_glFinish; int use_gl_debug; int allow_sw; int dither_depth; int swap_interval; GLint fbo_format; int stereo_mode; struct gl_priv *defaults; struct gl_priv *orig_cmdline; GLuint vertex_buffer; GLuint vao; GLuint osd_programs[SUBBITMAP_COUNT]; GLuint indirect_program, scale_sep_program, final_program; struct mpgl_osd *osd; GLuint lut_3d_texture; int lut_3d_w, lut_3d_h, lut_3d_d; void *lut_3d_data; GLuint dither_texture; float dither_quantization; float dither_multiply; int dither_size; uint32_t image_width; uint32_t image_height; uint32_t image_format; int texture_width; int texture_height; bool is_yuv; bool is_linear_rgb; // per pixel (full pixel when packed, each component when planar) int plane_bytes; int plane_bits; GLint gl_internal_format; GLenum gl_format; GLenum gl_type; int plane_count; struct texplane planes[3]; struct fbotex indirect_fbo; // RGB target struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling // state for luma (0) and chroma (1) scalers struct scaler scalers[2]; // luma scaler parameters (the same are used for chroma) float scaler_params[2]; struct mp_csp_details colorspace; struct mp_csp_equalizer video_eq; int mpi_flipped; int vo_flipped; struct mp_rect src_rect; // displayed part of the source video struct mp_rect dst_rect; // video rectangle on output window struct mp_osd_res osd_rect; // OSD size/margins int vp_x, vp_y, vp_w, vp_h; // GL viewport int frames_rendered; void *scratch; }; struct fmt_entry { int mp_format; GLint internal_format; GLenum format; GLenum type; }; static const struct fmt_entry mp_to_gl_formats[] = { {IMGFMT_RGB48, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, {IMGFMT_RGB24, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, {IMGFMT_RGBA, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, {IMGFMT_RGB15, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_RGB16, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV}, {IMGFMT_BGR15, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_BGR16, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, {IMGFMT_BGR24, GL_RGB, GL_BGR, GL_UNSIGNED_BYTE}, {IMGFMT_BGRA, GL_RGBA, GL_BGRA, GL_UNSIGNED_BYTE}, {0}, }; static const char *osd_shaders[SUBBITMAP_COUNT] = { [SUBBITMAP_LIBASS] = "frag_osd_libass", [SUBBITMAP_RGBA] = "frag_osd_rgba", }; static const char help_text[]; static void uninit_rendering(struct gl_priv *p); static void delete_shaders(struct gl_priv *p); static bool reparse_cmdline(struct gl_priv *p, char *arg); static void default_tex_params(struct GL *gl, GLenum target, GLint filter) { gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } static void debug_check_gl(struct gl_priv *p, const char *msg) { if (p->use_gl_debug || p->frames_rendered < 5) glCheckError(p->gl, msg); } static void tex_size(struct gl_priv *p, int w, int h, int *texw, int *texh) { if (p->use_npot) { *texw = w; *texh = h; } else { *texw = 32; while (*texw < w) *texw *= 2; *texh = 32; while (*texh < h) *texh *= 2; } } static void draw_triangles(struct gl_priv *p, struct vertex *vb, int vert_count) { GL *gl = p->gl; assert(vert_count % 3 == 0); gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer); gl->BufferData(GL_ARRAY_BUFFER, vert_count * sizeof(struct vertex), vb, GL_DYNAMIC_DRAW); gl->BindBuffer(GL_ARRAY_BUFFER, 0); if (gl->BindVertexArray) gl->BindVertexArray(p->vao); gl->DrawArrays(GL_TRIANGLES, 0, vert_count); if (gl->BindVertexArray) gl->BindVertexArray(0); debug_check_gl(p, "after rendering"); } // Write a textured quad to a vertex array. // va = destination vertex array, VERTICES_PER_QUAD entries will be overwritten // x0, y0, x1, y1 = destination coordinates of the quad // tx0, ty0, tx1, ty1 = source texture coordinates (usually in pixels) // texture_w, texture_h = size of the texture, or an inverse factor // color = optional color for all vertices, NULL for opaque white // flip = flip vertically static void write_quad(struct vertex *va, float x0, float y0, float x1, float y1, float tx0, float ty0, float tx1, float ty1, float texture_w, float texture_h, const uint8_t color[4], bool flip) { static const uint8_t white[4] = { 255, 255, 255, 255 }; if (!color) color = white; tx0 /= texture_w; ty0 /= texture_h; tx1 /= texture_w; ty1 /= texture_h; if (flip) { float tmp = ty0; ty0 = ty1; ty1 = tmp; } #define COLOR_INIT {color[0], color[1], color[2], color[3]} va[0] = (struct vertex) { {x0, y0}, COLOR_INIT, {tx0, ty0} }; va[1] = (struct vertex) { {x0, y1}, COLOR_INIT, {tx0, ty1} }; va[2] = (struct vertex) { {x1, y0}, COLOR_INIT, {tx1, ty0} }; va[3] = (struct vertex) { {x1, y1}, COLOR_INIT, {tx1, ty1} }; va[4] = va[2]; va[5] = va[1]; #undef COLOR_INIT } static bool fbotex_init(struct gl_priv *p, struct fbotex *fbo, int w, int h) { GL *gl = p->gl; bool res = true; assert(gl->mpgl_caps & MPGL_CAP_FB); assert(!fbo->fbo); assert(!fbo->texture); tex_size(p, w, h, &fbo->tex_w, &fbo->tex_h); fbo->vp_w = w; fbo->vp_h = h; mp_msg(MSGT_VO, MSGL_V, "[gl] Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h); gl->GenFramebuffers(1, &fbo->fbo); gl->GenTextures(1, &fbo->texture); gl->BindTexture(GL_TEXTURE_2D, fbo->texture); gl->TexImage2D(GL_TEXTURE_2D, 0, p->fbo_format, fbo->tex_w, fbo->tex_h, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); default_tex_params(gl, GL_TEXTURE_2D, GL_LINEAR); gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fbo->texture, 0); if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { mp_msg(MSGT_VO, MSGL_ERR, "[gl] Error: framebuffer completeness " "check failed!\n"); res = false; } gl->BindFramebuffer(GL_FRAMEBUFFER, 0); debug_check_gl(p, "after creating framebuffer & associated texture"); return res; } static void fbotex_uninit(struct gl_priv *p, struct fbotex *fbo) { GL *gl = p->gl; if (gl->mpgl_caps & MPGL_CAP_FB) { gl->DeleteFramebuffers(1, &fbo->fbo); gl->DeleteTextures(1, &fbo->texture); *fbo = (struct fbotex) {0}; } } static void matrix_ortho2d(float m[3][3], float x0, float x1, float y0, float y1) { memset(m, 0, 9 * sizeof(float)); m[0][0] = 2.0f / (x1 - x0); m[1][1] = 2.0f / (y1 - y0); m[2][0] = -(x1 + x0) / (x1 - x0); m[2][1] = -(y1 + y0) / (y1 - y0); m[2][2] = 1.0f; } static void update_uniforms(struct gl_priv *p, GLuint program) { GL *gl = p->gl; GLint loc; if (program == 0) return; gl->UseProgram(program); struct mp_csp_params cparams = { .colorspace = p->colorspace, .input_bits = p->plane_bits, .texture_bits = (p->plane_bits + 7) & ~7, }; mp_csp_copy_equalizer_values(&cparams, &p->video_eq); loc = gl->GetUniformLocation(program, "transform"); if (loc >= 0) { float matrix[3][3]; matrix_ortho2d(matrix, 0, p->vp_w, p->vp_h, 0); gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]); } loc = gl->GetUniformLocation(program, "colormatrix"); if (loc >= 0) { float yuv2rgb[3][4] = {{0}}; if (p->is_yuv) mp_get_yuv2rgb_coeffs(&cparams, yuv2rgb); gl->UniformMatrix4x3fv(loc, 1, GL_TRUE, &yuv2rgb[0][0]); } gl->Uniform3f(gl->GetUniformLocation(program, "inv_gamma"), 1.0 / cparams.rgamma, 1.0 / cparams.ggamma, 1.0 / cparams.bgamma); for (int n = 0; n < p->plane_count; n++) { char textures_n[32]; char textures_size_n[32]; snprintf(textures_n, sizeof(textures_n), "textures[%d]", n); snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n); gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n); gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), p->texture_width >> p->planes[n].shift_x, p->texture_height >> p->planes[n].shift_y); } gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"), p->dither_size, p->dither_size); gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT); for (int n = 0; n < 2; n++) { const char *lut = p->scalers[n].lut_name; if (lut) gl->Uniform1i(gl->GetUniformLocation(program, lut), TEXUNIT_SCALERS + n); } gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER); gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"), p->dither_quantization); gl->Uniform1f(gl->GetUniformLocation(program, "dither_multiply"), p->dither_multiply); float sparam1 = p->scaler_params[0]; gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1"), isnan(sparam1) ? 