/*============================================================================= // // This software has been released under the terms of the GNU Public // license. See http://www.gnu.org/copyleft/gpl.html for details. // // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au // //============================================================================= */ /* Equalizer plugin, implementation of a 10 band time domain graphic equalizer using IIR filters. The IIR filters are implemented using a Direct Form II approach. But has been modified (b1 == 0 always) to save computation. */ #define PLUGIN #include #include #include #include #include #include "audio_out.h" #include "audio_plugin.h" #include "audio_plugin_internal.h" #include "afmt.h" #include "eq.h" static ao_info_t info = { "Equalizer audio plugin", "eq", "Anders", "" }; LIBAO_PLUGIN_EXTERN(eq) #define CH 6 // Max number of channels #define L 2 // Storage for filter taps #define KM 10 // Max number of octaves #define Q 1.2247 /* Q value for band-pass filters 1.2247=(3/2)^(1/2) gives 4db suppression @ Fc*2 and Fc/2 */ // Center frequencies for band-pass filters #define CF {31.25,62.5,125,250,500,1000,2000,4000,8000,16000} // local data typedef struct pl_eq_s { int16_t a[KM][L]; // A weights int16_t b[KM][L]; // B weights int16_t wq[CH][KM][L]; // Circular buffer for W data int16_t g[CH][KM]; // Gain factor for each channel and band int16_t K; // Number of used eq bands int channels; // Number of channels } pl_eq_t; static pl_eq_t pl_eq; // to set/get/query special features/parameters static int control(int cmd,int arg){ switch(cmd){ case AOCONTROL_PLUGIN_SET_LEN: return CONTROL_OK; case AOCONTROL_PLUGIN_EQ_SET_GAIN:{ float gain = ((equalizer_t*)arg)->gain; int ch =((equalizer_t*)arg)->channel; int band =((equalizer_t*)arg)->band; if(ch > CH || ch < 0 || band > KM || band < 0) return CONTROL_ERROR; pl_eq.g[ch][band]=(int16_t) 4096 * (pow(10.0,gain/20.0)-1.0); return CONTROL_OK; } case AOCONTROL_PLUGIN_EQ_GET_GAIN:{ int ch =((equalizer_t*)arg)->channel; int band =((equalizer_t*)arg)->band; if(ch > CH || ch < 0 || band > KM || band < 0) return CONTROL_ERROR; ((equalizer_t*)arg)->gain = log10((float)pl_eq.g[ch][band]/4096.0+1) * 20.0; return CONTROL_OK; } } return CONTROL_UNKNOWN; } // 2nd order Band-pass Filter design void bp2(int16_t* a, int16_t* b, float fc, float q){ double th=2*3.141592654*fc; double C=(1 - tan(th*q/2))/(1 + tan(th*q/2)); a[0] = (int16_t)lround( 16383.0 * (1 + C) * cos(th)); a[1] = (int16_t)lround(-16383.0 * C); b[0] = (int16_t)lround(-16383.0 * (C - 1)/2); b[1] = (int16_t)lround(-16383.0 * 1.0050); } // empty buffers static void reset(){ int k,l,c; for(c=0;cCH){ fprintf(stderr,"[pl_eq] Too many channels, max is 6.\n"); return 0; } pl_eq.channels=ao_plugin_data.channels; // Calculate number of active filters pl_eq.K=KM; while(F[pl_eq.K-1] > (float)ao_plugin_data.rate/2) pl_eq.K--; // Generate filter taps for(k=0;k> 4; register int32_t w = xt + wq[0]*pl_eq.a[k][0] + wq[1]*pl_eq.a[k][1]; // Calculate output form MA part of current filter yt+=(((w + wq[1]*pl_eq.b[k][1]) >> 10)*g[k]) >> 12; // Update circular buffer wq[1] = wq[0]; wq[0] = w >> 14; } // Calculate output *out=(int16_t)(yt+x); out+=nch; } } return 1; }