/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include "mpv_talloc.h"
#include "misc/bstr.h"
#include "misc/ctype.h"
#include "common/common.h"
#include "osdep/strnlen.h"
#define appendf(ptr, ...) \
do {(*(ptr)) = talloc_asprintf_append_buffer(*(ptr), __VA_ARGS__);} while(0)
// Return a talloc'ed string formatted according to the format string in fmt.
// On error, return NULL.
// Valid formats:
// %H, %h: hour (%H is padded with 0 to two digits)
// %M: minutes from 00-59 (hours are subtracted)
// %m: total minutes (includes hours, unlike %M)
// %S: seconds from 00-59 (minutes and hours are subtracted)
// %s: total seconds (includes hours and minutes)
// %f: like %s, but as float
// %T: milliseconds (000-999)
char *mp_format_time_fmt(const char *fmt, double time)
{
if (time == MP_NOPTS_VALUE)
return talloc_strdup(NULL, "unknown");
char *sign = time < 0 ? "-" : "";
time = time < 0 ? -time : time;
long long int itime = time;
long long int h, m, tm, s;
int ms = lrint((time - itime) * 1000);
if (ms >= 1000) {
ms -= 1000;
itime += 1;
}
s = itime;
tm = s / 60;
h = s / 3600;
s -= h * 3600;
m = s / 60;
s -= m * 60;
char *res = talloc_strdup(NULL, "");
while (*fmt) {
if (fmt[0] == '%') {
fmt++;
switch (fmt[0]) {
case 'h': appendf(&res, "%s%lld", sign, h); break;
case 'H': appendf(&res, "%s%02lld", sign, h); break;
case 'm': appendf(&res, "%s%lld", sign, tm); break;
case 'M': appendf(&res, "%02lld", m); break;
case 's': appendf(&res, "%s%lld", sign, itime); break;
case 'S': appendf(&res, "%02lld", s); break;
case 'T': appendf(&res, "%03d", ms); break;
case 'f': appendf(&res, "%f", time); break;
case '%': appendf(&res, "%s", "%"); break;
default: goto error;
}
fmt++;
} else {
appendf(&res, "%c", *fmt);
fmt++;
}
}
return res;
error:
talloc_free(res);
return NULL;
}
char *mp_format_time(double time, bool fractions)
{
return mp_format_time_fmt(fractions ? "%H:%M:%S.%T" : "%H:%M:%S", time);
}
char *mp_format_double(void *talloc_ctx, double val, int precision,
bool plus_sign, bool percent_sign, bool trim)
{
bstr str = {0};
const char *fmt = plus_sign ? "%+.*f" : "%.*f";
bstr_xappend_asprintf(talloc_ctx, &str, fmt, precision, val);
size_t pos = str.len;
if (trim) {
while (--pos && str.start[pos] == '0')
str.len--;
if (str.start[pos] == '.')
str.len--;
}
if (percent_sign)
bstr_xappend(talloc_ctx, &str, bstr0("%"));
str.start[str.len] = '\0';
return str.start;
}
// Set rc to the union of rc and rc2
void mp_rect_union(struct mp_rect *rc, const struct mp_rect *rc2)
{
rc->x0 = MPMIN(rc->x0, rc2->x0);
rc->y0 = MPMIN(rc->y0, rc2->y0);
rc->x1 = MPMAX(rc->x1, rc2->x1);
rc->y1 = MPMAX(rc->y1, rc2->y1);
}
// Returns whether or not a point is contained by rc
bool mp_rect_contains(struct mp_rect *rc, int x, int y)
{
return rc->x0 <= x && x < rc->x1 && rc->y0 <= y && y < rc->y1;
}
// Set rc to the intersection of rc and src.
// Return false if the result is empty.
bool mp_rect_intersection(struct mp_rect *rc, const struct mp_rect *rc2)
{
rc->x0 = MPMAX(rc->x0, rc2->x0);
rc->y0 = MPMAX(rc->y0, rc2->y0);
rc->x1 = MPMIN(rc->x1, rc2->x1);
rc->y1 = MPMIN(rc->y1, rc2->y1);
return rc->x1 > rc->x0 && rc->y1 > rc->y0;
}
bool mp_rect_equals(const struct mp_rect *rc1, const struct mp_rect *rc2)
{
return rc1->x0 == rc2->x0 && rc1->y0 == rc2->y0 &&
rc1->x1 == rc2->x1 && rc1->y1 == rc2->y1;
}
// Rotate mp_rect by 90 degrees increments
void mp_rect_rotate(struct mp_rect *rc, int w, int h, int rotation)
{
rotation %= 360;
if (rotation >= 180) {
rotation -= 180;
MPSWAP(int, rc->x0, rc->x1);
MPSWAP(int, rc->y0, rc->y1);
}
if (rotation == 90) {
*rc = (struct mp_rect) {
.x0 = rc->y1,
.y0 = rc->x0,
.x1 = rc->y0,
.y1 = rc->x1,
};
}
if (rc->x1 < rc->x0) {
rc->x0 = w - rc->x0;
rc->x1 = w - rc->x1;
}
if (rc->y1 < rc->y0) {
rc->y0 = h - rc->y0;
rc->y1 = h - rc->y1;
}
}
// Compute rc1-rc2, put result in res_array, return number of rectangles in
// res_array. In the worst case, there are 4 rectangles, so res_array must
// provide that much storage space.