0.5f : sparam1); gl->UseProgram(0); debug_check_gl(p, "update_uniforms()"); } static void update_all_uniforms(struct gl_priv *p) { for (int n = 0; n < SUBBITMAP_COUNT; n++) update_uniforms(p, p->osd_programs[n]); update_uniforms(p, p->indirect_program); update_uniforms(p, p->scale_sep_program); update_uniforms(p, p->final_program); } #define SECTION_HEADER "#!section " static char *get_section(void *talloc_ctx, struct bstr source, const char *section) { char *res = talloc_strdup(talloc_ctx, ""); bool copy = false; while (source.len) { struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source)); if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) { copy = bstrcmp0(line, section) == 0; } else if (copy) { res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line)); } } return res; } static char *t_concat(void *talloc_ctx, const char *s1, const char *s2) { return talloc_asprintf(talloc_ctx, "%s%s", s1, s2); } static GLuint create_shader(GL *gl, GLenum type, const char *header, const char *source) { void *tmp = talloc_new(NULL); const char *full_source = t_concat(tmp, header, source); GLuint shader = gl->CreateShader(type); gl->ShaderSource(shader, 1, &full_source, NULL); gl->CompileShader(shader); GLint status; gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status); GLint log_length; gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DBG2) : MSGL_ERR; const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment"; if (mp_msg_test(MSGT_VO, pri)) { mp_msg(MSGT_VO, pri, "[gl] %s shader source:\n", typestr); mp_log_source(MSGT_VO, pri, full_source); } if (log_length > 1) { GLchar *log = talloc_zero_size(tmp, log_length + 1); gl->GetShaderInfoLog(shader, log_length, NULL, log); mp_msg(MSGT_VO, pri, "[gl] %s shader compile log (status=%d):\n%s\n", typestr, status, log); } talloc_free(tmp); return shader; } static void prog_create_shader(GL *gl, GLuint program, GLenum type, const char *header, const char *source) { GLuint shader = create_shader(gl, type, header, source); gl->AttachShader(program, shader); gl->DeleteShader(shader); } static void link_shader(GL *gl, GLuint program) { gl->LinkProgram(program); GLint status; gl->GetProgramiv(program, GL_LINK_STATUS, &status); GLint log_length; gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DBG2) : MSGL_ERR; if (mp_msg_test(MSGT_VO, pri)) { GLchar *log = talloc_zero_size(NULL, log_length + 1); gl->GetProgramInfoLog(program, log_length, NULL, log); mp_msg(MSGT_VO, pri, "[gl] shader link log (status=%d): %s\n", status, log); talloc_free(log); } } static void bind_attrib_locs(GL *gl, GLuint program) { gl->BindAttribLocation(program, VERTEX_ATTRIB_POSITION, "vertex_position"); gl->BindAttribLocation(program, VERTEX_ATTRIB_COLOR, "vertex_color"); gl->BindAttribLocation(program, VERTEX_ATTRIB_TEXCOORD, "vertex_texcoord"); } static GLuint create_program(GL *gl, const char *name, const char *header, const char *vertex, const char *frag) { mp_msg(MSGT_VO, MSGL_V, "[gl] compiling shader program '%s'\n", name); mp_msg(MSGT_VO, MSGL_V, "[gl] header:\n"); mp_log_source(MSGT_VO, MSGL_V, header); GLuint prog = gl->CreateProgram(); prog_create_shader(gl, prog, GL_VERTEX_SHADER, header, vertex); prog_create_shader(gl, prog, GL_FRAGMENT_SHADER, header, frag); bind_attrib_locs(gl, prog); link_shader(gl, prog); return prog; } static void shader_def(char **shader, const char *name, const char *value) { *shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value); } static void shader_def_opt(char **shader, const char *name, bool b) { if (b) shader_def(shader, name, "1"); } static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass) { const char *target = scaler->index == 0 ? "SAMPLE_L" : "SAMPLE_C"; if (!scaler->kernel) { *shader = talloc_asprintf_append(*shader, "#define %s sample_%s\n", target, scaler->name); } else { int size = scaler->kernel->size; if (pass != -1) { // The direction/pass assignment is rather arbitrary, but fixed in // other parts of the code (like FBO setup). const char *direction = pass == 0 ? "0, 1" : "1, 0"; *shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) " "sample_convolution_sep%d(vec2(%s), %s, p0, p1, p2)\n", target, size, direction, scaler->lut_name); } else { *shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) " "sample_convolution%d(%s, p0, p1, p2)\n", target, size, scaler->lut_name); } } } // return false if RGB or 4:4:4 YUV static bool input_is_subsampled(struct gl_priv *p) { for (int i = 0; i < p->plane_count; i++) if (p->planes[i].shift_x || p->planes[i].shift_y) return true; return false; } static void compile_shaders(struct gl_priv *p) { GL *gl = p->gl; delete_shaders(p); void *tmp = talloc_new(NULL); struct bstr src = bstr0(vo_opengl_shaders); char *vertex_shader = get_section(tmp, src, "vertex_all"); char *shader_prelude = get_section(tmp, src, "prelude"); char *s_video = get_section(tmp, src, "frag_video"); char *header = talloc_asprintf(tmp, "#version %d\n%s", gl->glsl_version, shader_prelude); char *header_osd = talloc_strdup(tmp, header); shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV", p->use_srgb && !p->use_lut_3d); shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d); shader_def_opt(&header_osd, "USE_OSD_SRGB", p->use_srgb); for (int n = 0; n < SUBBITMAP_COUNT; n++) { const char *name = osd_shaders[n]; if (name) { char *s_osd = get_section(tmp, src, name); p->osd_programs[n] = create_program(gl, name, header_osd, vertex_shader, s_osd); } } char *header_conv = talloc_strdup(tmp, ""); char *header_final = talloc_strdup(tmp, ""); char *header_sep = NULL; bool convert_input_to_linear = !p->is_linear_rgb && (p->use_srgb || p->use_lut_3d); shader_def_opt(&header_conv, "USE_PLANAR", p->plane_count > 1); shader_def_opt(&header_conv, "USE_GBRP", p->image_format == IMGFMT_GBRP); shader_def_opt(&header_conv, "USE_YGRAY", p->is_yuv && p->plane_count == 1); shader_def_opt(&header_conv, "USE_COLORMATRIX", p->is_yuv); shader_def_opt(&header_conv, "USE_LINEAR_CONV", convert_input_to_linear); shader_def_opt(&header_final, "USE_LINEAR_CONV_INV", p->use_lut_3d); shader_def_opt(&header_final, "USE_GAMMA_POW", p->use_gamma); shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d); shader_def_opt(&header_final, "USE_SRGB", p->use_srgb); shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0); if (p->use_scale_sep && p->scalers[0].kernel) { header_sep = talloc_strdup(tmp, ""); shader_def_opt(&header_sep, "FIXED_SCALE", true); shader_setup_scaler(&header_sep, &p->scalers[0], 