/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with mpv. If not, see <http://www.gnu.org/licenses/>. */ #include <stddef.h> #include <stdbool.h> #include <inttypes.h> #include <limits.h> #include <math.h> #include <assert.h> #include "config.h" #include "talloc.h" #include "common/msg.h" #include "common/encode.h" #include "options/options.h" #include "common/common.h" #include "audio/mixer.h" #include "audio/audio.h" #include "audio/audio_buffer.h" #include "audio/decode/dec_audio.h" #include "audio/filter/af.h" #include "audio/out/ao.h" #include "demux/demux.h" #include "video/decode/dec_video.h" #include "core.h" #include "command.h" static int update_playback_speed_filters(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; double speed = opts->playback_speed; struct af_stream *afs = mpctx->d_audio->afilter; // Make sure only exactly one filter changes speed; resetting them all // and setting 1 filter is the easiest way to achieve this. af_control_all(afs, AF_CONTROL_SET_PLAYBACK_SPEED, &(double){1}); af_control_all(afs, AF_CONTROL_SET_PLAYBACK_SPEED_RESAMPLE, &(double){1}); if (speed == 1.0) return af_remove_by_label(afs, "playback-speed"); // Compatibility: if the user uses --af=scaletempo, always use this // filter to change speed. Don't insert a second filter (any) either. if (!af_find_by_label(afs, "playback-speed") && af_control_any_rev(afs, AF_CONTROL_SET_PLAYBACK_SPEED, &speed)) return 0; int method = AF_CONTROL_SET_PLAYBACK_SPEED_RESAMPLE; if (opts->pitch_correction) method = AF_CONTROL_SET_PLAYBACK_SPEED; if (!af_control_any_rev(afs, method, &speed)) { if (af_remove_by_label(afs, "playback-speed") < 0) return -1; char *filter = method == AF_CONTROL_SET_PLAYBACK_SPEED ? "scaletempo" : "lavrresample"; if (af_add(afs, filter, "playback-speed", NULL) < 0) return -1; // Try again. if (!af_control_any_rev(afs, method, &speed)) return -1; } return 0; } static int recreate_audio_filters(struct MPContext *mpctx) { assert(mpctx->d_audio); if (update_playback_speed_filters(mpctx) < 0) { mpctx->opts->playback_speed = 1.0; mp_notify(mpctx, MP_EVENT_CHANGE_ALL, NULL); } struct af_stream *afs = mpctx->d_audio->afilter; if (afs->initialized < 1 && af_init(afs) < 0) { MP_ERR(mpctx, "Couldn't find matching filter/ao format!\n"); return -1; } mixer_reinit_audio(mpctx->mixer, mpctx->ao, afs); return 0; } int reinit_audio_filters(struct MPContext *mpctx) { struct dec_audio *d_audio = mpctx->d_audio; if (!d_audio) return 0; af_uninit(mpctx->d_audio->afilter); if (af_init(mpctx->d_audio->afilter) < 0) return -1; if (recreate_audio_filters(mpctx) < 0) return -1; return 1; } void set_playback_speed(struct MPContext *mpctx, double new_speed) { struct MPOpts *opts = mpctx->opts; // Adjust time until next frame flip for nosound mode mpctx->time_frame *= opts->playback_speed / new_speed; opts->playback_speed = new_speed; if (!mpctx->d_audio || mpctx->d_audio->afilter->initialized < 1) return; recreate_audio_filters(mpctx); } void reset_audio_state(struct MPContext *mpctx) { if (mpctx->d_audio) audio_reset_decoding(mpctx->d_audio); if (mpctx->ao_buffer) mp_audio_buffer_clear(mpctx->ao_buffer); mpctx->audio_status = mpctx->d_audio ? STATUS_SYNCING : STATUS_EOF; mpctx->delay = 0; } void uninit_audio_out(struct MPContext *mpctx) { if (mpctx->ao) { // Note: with gapless_audio, stop_play is not correctly set if (mpctx->opts->gapless_audio || mpctx->stop_play == AT_END_OF_FILE) ao_drain(mpctx->ao); mixer_uninit_audio(mpctx->mixer); ao_uninit(mpctx->ao); } mpctx->ao = NULL; talloc_free(mpctx->ao_decoder_fmt); mpctx->ao_decoder_fmt = NULL; } void uninit_audio_chain(struct MPContext *mpctx) { if (mpctx->d_audio) { mixer_uninit_audio(mpctx->mixer); audio_uninit(mpctx->d_audio); mpctx->d_audio = NULL; talloc_free(mpctx->ao_buffer); mpctx->ao_buffer = NULL; mpctx->audio_status = STATUS_EOF; reselect_demux_streams(mpctx); } } void reinit_audio_chain(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; struct track *track = mpctx->current_track[0][STREAM_AUDIO]; struct sh_stream *sh = track ? track->stream : NULL; if (!sh) { uninit_audio_out(mpctx); goto no_audio; } mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL); if (!mpctx->d_audio) { mpctx->d_audio = talloc_zero(NULL, struct dec_audio); mpctx->d_audio->log = mp_log_new(mpctx->d_audio, mpctx->log, "!ad"); mpctx->d_audio->global = mpctx->global; mpctx->d_audio->opts = opts; mpctx->d_audio->header = sh; mpctx->d_audio->pool = mp_audio_pool_create(mpctx->d_audio); mpctx->d_audio->afilter = af_new(mpctx->global); mpctx->d_audio->afilter->replaygain_data = sh->audio->replaygain_data; mpctx->ao_buffer = mp_audio_buffer_create(NULL); if (!audio_init_best_codec(mpctx->d_audio, opts->audio_decoders)) goto init_error; reset_audio_state(mpctx); if (mpctx->ao) { struct mp_audio fmt; ao_get_format(mpctx->ao, &fmt); mp_audio_buffer_reinit(mpctx->ao_buffer, &fmt); } } assert(mpctx->d_audio); struct mp_audio in_format = mpctx->d_audio->decode_format; if (!mp_audio_config_valid(&in_format)) { // We don't know the audio format yet - so configure it later as we're // resyncing. fill_audio_buffers() will call this function again. mpctx->sleeptime = 0; return; } // Weak gapless audio: drain AO on decoder format changes if (mpctx->ao_decoder_fmt && mpctx->ao && opts->gapless_audio < 0 && !mp_audio_config_equals(mpctx->ao_decoder_fmt, &in_format)) { uninit_audio_out(mpctx); } struct af_stream *afs = mpctx->d_audio->afilter; afs->output = (struct mp_audio){0}; if (mpctx->ao) { ao_get_format(mpctx->ao, &afs->output); } else if (!AF_FORMAT_IS_SPECIAL(in_format.format)) { afs->output.rate = opts->force_srate; mp_audio_set_format(&afs->output, opts->audio_output_format); mp_audio_set_channels(&afs->output, &opts->audio_output_channels); } // filter input format: same as codec's output format: afs->input = in_format; // Determine what the filter chain outputs. recreate_audio_filters() also // needs this for testing whether playback speed is changed by resampling // or using a special filter. if (af_init(afs) < 0) { MP_ERR(mpctx, "Error at audio filter chain pre-init!\n"); goto init_error; } if (!mpctx->ao) { mp_chmap_remove_useless_channels(&afs->output.channels, &opts->audio_output_channels); mp_audio_set_channels(&afs->output, &afs->output.channels); mpctx->ao = ao_init_best(mpctx->global, mpctx->input, mpctx->encode_lavc_ctx, afs->output.rate, afs->output.format, afs->output.channels); struct ao *ao = mpctx->ao; if (!ao) { MP_ERR(mpctx, "Could not open/initialize audio device -> no sound.