int mp_rect_subtract(const struct mp_rect *rc1, const struct mp_rect *rc2,
struct mp_rect res[4])
{
struct mp_rect rc = *rc1;
if (!mp_rect_intersection(&rc, rc2))
return 0;
int cnt = 0;
if (rc1->y0 < rc.y0)
res[cnt++] = (struct mp_rect){rc1->x0, rc1->y0, rc1->x1, rc.y0};
if (rc1->x0 < rc.x0)
res[cnt++] = (struct mp_rect){rc1->x0, rc.y0, rc.x0, rc.y1};
if (rc1->x1 > rc.x1)
res[cnt++] = (struct mp_rect){rc.x1, rc.y0, rc1->x1, rc.y1};
if (rc1->y1 > rc.y1)
res[cnt++] = (struct mp_rect){rc1->x0, rc.y1, rc1->x1, rc1->y1};
return cnt;
}
// This works like snprintf(), except that it starts writing the first output
// character to str[strlen(str)]. This returns the number of characters the
// string would have *appended* assuming a large enough buffer, will make sure
// str is null-terminated, and will never write to str[size] or past.
// Example:
// int example(char *buf, size_t buf_size, double num, char *str) {
// int n = 0;
// n += mp_snprintf_cat(buf, size, "%f", num);
// n += mp_snprintf_cat(buf, size, "%s", str);
// return n; }
// Note how this can be chained with functions similar in style.
int mp_snprintf_cat(char *str, size_t size, const char *format, ...)
{
size_t len = strnlen(str, size);
assert(!size || len < size); // str with no 0-termination is not allowed
int r;
va_list ap;
va_start(ap, format);
r = vsnprintf(str + len, size - len, format, ap);
va_end(ap);
return r;
}
// Encode the unicode codepoint as UTF-8, and append to the end of the
// talloc'ed buffer. All guarantees bstr_xappend() give applies, such as
// implicit \0-termination for convenience.
void mp_append_utf8_bstr(void *talloc_ctx, struct bstr *buf, uint32_t codepoint)
{
char data[8];
uint8_t tmp;
char *output = data;
PUT_UTF8(codepoint, tmp, *output++ = tmp;);
bstr_xappend(talloc_ctx, buf, (bstr){data, output - data});
}
// Parse a C/JSON-style escape beginning at code, and append the result to *str
// using talloc. The input string (*code) must point to the first character
// after the initial '\', and after parsing *code is set to the first character
// after the current escape.
// On error, false is returned, and all input remains unchanged.
static bool mp_parse_escape(void *talloc_ctx, bstr *dst, bstr *code)
{
if (code->len < 1)
return false;
char replace = 0;
switch (code->start[0]) {
case '"': replace = '"'; break;
case '\\': replace = '\\'; break;
case '/': replace = '/'; break;
case 'b': replace = '\b'; break;
case 'f': replace = '\f'; break;
case 'n': replace = '\n'; break;
case 'r': replace = '\r'; break;
case 't': replace = '\t'; break;
case 'e': replace = '\x1b'; break;
case '\'': replace = '\''; break;
}
if (replace) {
bstr_xappend(talloc_ctx, dst, (bstr){&replace, 1});
*code = bstr_cut(*code, 1);
return true;
}
if (code->start[0] == 'x' && code->len >= 3) {
bstr num = bstr_splice(*code, 1, 3);
char c = bstrtoll(num, &num, 16);
if (num.len)
return false;
bstr_xappend(talloc_ctx, dst, (bstr){&c, 1});
*code = bstr_cut(*code, 3);
return true;
}
if (code->start[0] == 'u' && code->len >= 5) {
bstr num = bstr_splice(*code, 1, 5);
uint32_t c = bstrtoll(num, &num, 16);
if (num.len)
return false;
if (c >= 0xd800 && c <= 0xdbff) {
if (code->len < 5 + 6 // udddd + \udddd
|| code->start[5] != '\\' || code->start[6] != 'u')
return false;
*code = bstr_cut(*code, 5 + 1);
bstr num2 = bstr_splice(*code, 1, 5);
uint32_t c2 = bstrtoll(num2, &num2, 16);
if (num2.len || c2 < 0xdc00 || c2 > 0xdfff)
return false;
c = ((c - 0xd800) << 10) + 0x10000 + (c2 - 0xdc00);
}
mp_append_utf8_bstr(talloc_ctx, dst, c);
*code = bstr_cut(*code, 5);
return true;
}
return false;
}
// Like mp_append_escaped_string, but set *dst to sliced *src if no escape
// sequences have to be parsed (i.e. no memory allocation is required), and
// if dst->start was NULL on function entry.