0); shader_setup_scaler(&header_final, &p->scalers[0], 1); } else { shader_setup_scaler(&header_final, &p->scalers[0], -1); } // We want to do scaling in linear light. Scaling is closely connected to // texture sampling due to how the shader is structured (or if GL bilinear // scaling is used). The purpose of the "indirect" pass is to convert the // input video to linear RGB. // Another purpose is reducing input to a single texture for scaling. bool use_indirect = p->use_indirect; // Don't sample from input video textures before converting the input to // linear light. (Unneeded when sRGB textures are used.) if (convert_input_to_linear) use_indirect = true; // It doesn't make sense to scale the chroma with cscale in the 1. scale // step and with lscale in the 2. step. If the chroma is subsampled, a // convolution filter wouldn't even work entirely correctly, because the // luma scaler would sample two texels instead of one per tap for chroma. // Also, even with 4:4:4 YUV or planar RGB, the indirection might be faster, // because the shader can't use one scaler for sampling from 3 textures. It // has to fetch the coefficients for each texture separately, even though // they're the same (this is not an inherent restriction, but would require // to restructure the shader). if (header_sep && p->plane_count > 1) use_indirect = true; if (input_is_subsampled(p)) { shader_setup_scaler(&header_conv, &p->scalers[1], -1); } else { // Force using the luma scaler on chroma. If the "indirect" stage is // used, the actual scaling will happen in the next stage. shader_def(&header_conv, "SAMPLE_C", use_indirect ? "sample_bilinear" : "SAMPLE_L"); } if (use_indirect) { // We don't use filtering for the Y-plane (luma), because it's never // scaled in this scenario. shader_def(&header_conv, "SAMPLE_L", "sample_bilinear"); shader_def_opt(&header_conv, "FIXED_SCALE", true); header_conv = t_concat(tmp, header, header_conv); p->indirect_program = create_program(gl, "indirect", header_conv, vertex_shader, s_video); } else if (header_sep) { header_sep = t_concat(tmp, header_sep, header_conv); } else { header_final = t_concat(tmp, header_final, header_conv); } if (header_sep) { header_sep = t_concat(tmp, header, header_sep); p->scale_sep_program = create_program(gl, "scale_sep", header_sep, vertex_shader, s_video); } header_final = t_concat(tmp, header, header_final); p->final_program = create_program(gl, "final", header_final, vertex_shader, s_video); debug_check_gl(p, "shader compilation"); talloc_free(tmp); } static void delete_program(GL *gl, GLuint *prog) { gl->DeleteProgram(*prog); *prog = 0; } static void delete_shaders(struct gl_priv *p) { GL *gl = p->gl; for (int n = 0; n < SUBBITMAP_COUNT; n++) delete_program(gl, &p->osd_programs[n]); delete_program(gl, &p->indirect_program); delete_program(gl, &p->scale_sep_program); delete_program(gl, &p->final_program); } static double get_scale_factor(struct gl_priv *p) { double sx = (p->dst_rect.x1 - p->dst_rect.x0) / (double)(p->src_rect.x1 - p->src_rect.x0); double sy = (p->dst_rect.y1 - p->dst_rect.y0) / (double)(p->src_rect.y1 - p->src_rect.y0); // xxx: actually we should use different scalers in X/Y directions if the // scale factors are different due to anamorphic content return FFMIN(sx, sy); } static bool update_scale_factor(struct gl_priv *p, struct filter_kernel *kernel) { double scale = get_scale_factor(p); if (!p->use_fancy_downscaling && scale < 1.0) scale = 1.0; return mp_init_filter(kernel, filter_sizes, FFMAX(1.0, 1.0 / scale)); } static void init_scaler(struct gl_priv *p, struct scaler *scaler) { GL *gl = p->gl; assert(scaler->name); scaler->kernel = NULL; const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name); if (!t_kernel) return; scaler->kernel_storage = *t_kernel; scaler->kernel = &scaler->kernel_storage; for (int n = 0; n < 2; n++) { if (!isnan(p->scaler_params[n])) scaler->kernel->params[n] = p->scaler_params[n]; } update_scale_factor(p, scaler->kernel); int size = scaler->kernel->size; assert(size < FF_ARRAY_ELEMS(lut_tex_formats)); struct lut_tex_format *fmt = &lut_tex_formats[size]; bool use_2d = fmt->pixels > 1; bool is_luma = scaler->index == 0; scaler->lut_name = use_2d ? (is_luma ? "lut_l_2d" : "lut_c_2d") : (is_luma ? "lut_l_1d" : "lut_c_1d"); gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index); GLenum target = use_2d ? GL_TEXTURE_2D : GL_TEXTURE_1D; if (!scaler->gl_lut) gl->GenTextures(1, &scaler->gl_lut); gl->BindTexture(target, scaler->gl_lut); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size); mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights); if (use_2d) { gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, fmt->pixels, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } else { gl->TexImage1D(GL_TEXTURE_1D, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } talloc_free(weights); gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "after initializing scaler"); } static void make_dither_matrix(unsigned char *m, int size) { m[0] = 0; for (int sz = 1; sz < size; sz *= 2) { int offset[] = {sz*size, sz, sz * (size+1), 0}; for (int i = 0; i < 4; i++) for (int y = 0; y < sz * size; y += size) for (int x = 0; x < sz; x++) m[x+y+offset[i]] = m[x+y] * 4 + (3-i) * 256/size/size; } } static void init_dither(struct gl_priv *p) { GL *gl = p->gl; // Assume 8 bits per component if unknown. int dst_depth = p->glctx->depth_g ? p->glctx->depth_g : 8; if (p->dither_depth > 0) dst_depth = p->dither_depth; if (p->dither_depth < 0) return; mp_msg(MSGT_VO, MSGL_V, "[gl] Dither to %d.\n", dst_depth); // This defines how many bits are considered significant for output on // screen. The superfluous bits will be used for rounded according to the // dither matrix. The precision of the source implicitly decides how many // dither patterns can be visible. p->dither_quantization = (1 << dst_depth) - 1; int size = 8; p->dither_multiply = p->dither_quantization + 1.0 / (size*size); unsigned char dither[256]; make_dither_matrix(dither, size); p->dither_size = size; gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER); gl->GenTextures(1, &p->dither_texture); gl->BindTexture(GL_TEXTURE_2D, p->dither_texture); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); gl->TexImage2D(GL_TEXTURE_2D, 0, GL_RED, size, size, 0, GL_RED, GL_UNSIGNED_BYTE, dither); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); gl->ActiveTexture(GL_TEXTURE0); } static void reinit_rendering(struct gl_priv *p) { mp_msg(MSGT_VO, MSGL_V, "[gl] Reinit rendering.