\n"); mpctx->error_playing = MPV_ERROR_AO_INIT_FAILED; goto init_error; } struct mp_audio fmt; ao_get_format(ao, &fmt); mp_audio_buffer_reinit(mpctx->ao_buffer, &fmt); afs->output = fmt; if (!mp_audio_config_equals(&afs->output, &afs->filter_output)) afs->initialized = 0; mpctx->ao_decoder_fmt = talloc(NULL, struct mp_audio); *mpctx->ao_decoder_fmt = in_format; MP_INFO(mpctx, "AO: [%s] %s\n", ao_get_name(ao), mp_audio_config_to_str(&fmt)); MP_VERBOSE(mpctx, "AO: Description: %s\n", ao_get_description(ao)); update_window_title(mpctx, true); } if (recreate_audio_filters(mpctx) < 0) goto init_error; set_playback_speed(mpctx, opts->playback_speed); return; init_error: uninit_audio_chain(mpctx); uninit_audio_out(mpctx); no_audio: if (track) error_on_track(mpctx, track); } // Return pts value corresponding to the end point of audio written to the // ao so far. double written_audio_pts(struct MPContext *mpctx) { struct dec_audio *d_audio = mpctx->d_audio; if (!d_audio) return MP_NOPTS_VALUE; struct mp_audio in_format = d_audio->decode_format; if (!mp_audio_config_valid(&in_format) || d_audio->afilter->initialized < 1) return MP_NOPTS_VALUE; // first calculate the end pts of audio that has been output by decoder double a_pts = d_audio->pts; if (a_pts == MP_NOPTS_VALUE) return MP_NOPTS_VALUE; // d_audio->pts is the timestamp of the latest input packet with // known pts that the decoder has decoded. d_audio->pts_bytes is // the amount of bytes the decoder has written after that timestamp. a_pts += d_audio->pts_offset / (double)in_format.rate; // Now a_pts hopefully holds the pts for end of audio from decoder. // Subtract data in buffers between decoder and audio out. // Decoded but not filtered if (d_audio->waiting) a_pts -= d_audio->waiting->samples / (double)in_format.rate; // Data buffered in audio filters, measured in seconds of "missing" output double buffered_output = af_calc_delay(d_audio->afilter); // Data that was ready for ao but was buffered because ao didn't fully // accept everything to internal buffers yet buffered_output += mp_audio_buffer_seconds(mpctx->ao_buffer); // Filters divide audio length by playback_speed, so multiply by it // to get the length in original units without speedup or slowdown a_pts -= buffered_output * mpctx->opts->playback_speed; return a_pts + get_track_video_offset(mpctx, mpctx->current_track[0][STREAM_AUDIO]); } // Return pts value corresponding to currently playing audio. double playing_audio_pts(struct MPContext *mpctx) { double pts = written_audio_pts(mpctx); if (pts == MP_NOPTS_VALUE || !mpctx->ao) return pts; return pts - mpctx->opts->playback_speed * ao_get_delay(mpctx->ao); } static int write_to_ao(struct MPContext *mpctx, struct mp_audio *data, int flags, double pts) { if (mpctx->paused) return 0; struct ao *ao = mpctx->ao; struct mp_audio out_format; ao_get_format(ao, &out_format); #if HAVE_ENCODING encode_lavc_set_audio_pts(mpctx->encode_lavc_ctx, playing_audio_pts(mpctx)); #endif if (data->samples == 0) return 0; double real_samplerate = out_format.rate / mpctx->opts->playback_speed; int played = ao_play(mpctx->ao, data->planes, data->samples, flags); assert(played <= data->samples); if (played > 0) { mpctx->shown_aframes += played; mpctx->delay += played / real_samplerate; return played; } return 0; } // Return the number of samples that must be skipped or prepended to reach the // target audio pts after a seek (for A/V sync or hr-seek). // Return value (*skip): // >0: skip this many samples // =0: don't do anything // <0: prepend this many samples of silence // Returns false if PTS is not known yet. static bool get_sync_samples(struct MPContext *mpctx, int *skip) { struct MPOpts *opts = mpctx->opts; *skip = 0; if (mpctx->audio_status != STATUS_SYNCING) return true; struct mp_audio out_format = {0}; ao_get_format(mpctx->ao, &out_format); double play_samplerate = out_format.rate / opts->playback_speed; if (!opts->initial_audio_sync) { mpctx->audio_status = STATUS_FILLING; return true; } double written_pts = written_audio_pts(mpctx); if (written_pts == MP_NOPTS_VALUE && !mp_audio_buffer_samples(mpctx->ao_buffer)) return false; // no audio read yet bool sync_to_video = mpctx->d_video && mpctx->sync_audio_to_video && mpctx->video_status != STATUS_EOF; double sync_pts = MP_NOPTS_VALUE; if (sync_to_video) { if (mpctx->video_status < STATUS_READY) return false; // wait until we know a video PTS if (mpctx->video_next_pts != MP_NOPTS_VALUE) sync_pts = mpctx->video_next_pts - (opts->audio_delay - mpctx->delay); } else if (mpctx->hrseek_active) { sync_pts = mpctx->hrseek_pts; } if (sync_pts == MP_NOPTS_VALUE) { mpctx->audio_status = STATUS_FILLING; return true; // syncing disabled } double ptsdiff = written_pts - sync_pts; // Missing timestamp, or PTS reset, or just broken. if (written_pts == MP_NOPTS_VALUE || fabs(ptsdiff) > 3600) { MP_WARN(mpctx, "Failed audio resync.\n"); mpctx->audio_status = STATUS_FILLING; return true; } int align = af_format_sample_alignment(out_format.format); *skip = (-ptsdiff * play_samplerate) / align * align; return true; } static void do_fill_audio_out_buffers(struct MPContext *mpctx, double endpts) { struct MPOpts *opts = mpctx->opts; struct dec_audio *d_audio = mpctx->d_audio; if (mpctx->ao && ao_query_and_reset_events(mpctx->ao, AO_EVENT_RELOAD)) { ao_reset(mpctx->ao); uninit_audio_out(mpctx); if (d_audio) mpctx->audio_status = STATUS_SYNCING; } if (!d_audio) return; if (d_audio->afilter->initialized < 1 || !mpctx->ao) { // Probe the initial audio format. Returns AD_OK (and does nothing) if // the format is already known. int r = initial_audio_decode(mpctx->d_audio); if (r == AD_WAIT) return; // continue later when new data is available if (r != AD_OK) { mpctx->d_audio->init_retries += 1; if (mpctx->d_audio->init_retries >= 50) { MP_ERR(mpctx, "Error initializing audio.\n"); error_on_track(mpctx, mpctx->current_track[0][STREAM_AUDIO]); return; } } reinit_audio_chain(mpctx); mpctx->sleeptime = 0; return; // try again next iteration } struct mp_audio out_format = {0}; ao_get_format(mpctx->ao, &out_format); double play_samplerate = out_format.rate / opts->playback_speed; // If audio is infinitely fast, somehow try keeping approximate A/V sync. if (mpctx->audio_status == STATUS_PLAYING && ao_untimed(mpctx->ao) && mpctx->video_status != STATUS_EOF && mpctx->delay > 0) return; int playsize = ao_get_space(mpctx->ao); int skip = 0; bool sync_known = get_sync_samples(mpctx, &skip); if (skip > 0) { playsize = MPMIN(skip + 1, MPMAX(playsize, 2500)); // buffer extra data } else if (skip < 0) { playsize = MPMAX(1, playsize + skip); // silence will be prepended } int status = AD_OK; if (playsize > mp_audio_buffer_samples(mpctx->ao_buffer)) { status = audio_decode(d_audio, mpctx->ao_buffer, playsize); if (status == AD_WAIT) return; if (status == AD_NEW_FMT) { /* The format change isn't handled too gracefully. A more precise * implementation would require draining buffered old-format audio * while displaying video, then doing the output format switch. */ if (mpctx->opts->gapless_audio < 1) uninit_audio_out(mpctx); reinit_audio_chain(mpctx); mpctx->sleeptime = 0; return; // retry on next iteration } if (status == AD_ERR) mpctx->sleeptime = 0; } // If EOF was reached before, but now something can be decoded, try to // restart audio properly. This helps with video files where audio starts // later. Retrying is needed to get the correct sync PTS. if (mpctx->audio_status >= STATUS_DRAINING && status == AD_OK) { mpctx->audio_status = STATUS_SYNCING; return; // retry on next iteration } bool end_sync = false; if (skip >= 0) { int max = mp_audio_buffer_samples(mpctx->ao_buffer); mp_audio_buffer_skip(mpctx->ao_buffer, MPMIN(skip, max)); // If something is left, we definitely reached the target time. end_sync |= sync_known && skip < max; } else if (skip < 0) { if (-skip > playsize) { // heuristic against making the buffer too large ao_reset(mpctx->ao); // some AOs repeat data on underflow mpctx->audio_status = STATUS_DRAINING; mpctx->delay = 0; return; } mp_audio_buffer_prepend_silence(mpctx->ao_buffer, -skip); end_sync = true; } if (mpctx->audio_status == STATUS_SYNCING) { if (end_sync) mpctx->audio_status = STATUS_FILLING; if (status != AD_OK && !mp_audio_buffer_samples(mpctx->ao_buffer)) mpctx->audio_status = STATUS_EOF; mpctx->sleeptime = 0; return; // continue on next iteration } assert(mpctx->audio_status >= STATUS_FILLING); // Even if we're done decoding and syncing, let video start first - this is // required, because sending audio to the AO already starts playback. if (mpctx->audio_status == STATUS_FILLING && mpctx->sync_audio_to_video && mpctx->video_status <= STATUS_READY) { mpctx->audio_status = STATUS_READY; return; } bool audio_eof = status == AD_EOF; bool partial_fill = false; int playflags = 0; if (endpts != MP_NOPTS_VALUE) { double samples = (endpts - written_audio_pts(mpctx) - opts->audio_delay) * play_samplerate; if (playsize > samples) { playsize = MPMAX(samples, 0); audio_eof = true; partial_fill = true; } } if (playsize > mp_audio_buffer_samples(mpctx->ao_buffer)) { playsize = mp_audio_buffer_samples(mpctx->ao_buffer); partial_fill = true; } audio_eof &= partial_fill; // With gapless audio, delay this to ao_uninit. There must be only // 1 final chunk, and that is handled when calling ao_uninit(). if (audio_eof && !opts->gapless_audio) playflags |= AOPLAY_FINAL_CHUNK; if (mpctx->paused) playsize = 0; struct mp_audio data; mp_audio_buffer_peek(mpctx->ao_buffer, &data); data.samples = MPMIN(data.samples, playsize); int played = write_to_ao(mpctx, &data, playflags, written_audio_pts(mpctx)); assert(played >= 0 && played <= data.samples); mp_audio_buffer_skip(mpctx->ao_buffer, played); mpctx->audio_status = STATUS_PLAYING; if (audio_eof) { mpctx->audio_status = STATUS_DRAINING; // Wait until the AO has played all queued data. In the gapless case, // we trigger EOF immediately, and let it play asynchronously. if (ao_eof_reached(mpctx->ao) || opts->gapless_audio) mpctx->audio_status = STATUS_EOF; } } void fill_audio_out_buffers(struct MPContext *mpctx, double endpts) { do_fill_audio_out_buffers(mpctx, endpts); // Run audio playback state machine again to display the actual audio PTS // as current time on OSD in audio-only mode in most situations. if (mpctx->audio_status == STATUS_SYNCING) do_fill_audio_out_buffers(mpctx, endpts); } // Drop data queued for output, or which the AO is currently outputting. void clear_audio_output_buffers(struct MPContext *mpctx) { if (mpctx->ao) ao_reset(mpctx->ao); if (mpctx->ao_buffer) mp_audio_buffer_clear(mpctx->ao_buffer); }