bool mp_append_escaped_string_noalloc(void *talloc_ctx, bstr *dst, bstr *src)
{
bstr t = *src;
int cur = 0;
while (1) {
if (cur >= t.len || t.start[cur] == '"') {
*src = bstr_cut(t, cur);
t = bstr_splice(t, 0, cur);
if (dst->start == NULL) {
*dst = t;
} else {
bstr_xappend(talloc_ctx, dst, t);
}
return true;
} else if (t.start[cur] == '\\') {
bstr_xappend(talloc_ctx, dst, bstr_splice(t, 0, cur));
t = bstr_cut(t, cur + 1);
cur = 0;
if (!mp_parse_escape(talloc_ctx, dst, &t))
goto error;
} else {
cur++;
}
}
error:
return false;
}
// src is expected to point to a C-style string literal, *src pointing to the
// first char after the starting '"'. It will append the contents of the literal
// to *dst (using talloc_ctx) until the first '"' or the end of *str is found.
// See bstr_xappend() how data is appended to *dst.
// On success, *src will either start with '"', or be empty.
// On error, return false, and *dst will contain the string until the first
// error, *src is not changed.
// Note that dst->start will be implicitly \0-terminated on successful return,
// and if it was NULL or \0-terminated before calling the function.
// As mentioned above, the caller is responsible for skipping the '"' chars.
bool mp_append_escaped_string(void *talloc_ctx, bstr *dst, bstr *src)
{
if (mp_append_escaped_string_noalloc(talloc_ctx, dst, src)) {
// Guarantee copy (or allocation).
if (!dst->start || dst->start == src->start) {
bstr res = *dst;
*dst = (bstr){0};
bstr_xappend(talloc_ctx, dst, res);
}
return true;
}
return false;
}
// Behaves like strerror()/strerror_r(), but is thread- and GNU-safe.
char *mp_strerror_buf(char *buf, size_t buf_size, int errnum)
{
// This handles the nasty details of calling the right function for us.
av_strerror(AVERROR(errnum), buf, buf_size);
return buf;
}
char *mp_tag_str_buf(char *buf, size_t buf_size, uint32_t tag)
{
if (buf_size < 1)
return buf;
buf[0] = '\0';
for (int n = 0; n < 4; n++) {
uint8_t val = (tag >> (n * 8)) & 0xFF;
if (mp_isalnum(val) || val == '_' || val == ' ') {
mp_snprintf_cat(buf, buf_size, "%c", val);
} else {
mp_snprintf_cat(buf, buf_size, "[%d]", val);
}
}
return buf;
}
char *mp_tprintf_buf(char *buf, size_t buf_size, const char *format, ...)
{
va_list ap;
va_start(ap, format);
vsnprintf(buf, buf_size, format, ap);
va_end(ap);
return buf;
}
char **mp_dup_str_array(void *tctx, char **s)
{
char **r = NULL;
int num_r = 0;
for (int n = 0; s && s[n]; n++)
MP_TARRAY_APPEND(tctx, r, num_r, talloc_strdup(tctx, s[n]));
if (r)
MP_TARRAY_APPEND(tctx, r, num_r, NULL);
return r;
}
// Return rounded down integer log 2 of v, i.e. position of highest set bit.
// mp_log2(0) == 0
// mp_log2(1) == 0
// mp_log2(31) == 4
// mp_log2(32) == 5
unsigned int mp_log2(uint32_t v)
{
#if (defined(__GNUC__) && __GNUC__ >= 4) || defined(__clang__)
return v ? 31 - __builtin_clz(v) : 0;
#else
for (int x = 31; x >= 0; x--) {
if (v & (((uint32_t)1) << x))
return x;
}
return 0;
#endif
}
// If a power of 2, return it, otherwise return the next highest one, or 0.
// mp_round_next_power_of_2(65) == 128
// mp_round_next_power_of_2(64) == 64
// mp_round_next_power_of_2(0) == 1
// mp_round_next_power_of_2(UINT32_MAX) == 0
uint32_t mp_round_next_power_of_2(uint32_t v)
{
if (!v)
return 1;
if (!(v & (v - 1)))
return v;
int l = mp_log2(v) + 1;
return l == 32 ? 0 : (uint32_t)1 << l;
}
int mp_lcm(int x, int y)
{
assert(x && y);
return x * (y / av_gcd(x, y));
}