\n"); if (p->gl->SwapInterval && p->swap_interval >= 0) p->gl->SwapInterval(p->swap_interval); debug_check_gl(p, "before scaler initialization"); uninit_rendering(p); init_dither(p); init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); compile_shaders(p); if (p->indirect_program && !p->indirect_fbo.fbo) fbotex_init(p, &p->indirect_fbo, p->texture_width, p->texture_height); if (!p->osd) { p->osd = mpgl_osd_init(p->gl, false); p->osd->use_pbo = p->use_pbo; } } static void uninit_rendering(struct gl_priv *p) { GL *gl = p->gl; delete_shaders(p); for (int n = 0; n < 2; n++) { gl->DeleteTextures(1, &p->scalers[n].gl_lut); p->scalers[n].gl_lut = 0; p->scalers[n].lut_name = NULL; p->scalers[n].kernel = NULL; } gl->DeleteTextures(1, &p->dither_texture); p->dither_texture = 0; if (p->osd) mpgl_osd_destroy(p->osd); p->osd = NULL; } static void init_lut_3d(struct gl_priv *p) { GL *gl = p->gl; gl->GenTextures(1, &p->lut_3d_texture); gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT); gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, p->lut_3d_w, p->lut_3d_h, p->lut_3d_d, 0, GL_RGB, GL_UNSIGNED_SHORT, p->lut_3d_data); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "after 3d lut creation"); } static void init_video(struct gl_priv *p) { GL *gl = p->gl; if (p->use_lut_3d && !p->lut_3d_texture) init_lut_3d(p); if (!p->is_yuv && (p->use_srgb || p->use_lut_3d)) { p->is_linear_rgb = true; p->gl_internal_format = GL_SRGB; } int eq_caps = MP_CSP_EQ_CAPS_GAMMA; if (p->is_yuv) eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX; p->video_eq.capabilities = eq_caps; debug_check_gl(p, "before video texture creation"); tex_size(p, p->image_width, p->image_height, &p->texture_width, &p->texture_height); for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &p->planes[n]; int w = p->texture_width >> plane->shift_x; int h = p->texture_height >> plane->shift_y; mp_msg(MSGT_VO, MSGL_V, "[gl] Texture for plane %d: %dx%d\n", n, w, h); gl->ActiveTexture(GL_TEXTURE0 + n); gl->GenTextures(1, &plane->gl_texture); gl->BindTexture(GL_TEXTURE_2D, plane->gl_texture); gl->TexImage2D(GL_TEXTURE_2D, 0, p->gl_internal_format, w, h, 0, p->gl_format, p->gl_type, NULL); default_tex_params(gl, GL_TEXTURE_2D, GL_LINEAR); } gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "after video texture creation"); reinit_rendering(p); } static void uninit_video(struct gl_priv *p) { GL *gl = p->gl; uninit_rendering(p); for (int n = 0; n < 3; n++) { struct texplane *plane = &p->planes[n]; gl->DeleteTextures(1, &plane->gl_texture); plane->gl_texture = 0; gl->DeleteBuffers(1, &plane->gl_buffer); plane->gl_buffer = 0; plane->buffer_ptr = NULL; plane->buffer_size = 0; } fbotex_uninit(p, &p->indirect_fbo); fbotex_uninit(p, &p->scale_sep_fbo); } static void render_to_fbo(struct gl_priv *p, struct fbotex *fbo, int w, int h, int tex_w, int tex_h) { GL *gl = p->gl; gl->Viewport(0, 0, fbo->vp_w, fbo->vp_h); gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); struct vertex vb[VERTICES_PER_QUAD]; write_quad(vb, -1, -1, 1, 1, 0, 0, w, h, tex_w, tex_h, NULL, false); draw_triangles(p, vb, VERTICES_PER_QUAD); gl->BindFramebuffer(GL_FRAMEBUFFER, 0); gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h); } static void handle_pass(struct gl_priv *p, struct fbotex **source, struct fbotex *fbo, GLuint program) { GL *gl = p->gl; if (!program) return; gl->BindTexture(GL_TEXTURE_2D, (*source)->texture); gl->UseProgram(program); render_to_fbo(p, fbo, (*source)->vp_w, (*source)->vp_h, (*source)->tex_w, (*source)->tex_h); *source = fbo; } static void do_render(struct gl_priv *p) { GL *gl = p->gl; struct vertex vb[VERTICES_PER_QUAD]; bool is_flipped = p->mpi_flipped ^ p->vo_flipped; // Order of processing: // [indirect -> [scale_sep ->]] final struct fbotex dummy = { .vp_w = p->image_width, .vp_h = p->image_height, .tex_w = p->texture_width, .tex_h = p->texture_height, .texture = p->planes[0].gl_texture, }; struct fbotex *source = &dummy; handle_pass(p, &source, &p->indirect_fbo, p->indirect_program); handle_pass(p, &source, &p->scale_sep_fbo, p->scale_sep_program); gl->BindTexture(GL_TEXTURE_2D, source->texture); gl->UseProgram(p->final_program); float final_texw = p->image_width * source->tex_w / (float)source->vp_w; float final_texh = p->image_height * source->tex_h / (float)source->vp_h; if (p->stereo_mode) { int w = p->src_rect.x1 - p->src_rect.x0; int imgw = p->image_width; glEnable3DLeft(gl, p->stereo_mode); write_quad(vb, p->dst_rect.x0, p->dst_rect.y0, p->dst_rect.x1, p->dst_rect.y1, p->src_rect.x0 / 2, p->src_rect.y0, p->src_rect.x0 / 2 + w / 2, p->src_rect.y1, final_texw, final_texh, NULL, is_flipped); draw_triangles(p, vb, VERTICES_PER_QUAD); glEnable3DRight(gl, p->stereo_mode); write_quad(vb, p->dst_rect.x0, p->dst_rect.y0, p->dst_rect.x1, p->dst_rect.y1, p->src_rect.x0 / 2 + imgw / 2, p->src_rect.y0, p->src_rect.x0 / 2 + imgw / 2 + w / 2, p->src_rect.y1, final_texw, final_texh, NULL, is_flipped); draw_triangles(p, vb, VERTICES_PER_QUAD); glDisable3D(gl, p->stereo_mode); } else { write_quad(vb, p->dst_rect.x0, p->dst_rect.y0, p->dst_rect.x1, p->dst_rect.y1, p->src_rect.x0, p->src_rect.y0, p->src_rect.x1, p->src_rect.y1, final_texw, final_texh, NULL, is_flipped); draw_triangles(p, vb, VERTICES_PER_QUAD); } gl->UseProgram(0); debug_check_gl(p, "after video rendering"); } static void update_window_sized_objects(struct gl_priv *p) { if (p->scale_sep_program) { int h = p->dst_rect.y1 - p->dst_rect.y0; if (h > p->scale_sep_fbo.tex_h) { fbotex_uninit(p, &p->scale_sep_fbo); // Round up to an arbitrary alignment to make window resizing or // panscan controls smoother (less texture reallocations). int height = FFALIGN(h, 256); fbotex_init(p, &p->scale_sep_fbo, p->image_width, height); } p->scale_sep_fbo.vp_w = p->image_width; p->scale_sep_fbo.vp_h = h; } } static void resize(struct gl_priv *p) { GL *gl = p->gl; struct vo *vo = p->vo; mp_msg(MSGT_VO, MSGL_V, "[gl] Resize: %dx%d\n", vo->dwidth, vo->dheight); p->vp_x = 0, p->vp_y = 0; p->vp_w = vo->dwidth, p->vp_h = vo->dheight; gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h); vo_get_src_dst_rects(vo, &p->src_rect, &p->dst_rect, &p->osd_rect); bool need_scaler_reinit = false; // filter size change needed bool need_scaler_update = false; // filter LUT change needed bool too_small = false; for (int n = 0; n < 2; n++) { if (p->scalers[n].kernel) { struct filter_kernel tkernel = *p->scalers[n].kernel; struct filter_kernel old = tkernel; bool ok = update_scale_factor(p, &tkernel); too_small |= !ok; need_scaler_reinit |= (tkernel.size != old.size); need_scaler_update |= (tkernel.inv_scale != old.inv_scale); } } if (need_scaler_reinit) { reinit_rendering(p); } else if (need_scaler_update) { init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); } if (too_small) mp_msg(MSGT_VO, MSGL_WARN, "[gl] Can't downscale that much, window " "output may look suboptimal.\n"); update_window_sized_objects(p); update_all_uniforms(p); gl->Clear(GL_COLOR_BUFFER_BIT); vo->want_redraw = true; } static void flip_page(struct vo *vo) { struct gl_priv *p = vo->priv; GL *gl = p->gl; if (p->use_glFinish) gl->Finish(); p->glctx->swapGlBuffers(p->glctx); if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y || p->dst_rect.x1 < p->vp_x + p->vp_w || p->dst_rect.y1 < p->vp_y + p->vp_h) { gl->Clear(GL_COLOR_BUFFER_BIT); } p->frames_rendered++; } static bool get_image(struct vo *vo, mp_image_t *mpi) { struct gl_priv *p = vo->priv; GL *gl = p->gl; if (!p->use_pbo) return false; // We don't support alpha planes. (Disabling PBOs with normal draw calls is // an undesired, but harmless side-effect.) if (mpi->num_planes != p->plane_count) return false; for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &p->planes[n]; mpi->stride[n] = (mpi->w >> plane->shift_x) * p->plane_bytes; int needed_size = (mpi->h >> plane->shift_y) * mpi->stride[n]; if (!plane->gl_buffer) gl->GenBuffers(1, &plane->gl_buffer); gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (needed_size > plane->buffer_size) { plane->buffer_size = needed_size; gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size, NULL, GL_DYNAMIC_DRAW); } if (!plane->buffer_ptr) plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); mpi->planes[n] = plane->buffer_ptr; gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); } return true; } static void draw_image(struct vo *vo, mp_image_t *mpi) { struct gl_priv *p = vo->priv; GL *gl = p->gl; int n; assert(mpi->num_planes >= p->plane_count); mp_image_t mpi2 = *mpi; int w = mpi->w, h = mpi->h; bool pbo = false; if (!p->planes[0].buffer_ptr && get_image(p->vo, &mpi2)) { for (n = 0; n < p->plane_count; n++) { struct texplane *plane = &p->planes[n]; int xs = plane->shift_x, ys = plane->shift_y; int line_bytes = (mpi->w >> xs) * p->plane_bytes; memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->h >> ys, mpi2.stride[n], mpi->stride[n]); } mpi = &mpi2; pbo = true; } p->mpi_flipped = mpi->stride[0] < 0; for (n = 0; n < p->plane_count; n++) { struct texplane *plane = &p->planes[n]; int xs = plane->shift_x, ys = plane->shift_y; void *plane_ptr = mpi->planes[n]; if (pbo) { gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER)) mp_msg(MSGT_VO, MSGL_FATAL, "[gl] Video PBO upload failed. " "Remove the 'pbo' suboption.\n"); plane->buffer_ptr = NULL; plane_ptr = NULL; // PBO offset 0 } gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(GL_TEXTURE_2D, plane->gl_texture); glUploadTex(gl, GL_TEXTURE_2D, p->gl_format, p->gl_type, plane_ptr, mpi->stride[n], 0, 0, w >> xs, h >> ys, 0); } gl->ActiveTexture(GL_TEXTURE0); gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); do_render(p); } static mp_image_t *get_screenshot(struct gl_priv *p) { GL *gl = p->gl; mp_image_t *image = mp_image_alloc(p->image_format, p->texture_width, p->texture_height); // NOTE about image formats with alpha plane: we don't even have the alpha // anymore. We never upload it to any texture, as it would be a waste of // time. On the other hand, we can't find a "similar", non-alpha image // format easily. So we just leave the alpha plane of the newly allocated // image as-is, and hope that the alpha is ignored by the receiver of the // screenshot. (If not, code should be added to make it fully opaque.) for (int n = 0; n < p->plane_count; n++) { gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(GL_TEXTURE_2D, p->planes[n].gl_texture); glDownloadTex(gl, GL_TEXTURE_2D, p->gl_format, p->gl_type, image->planes[n], image->stride[n]); } gl->ActiveTexture(GL_TEXTURE0); mp_image_set_size(image, p->image_width, p->image_height); mp_image_set_display_size(image, p->vo->aspdat.prew, p->vo->aspdat.preh); mp_image_set_colorspace_details(image, &p->colorspace); return image; } static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs) { struct gl_priv *p = ctx; GL *gl = p->gl; struct mpgl_osd_part *osd = mpgl_osd_generate(p->osd, imgs); if (!osd) return; assert(osd->format != SUBBITMAP_EMPTY); if (!osd->num_vertices) { osd->vertices = talloc_realloc(osd, osd->vertices, struct vertex, osd->packer->count * VERTICES_PER_QUAD); struct vertex *va = osd->vertices; for (int n = 0; n < osd->packer->count; n++) { struct sub_bitmap *b = &imgs->parts[n]; struct pos p = osd->packer->result[n]; // NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it // doesn't matter that we upload garbage for the other formats uint32_t c = b->libass.color; uint8_t color[4] = { c >> 24, (c >> 16) & 0xff, (c >> 8) & 0xff, 255 - (c & 0xff) }; write_quad(&va[osd->num_vertices], b->x, b->y, b->x + b->dw, b->y + b->dh, p.x, p.y, p.x + b->w, p.y + b->h, osd->w, osd->h, color, false); osd->num_vertices += VERTICES_PER_QUAD; } } debug_check_gl(p, "before drawing osd"); gl->UseProgram(p->osd_programs[osd->format]); mpgl_osd_set_gl_state(p->osd, osd); draw_triangles(p, osd->vertices, osd->num_vertices); mpgl_osd_unset_gl_state(p->osd, osd); gl->UseProgram(0); debug_check_gl(p, "after drawing osd"); } static void draw_osd(struct vo *vo, struct osd_state *osd) { struct gl_priv *p = vo->priv; GL *gl = p->gl; assert(p->osd); osd_draw(osd, p->osd_rect, osd->vo_pts, 0, p->osd->formats, draw_osd_cb, p); // The playloop calls this last before waiting some time until it decides // to call flip_page(). Tell OpenGL to start execution of the GPU commands // while we sleep (this happens asynchronously). gl->Flush(); } // Disable features that are not supported with the current OpenGL version. static void check_gl_features(struct gl_priv *p) { GL *gl = p->gl; bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX; bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB; bool have_srgb = gl->mpgl_caps & MPGL_CAP_SRGB_TEX; // srgb_compand() not available if (gl->glsl_version < 130) have_srgb = false; char *disabled[10]; int n_disabled = 0; if (have_fbo) { struct fbotex fbo = {0}; have_fbo = fbotex_init(p, &fbo, 16, 16); fbotex_uninit(p, &fbo); } // Disable these only if the user didn't disable scale-sep on the command // line, so convolution filter can still be forced to be run. // Normally, we want to disable them by default if FBOs are unavailable, // because they will be slow (not critically slow, but still slower). // Without FP textures, we must always disable them. if (!have_float_tex || (!have_fbo && p->use_scale_sep)) { for (int n = 0; n < 2; n++) { struct scaler *scaler = &p->scalers[n]; if (mp_find_filter_kernel(scaler->name)) { scaler->name = "bilinear"; disabled[n_disabled++] = have_float_tex ? "scaler (FBO)" : "scaler (float tex.)"; } } } if (!have_srgb && p->use_srgb) { p->use_srgb = false; disabled[n_disabled++] = "sRGB"; } if (!have_fbo && p->use_lut_3d) { p->use_lut_3d = false; disabled[n_disabled++] = "color management (FBO)"; } if (!have_srgb && p->use_lut_3d) { p->use_lut_3d = false; disabled[n_disabled++] = "color management (sRGB)"; } if (!have_fbo) { p->use_scale_sep = false; p->use_indirect = false; } if (n_disabled) { mp_msg(MSGT_VO, MSGL_ERR, "[gl] Some OpenGL extensions not detected, " "disabling: "); for (int n = 0; n < n_disabled; n++) { if (n) mp_msg(MSGT_VO, MSGL_ERR, ", "); mp_msg(MSGT_VO, MSGL_ERR, "%s", disabled[n]); } mp_msg(MSGT_VO, MSGL_ERR, ".\n"); } } static void setup_vertex_array(GL *gl) { size_t stride = sizeof(struct vertex); gl->EnableVertexAttribArray(VERTEX_ATTRIB_POSITION); gl->VertexAttribPointer(VERTEX_ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE, stride, (void*)offsetof(struct vertex, position)); gl->EnableVertexAttribArray(VERTEX_ATTRIB_COLOR); gl->VertexAttribPointer(VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, (void*)offsetof(struct vertex, color)); gl->EnableVertexAttribArray(VERTEX_ATTRIB_TEXCOORD); gl->VertexAttribPointer(VERTEX_ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE, stride, (void*)offsetof(struct vertex, texcoord)); } static int init_gl(struct gl_priv *p) { GL *gl = p->gl; debug_check_gl(p, "before init_gl"); const char *vendor = gl->GetString(GL_VENDOR); const char *version = gl->GetString(GL_VERSION); const char *renderer = gl->GetString(GL_RENDERER); const char *glsl = gl->GetString(GL_SHADING_LANGUAGE_VERSION); mp_msg(MSGT_VO, MSGL_V, "[gl] GL_RENDERER='%s', GL_VENDOR='%s', " "GL_VERSION='%s', GL_SHADING_LANGUAGE_VERSION='%s'" "\n", renderer, vendor, version, glsl); mp_msg(MSGT_VO, MSGL_V, "[gl] Display depth: R=%d, G=%d, B=%d\n", p->glctx->depth_r, p->glctx->depth_g, p->glctx->depth_b); check_gl_features(p); gl->Disable(GL_DITHER); gl->Disable(GL_BLEND); gl->Disable(GL_DEPTH_TEST); gl->DepthMask(GL_FALSE); gl->Disable(GL_CULL_FACE); gl->DrawBuffer(GL_BACK); gl->GenBuffers(1, &p->vertex_buffer); gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer); if (gl->BindVertexArray) { gl->GenVertexArrays(1, &p->vao); gl->BindVertexArray(p->vao); setup_vertex_array(gl); gl->BindVertexArray(0); } else { setup_vertex_array(gl); } gl->BindBuffer(GL_ARRAY_BUFFER, 0); gl->ClearColor(0.0f, 0.0f, 0.0f, 0.0f); gl->Clear(GL_COLOR_BUFFER_BIT); debug_check_gl(p, "after init_gl"); return 1; } static void uninit_gl(struct gl_priv *p) { GL *gl = p->gl; // NOTE: GL functions might not be loaded yet if (!(p->glctx && p->gl->DeleteTextures)) return; uninit_video(p); if (gl->DeleteVertexArrays) gl->DeleteVertexArrays(1, &p->vao); p->vao = 0; gl->DeleteBuffers(1, &p->vertex_buffer); p->vertex_buffer = 0; gl->DeleteTextures(1, &p->lut_3d_texture); p->lut_3d_texture = 0; } static bool init_format(int fmt, struct gl_priv *init) { bool supported = false; struct gl_priv dummy; if (!init) init = &dummy; struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt); if (!desc.id) return false; init->image_format = fmt; init->plane_bits = desc.plane_bits; // RGB/packed formats for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) { if (e->mp_format == fmt) { supported = true; init->plane_bits = desc.bpp[0]; init->gl_format = e->format; init->gl_internal_format = e->internal_format; init->gl_type = e->type; break; } } // YUV/planar formats if (!supported && (desc.flags & MP_IMGFLAG_YUV_P)) { init->gl_format = GL_RED; if (init->plane_bits == 8) { supported = true; init->gl_internal_format = GL_RED; init->gl_type = GL_UNSIGNED_BYTE; } else if (init->plane_bits <= 16 && (desc.flags & MP_IMGFLAG_NE)) { supported = true; init->gl_internal_format = GL_R16; init->gl_type = GL_UNSIGNED_SHORT; } } // RGB/planar if (!supported && fmt == IMGFMT_GBRP) { supported = true; init->plane_bits = 8; init->gl_format = GL_RED; init->gl_internal_format = GL_RED; init->gl_type = GL_UNSIGNED_BYTE; } if (!supported) return false; init->plane_bytes = (init->plane_bits + 7) / 8; init->is_yuv = desc.flags & MP_IMGFLAG_YUV; init->is_linear_rgb = false; // NOTE: we throw away the additional alpha plane, if one exists. init->plane_count = desc.num_planes > 2 ? 3 : 1; assert(desc.num_planes >= init->plane_count); assert(desc.num_planes <= init->plane_count + 1); for (int n = 0; n < init->plane_count; n++) { struct texplane *plane = &init->planes[n]; plane->shift_x = desc.xs[n]; plane->shift_y = desc.ys[n]; } return true; } static int query_format(struct vo *vo, uint32_t format) { int caps = VFCAP_CSP_SUPPORTED | VFCAP_CSP_SUPPORTED_BY_HW | VFCAP_FLIP; if (!init_format(format, NULL)) return 0; return caps; } static bool config_window(struct gl_priv *p, uint32_t d_width, uint32_t d_height, uint32_t flags) { if (p->stereo_mode == GL_3D_QUADBUFFER) flags |= VOFLAG_STEREO; if (p->use_gl_debug) flags |= VOFLAG_GL_DEBUG; int mpgl_caps = MPGL_CAP_GL21 | MPGL_CAP_TEX_RG; if (!p->allow_sw) mpgl_caps |= MPGL_CAP_NO_SW; return mpgl_config_window(p->glctx, mpgl_caps, d_width, d_height, flags); } static int config(struct vo *vo, uint32_t width, uint32_t height, uint32_t d_width, uint32_t d_height, uint32_t flags, uint32_t format) { struct gl_priv *p = vo->priv; if (!config_window(p, d_width, d_height, flags)) return -1; if (!p->vertex_buffer) init_gl(p); p->vo_flipped = !!(flags & VOFLAG_FLIPPING); if (p->image_format != format || p->image_width != width || p->image_height != height) { uninit_video(p); p->image_height = height; p->image_width = width; init_format(format, p); init_video(p); } resize(p); return 0; } static void check_events(struct vo *vo) { struct gl_priv *p = vo->priv; int e = p->glctx->check_events(vo); if (e & VO_EVENT_RESIZE) resize(p); if (e & VO_EVENT_EXPOSE) vo->want_redraw = true; } static int control(struct vo *vo, uint32_t request, void *data) { struct gl_priv *p = vo->priv; switch (request) { case VOCTRL_ONTOP: if (!p->glctx->ontop) break; p->glctx->ontop(vo); return VO_TRUE; case VOCTRL_PAUSE: if (!p->glctx->pause) break; p->glctx->pause(vo); return VO_TRUE; case VOCTRL_RESUME: if (!p->glctx->resume) break; p->glctx->resume(vo); return VO_TRUE; case VOCTRL_FULLSCREEN: p->glctx->fullscreen(vo); resize(p); return VO_TRUE; case VOCTRL_BORDER: if (!p->glctx->border) break; p->glctx->border(vo); resize(p); return VO_TRUE; case VOCTRL_GET_PANSCAN: return VO_TRUE; case VOCTRL_SET_PANSCAN: resize(p); return VO_TRUE; case VOCTRL_GET_EQUALIZER: { struct voctrl_get_equalizer_args *args = data; return mp_csp_equalizer_get(&p->video_eq, args->name, args->valueptr) >= 0 ? VO_TRUE : VO_NOTIMPL; } case VOCTRL_SET_EQUALIZER: { struct voctrl_set_equalizer_args *args = data; if (mp_csp_equalizer_set(&p->video_eq, args->name, args->value) < 0) return VO_NOTIMPL; if (!p->use_gamma && p->video_eq.values[MP_CSP_EQ_GAMMA] != 0) { mp_msg(MSGT_VO, MSGL_V, "[gl] Auto-enabling gamma.\n"); p->use_gamma = true; compile_shaders(p); } update_all_uniforms(p); vo->want_redraw = true; return VO_TRUE; } case VOCTRL_SET_YUV_COLORSPACE: { if (p->is_yuv) { p->colorspace = *(struct mp_csp_details *)data; update_all_uniforms(p); vo->want_redraw = true; } return VO_TRUE; } case VOCTRL_GET_YUV_COLORSPACE: *(struct mp_csp_details *)data = p->colorspace; return VO_TRUE; case VOCTRL_UPDATE_SCREENINFO: if (!p->glctx->update_xinerama_info) break; p->glctx->update_xinerama_info(vo); return VO_TRUE; case VOCTRL_SCREENSHOT: { struct voctrl_screenshot_args *args = data; if (args->full_window) args->out_image = glGetWindowScreenshot(p->gl); else args->out_image = get_screenshot(p); return true; } case VOCTRL_REDRAW_FRAME: do_render(p); return true; case VOCTRL_SET_COMMAND_LINE: { char *arg = data; if (!reparse_cmdline(p, arg)) return false; check_gl_features(p); reinit_rendering(p); resize(p); vo->want_redraw = true; return true; } } return VO_NOTIMPL; } static void uninit(struct vo *vo) { struct gl_priv *p = vo->priv; uninit_gl(p); mpgl_uninit(p->glctx); p->glctx = NULL; p->gl = NULL; } #ifdef CONFIG_LCMS2 static void lcms2_error_handler(cmsContext ctx, cmsUInt32Number code, const char *msg) { mp_msg(MSGT_VO, MSGL_ERR, "[gl] lcms2: %s\n", msg); } static struct bstr load_file(struct gl_priv *p, void *talloc_ctx, const char *filename) { struct bstr res = {0}; stream_t *s = open_stream(filename, NULL, NULL); if (s) { res = stream_read_complete(s, talloc_ctx, 1000000000, 0); free_stream(s); } return res; } #define LUT3D_CACHE_HEADER "mpv 3dlut cache 1.0\n" static bool load_icc(struct gl_priv *p, const char *icc_file, const char *icc_cache, int icc_intent, int s_r, int s_g, int s_b) { void *tmp = talloc_new(p); uint16_t *output = talloc_array(tmp, uint16_t, s_r * s_g * s_b * 3); if (icc_intent == -1) icc_intent = INTENT_ABSOLUTE_COLORIMETRIC; mp_msg(MSGT_VO, MSGL_INFO, "[gl] Opening ICC profile '%s'\n", icc_file); struct bstr iccdata = load_file(p, tmp, icc_file); if (!iccdata.len) goto error_exit; char *cache_info = talloc_asprintf(tmp, "intent=%d, size=%dx%dx%d\n", icc_intent, s_r, s_g, s_b); // check cache if (icc_cache) { mp_msg(MSGT_VO, MSGL_INFO, "[gl] Opening 3D LUT cache in file '%s'.\n", icc_cache); struct bstr cachedata = load_file(p, tmp, icc_cache); if (bstr_eatstart(&cachedata, bstr0(LUT3D_CACHE_HEADER)) && bstr_eatstart(&cachedata, bstr0(cache_info)) && bstr_eatstart(&cachedata, iccdata) && cachedata.len == talloc_get_size(output)) { memcpy(output, cachedata.start, cachedata.len); goto done; } else { mp_msg(MSGT_VO, MSGL_WARN, "[gl] 3D LUT cache invalid!\n"); } } cmsSetLogErrorHandler(lcms2_error_handler); cmsHPROFILE profile = cmsOpenProfileFromMem(iccdata.start, iccdata.len); if (!profile) goto error_exit; cmsCIExyY d65; cmsWhitePointFromTemp(&d65, 6504); static const cmsCIExyYTRIPLE bt709prim = { .Red = {0.64, 0.33, 1.0}, .Green = {0.30, 0.60, 1.0}, .Blue = {0.15, 0.06, 1.0}, }; cmsToneCurve *tonecurve = cmsBuildGamma(NULL, 1.0/0.45); cmsHPROFILE vid_profile = cmsCreateRGBProfile(&d65, &bt709prim, (cmsToneCurve*[3]){tonecurve, tonecurve, tonecurve}); cmsFreeToneCurve(tonecurve); cmsHTRANSFORM trafo = cmsCreateTransform(vid_profile, TYPE_RGB_16, profile, TYPE_RGB_16, icc_intent, cmsFLAGS_HIGHRESPRECALC); cmsCloseProfile(profile); cmsCloseProfile(vid_profile); if (!trafo) goto error_exit; // transform a (s_r)x(s_g)x(s_b) cube, with 3 components per channel uint16_t *input = talloc_array(tmp, uint16_t, s_r * 3); for (int b = 0; b < s_b; b++) { for (int g = 0; g < s_g; g++) { for (int r = 0; r < s_r; r++) { input[r * 3 + 0] = r * 65535 / (s_r - 1); input[r * 3 + 1] = g * 65535 / (s_g - 1); input[r * 3 + 2] = b * 65535 / (s_b - 1); } size_t base = (b * s_r * s_g + g * s_r) * 3; cmsDoTransform(trafo, input, output + base, s_r); } } cmsDeleteTransform(trafo); if (icc_cache) { FILE *out = fopen(icc_cache, "wb"); if (out) { fprintf(out, "%s%s", LUT3D_CACHE_HEADER, cache_info); fwrite(iccdata.start, iccdata.len, 1, out); fwrite(output, talloc_get_size(output), 1, out); fclose(out); } } done: p->lut_3d_data = talloc_steal(p, output); p->lut_3d_w = s_r, p->lut_3d_h = s_g, p->lut_3d_d = s_b; p->use_lut_3d = true; talloc_free(tmp); return true; error_exit: mp_msg(MSGT_VO, MSGL_FATAL, "[gl] Error loading ICC profile.\n"); talloc_free(tmp); return false; } #else /* CONFIG_LCMS2 */ static bool load_icc(struct gl_priv *p, ...) { mp_msg(MSGT_VO, MSGL_FATAL, "[gl] LCMS2 support not compiled.\n"); return false; } #endif /* CONFIG_LCMS2 */ static bool parse_3dlut_size(const char *s, int *p1, int *p2, int *p3) { if (sscanf(s, "%dx%dx%d", p1, p2, p3) != 3) return false; for (int n = 0; n < 3; n++) { int s = ((int[]) { *p1, *p2, *p3 })[n]; if (s < 2 || s > 256 || ((s - 1) & s)) return false; } return true; } static int lut3d_size_valid(void *arg) { char *s = *(char **)arg; int p1, p2, p3; return parse_3dlut_size(s, &p1, &p2, &p3); } static int backend_valid(void *arg) { return mpgl_find_backend(*(const char **)arg) >= 0; } struct fbo_format { const char *name; GLint format; }; const struct fbo_format fbo_formats[] = { {"rgb", GL_RGB}, {"rgba", GL_RGBA}, {"rgb8", GL_RGB8}, {"rgb10", GL_RGB10}, {"rgb16", GL_RGB16}, {"rgb16f", GL_RGB16F}, {"rgb32f", GL_RGB32F}, {0} }; static GLint find_fbo_format(const char *name) { for (const struct fbo_format *fmt = fbo_formats; fmt->name; fmt++) { if (strcmp(fmt->name, name) == 0) return fmt->format; } return -1; } static int fbo_format_valid(void *arg) { return find_fbo_format(*(const char **)arg) >= 0; } static bool can_use_filter_kernel(const struct filter_kernel *kernel) { if (!kernel) return false; struct filter_kernel k = *kernel; return mp_init_filter(&k, filter_sizes, 1); } static const char* handle_scaler_opt(const char *name) { const struct filter_kernel *kernel = mp_find_filter_kernel(name); if (can_use_filter_kernel(kernel)) return kernel->name; for (const char **filter = fixed_scale_filters; *filter; filter++) { if (strcmp(*filter, name) == 0) return *filter; } return NULL; } static int scaler_valid(void *arg) { return handle_scaler_opt(*(const char **)arg) != NULL; } #if 0 static void print_scalers(void) { mp_msg(MSGT_VO, MSGL_INFO, "Available scalers:\n"); for (const char **e = fixed_scale_filters; *e; e++) { mp_msg(MSGT_VO, MSGL_INFO, " %s\n", *e); } for (const struct filter_kernel *e = mp_filter_kernels; e->name; e++) { if (can_use_filter_kernel(e)) mp_msg(MSGT_VO, MSGL_INFO, " %s\n", e->name); } } #endif static bool reparse_cmdline(struct gl_priv *p, char *arg) { struct gl_priv tmp = *p->defaults; struct gl_priv *opt = &tmp; if (strcmp(arg, "-") == 0) { tmp = *p->orig_cmdline; arg = ""; } char *scalers[2] = {0}; char *fbo_format = NULL; const opt_t subopts[] = { {"srgb", OPT_ARG_BOOL, &opt->use_srgb}, {"pbo", OPT_ARG_BOOL, &opt->use_pbo}, {"glfinish", OPT_ARG_BOOL, &opt->use_glFinish}, {"swapinterval", OPT_ARG_INT, &opt->swap_interval}, {"lscale", OPT_ARG_MSTRZ, &scalers[0], scaler_valid}, {"cscale", OPT_ARG_MSTRZ, &scalers[1], scaler_valid}, {"lparam1", OPT_ARG_FLOAT, &opt->scaler_params[0]}, {"lparam2", OPT_ARG_FLOAT, &opt->scaler_params[1]}, {"fancy-downscaling", OPT_ARG_BOOL, &opt->use_fancy_downscaling}, {"indirect", OPT_ARG_BOOL, &opt->use_indirect}, {"scale-sep", OPT_ARG_BOOL, &opt->use_scale_sep}, {"fbo-format", OPT_ARG_MSTRZ, &fbo_format, fbo_format_valid}, {"dither-depth", OPT_ARG_INT, &opt->dither_depth}, {NULL} }; if (subopt_parse(arg, subopts) != 0) return false; p->fbo_format = opt->fbo_format; if (fbo_format) p->fbo_format = find_fbo_format(fbo_format); free(fbo_format); for (int n = 0; n < 2; n++) { p->scalers[n].name = opt->scalers[n].name; if (scalers[n]) p->scalers[n].name = handle_scaler_opt(scalers[n]); free(scalers[n]); } // xxx ideally we'd put all options into an option struct, and just copy p->use_srgb = opt->use_srgb; //xxx changing srgb will be wrong on RGB input! p->use_pbo = opt->use_pbo; p->use_glFinish = opt->use_glFinish; p->swap_interval = opt->swap_interval; memcpy(p->scaler_params, opt->scaler_params, sizeof(p->scaler_params)); p->use_fancy_downscaling = opt->use_fancy_downscaling; p->use_indirect = opt->use_indirect; p->use_scale_sep = opt->use_scale_sep; p->dither_depth = opt->dither_depth; check_gl_features(p); return true; } static int preinit(struct vo *vo, const char *arg) { struct gl_priv *p = talloc_zero(vo, struct gl_priv); vo->priv = p; bool hq = strcmp(vo->driver->info->short_name, "opengl-hq") == 0; *p = (struct gl_priv) { .vo = vo, .colorspace = MP_CSP_DETAILS_DEFAULTS, .use_npot = 1, .use_pbo = hq, .swap_interval = 1, .dither_depth = hq ? 0 : -1, .fbo_format = hq ? GL_RGB16 : GL_RGB, .use_scale_sep = 1, .scalers = { { .index = 0, .name = hq ? "lanczos2" : "bilinear" }, { .index = 1, .name = "bilinear" }, }, .scaler_params = {NAN, NAN}, .scratch = talloc_zero_array(p, char *, 1), }; p->defaults = talloc(p, struct gl_priv); *p->defaults = *p; char *scalers[2] = {0}; char *backend_arg = NULL; char *fbo_format = NULL; char *icc_profile = NULL; char *icc_cache = NULL; int icc_intent = -1; char *icc_size_str = NULL; const opt_t subopts[] = { {"gamma", OPT_ARG_BOOL, &p->use_gamma}, {"srgb", OPT_ARG_BOOL, &p->use_srgb}, {"npot", OPT_ARG_BOOL, &p->use_npot}, {"pbo", OPT_ARG_BOOL, &p->use_pbo}, {"glfinish", OPT_ARG_BOOL, &p->use_glFinish}, {"swapinterval", OPT_ARG_INT, &p->swap_interval}, {"stereo", OPT_ARG_INT, &p->stereo_mode}, {"lscale", OPT_ARG_MSTRZ, &scalers[0], scaler_valid}, {"cscale", OPT_ARG_MSTRZ, &scalers[1], scaler_valid}, {"lparam1", OPT_ARG_FLOAT, &p->scaler_params[0]}, {"lparam2", OPT_ARG_FLOAT, &p->scaler_params[1]}, {"fancy-downscaling", OPT_ARG_BOOL, &p->use_fancy_downscaling}, {"debug", OPT_ARG_BOOL, &p->use_gl_debug}, {"indirect", OPT_ARG_BOOL, &p->use_indirect}, {"scale-sep", OPT_ARG_BOOL, &p->use_scale_sep}, {"fbo-format", OPT_ARG_MSTRZ, &fbo_format, fbo_format_valid}, {"backend", OPT_ARG_MSTRZ, &backend_arg, backend_valid}, {"sw", OPT_ARG_BOOL, &p->allow_sw}, {"icc-profile", OPT_ARG_MSTRZ, &icc_profile}, {"icc-cache", OPT_ARG_MSTRZ, &icc_cache}, {"icc-intent", OPT_ARG_INT, &icc_intent}, {"3dlut-size", OPT_ARG_MSTRZ, &icc_size_str, lut3d_size_valid}, {"dither-depth", OPT_ARG_INT, &p->dither_depth}, {NULL} }; if (subopt_parse(arg, subopts) != 0) { mp_msg(MSGT_VO, MSGL_FATAL, "%s", help_text); goto err_out; } int backend = backend_arg ? mpgl_find_backend(backend_arg) : GLTYPE_AUTO; free(backend_arg); if (fbo_format) p->fbo_format = find_fbo_format(fbo_format); free(fbo_format); for (int n = 0; n < 2; n++) { if (scalers[n]) p->scalers[n].name = handle_scaler_opt(scalers[n]); free(scalers[n]); } int s_r = 128, s_g = 256, s_b = 64; if (icc_size_str) parse_3dlut_size(icc_size_str, &s_r, &s_g, &s_b); free(icc_size_str); bool success = true; if (icc_profile) { success = load_icc(p, icc_profile, icc_cache, icc_intent, s_r, s_g, s_b); } free(icc_profile); free(icc_cache); if (!success) goto err_out; p->orig_cmdline = talloc(p, struct gl_priv); *p->orig_cmdline = *p; p->glctx = mpgl_init(backend, vo); if (!p->glctx) goto err_out; p->gl = p->glctx->gl; if (!config_window(p, 320, 200, VOFLAG_HIDDEN)) goto err_out; check_gl_features(p); return 0; err_out: uninit(vo); return -1; } const struct vo_driver video_out_opengl = { .info = &(const vo_info_t) { "Extended OpenGL Renderer", "opengl", "Based on vo_gl.c by Reimar Doeffinger", "" }, .preinit = preinit, .query_format = query_format, .config = config, .control = control, .draw_image = draw_image, .draw_osd = draw_osd, .flip_page = flip_page, .check_events = check_events, .uninit = uninit, }; const struct vo_driver video_out_opengl_hq = { .info = &(const vo_info_t) { "Extended OpenGL Renderer (high quality rendering preset)", "opengl-hq", "Based on vo_gl.c by Reimar Doeffinger", "" }, .preinit = preinit, .query_format = query_format, .config = config, .control = control, .draw_image = draw_image, .draw_osd = draw_osd, .flip_page = flip_page, .check_events = check_events, .uninit = uninit, }; static const char help_text[] = "\n--vo=opengl command line help:\n" "Example: mpv --vo=opengl:scale-sep:lscale=lanczos2\n" "\nOptions:\n" " lscale=\n" " Set the scaling filter. Possible choices:\n" " bilinear: bilinear texture filtering (fastest).\n" " bicubic_fast: bicubic filter (without lookup texture).\n" " sharpen3: unsharp masking (sharpening) with radius=3.\n" " sharpen5: unsharp masking (sharpening) with radius=5.\n" " lanczos2: Lanczos with radius=2 (recommended).\n" " lanczos3: Lanczos with radius=3 (not recommended).\n" " mitchell: Mitchell-Netravali.\n" " Default: bilinear\n" " lparam1= / lparam2=\n" " Set parameters for configurable filters. Affects chroma scaler\n" " as well.\n" " Filters which use this:\n" " mitchell: b and c params (defaults: b=1/3 c=1/3)\n" " kaiser: (defaults: 6.33 6.33)\n" " sharpen3: lparam1 sets sharpening strength (default: 0.5)\n" " sharpen5: as with sharpen3\n" " stereo=\n" " 0: normal display\n" " 1: side-by-side to red-cyan stereo\n" " 2: side-by-side to green-magenta stereo\n" " 3: side-by-side to quadbuffer stereo\n" " srgb\n" " Enable gamma-correct scaling by working in linear light. This\n" " makes use of sRGB textures and framebuffers.\n" " This option forces the options 'indirect' and 'gamma'.\n" " NOTE: For YUV colorspaces, gamma 1/0.45 is assumed. RGB input is always\n" " assumed to be in sRGB.\n" " pbo\n" " Enable use of PBOs. This is faster, but can sometimes lead to\n" " sporadic and temporary image corruption.\n" " dither-depth=\n" " Positive non-zero values select the target bit depth.\n" " -1: Disable any dithering done by mpv.\n" " 0: Automatic selection. If output bit depth can't be detected,\n" " 8 bits per component are assumed.\n" " 8: Dither to 8 bit output.\n" " Default: -1.\n" " debug\n" " Check for OpenGL errors, i.e. call glGetError(). Also request a\n" " debug OpenGL context.\n" "Less useful options:\n" " swapinterval=\n" " Interval in displayed frames between to buffer swaps.\n" " 1 is equivalent to enable VSYNC, 0 to disable VSYNC.\n" " no-scale-sep\n" " When using a separable scale filter for luma, usually two filter\n" " passes are done. This is often faster. However, it forces\n" " conversion to RGB in an extra pass, so it can actually be slower\n" " if used with fast filters on small screen resolutions. Using\n" " this options will make rendering a single operation.\n" " Note that chroma scalers are always done as 1-pass filters.\n" " cscale=\n" " As lscale but for chroma (2x slower with little visible effect).\n" " Note that with some scaling filters, upscaling is always done in\n" " RGB. If chroma is not subsampled, this option is ignored, and the\n" " luma scaler is used instead. Setting this option is often useless.\n" " fancy-downscaling\n" " When using convolution based filters, extend the filter size\n" " when downscaling. Trades quality for reduced downscaling performance.\n" " no-npot\n" " Force use of power-of-2 texture sizes. For debugging only.\n" " Borders will look discolored due to filtering.\n" " glfinish\n" " Call glFinish() before swapping buffers\n" " backend=\n" " auto: auto-select (default)\n" " cocoa: Cocoa/OSX\n" " win: Win32/WGL\n" " x11: X11/GLX\n" " wayland: Wayland/EGL\n" " indirect\n" " Do YUV conversion and scaling as separate passes. This will\n" " first render the video into a video-sized RGB texture, and\n" " draw the result on screen. The luma scaler is used to scale\n" " the RGB image when rendering to screen. The chroma scaler\n" " is used only on YUV conversion, and only if the video uses\n" " chroma-subsampling.\n" " This mechanism is disabled on RGB input.\n" " fbo-format=\n" " Selects the internal format of any FBO textures used.\n" " fmt can be one of: rgb, rgba, rgb8, rgb10, rgb16, rgb16f, rgb32f\n" " Default: rgb.\n" " gamma\n" " Always enable gamma control. (Disables delayed enabling.)\n" "Color management:\n" " icc-profile=\n" " Load an ICC profile and use it to transform linear RGB to\n" " screen output. Needs LittleCMS2 support compiled in.\n" " icc-cache=\n" " Store and load the 3D LUT created from the ICC profile in\n" " this file. This can be used to speed up loading, since\n" " LittleCMS2 can take a while to create the 3D LUT.\n" " Note that this file will be up to ~100 MB big.\n" " icc-intent=\n" " 0: perceptual\n" " 1: relative colorimetric\n" " 2: saturation\n" " 3: absolute colorimetric (default)\n" " 3dlut-size=xx\n" " Size of the 3D LUT generated from the ICC profile in each\n" " dimension. Default is 128x256x64.\n" " Sizes must be a power of two, and 256 at most.\n" "Note: all defaults mentioned are for 'opengl', not 'opengl-hq'.\n" "\n";