/* * Copyright (C) 2001-2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * the C code (not assembly, mmx, ...) of this file can be used * under the LGPL license too */ /* supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09 {BGR,RGB}{1,4,8,15,16} support dithering unscaled special converters (YV12=I420=IYUV, Y800=Y8) YV12 -> {BGR,RGB}{1,4,8,15,16,24,32} x -> x YUV9 -> YV12 YUV9/YV12 -> Y800 Y800 -> YUV9/YV12 BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR15 -> BGR16 */ /* tested special converters (most are tested actually but i didnt write it down ...) YV12 -> BGR16 YV12 -> YV12 BGR15 -> BGR16 BGR16 -> BGR16 YVU9 -> YV12 untested special converters YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok) YV12/I420 -> YV12/I420 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR24 -> YV12 */ #include #include #include #include #include #include "config.h" #include #ifdef HAVE_SYS_MMAN_H #include #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif #endif #include "swscale.h" #include "swscale_internal.h" #include "x86_cpu.h" #include "bswap.h" #include "rgb2rgb.h" #ifdef USE_FASTMEMCPY #include "libvo/fastmemcpy.h" #endif #undef MOVNTQ #undef PAVGB //#undef HAVE_MMX2 //#define HAVE_3DNOW //#undef HAVE_MMX //#undef ARCH_X86 //#define WORDS_BIGENDIAN #define DITHER1XBPP #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit #define RET 0xC3 //near return opcode for X86 #ifdef MP_DEBUG #define ASSERT(x) assert(x); #else #define ASSERT(x) ; #endif #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\ || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\ || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\ || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\ || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\ || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P) #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\ || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\ || isRGB(x) || isBGR(x)\ || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\ || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\ || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P) #define isPacked(x) ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x)) #define RGB2YUV_SHIFT 16 #define BY ((int)( 0.098*(1<BGR scaler */ #if defined(ARCH_X86) && defined (CONFIG_GPL) static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL; static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL; static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL; static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL; static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL; static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL; static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL; static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL; static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither; static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither; static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither; static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither; static uint64_t __attribute__((aligned(8))) dither4[2]={ 0x0103010301030103LL, 0x0200020002000200LL,}; static uint64_t __attribute__((aligned(8))) dither8[2]={ 0x0602060206020602LL, 0x0004000400040004LL,}; static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL; static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL; static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL; static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL; static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL; static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL; static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL; static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL; static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL; #ifdef FAST_BGR2YV12 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL; static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL; static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL; #else static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL; static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL; static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL; #endif /* FAST_BGR2YV12 */ static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL; static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL; static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL; #endif /* defined(ARCH_X86) */ // clipping helper table for C implementations: static unsigned char clip_table[768]; static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b); extern const uint8_t dither_2x2_4[2][8]; extern const uint8_t dither_2x2_8[2][8]; extern const uint8_t dither_8x8_32[8][8]; extern const uint8_t dither_8x8_73[8][8]; extern const uint8_t dither_8x8_220[8][8]; char *sws_format_name(enum PixelFormat format) { switch (format) { case PIX_FMT_YUV420P: return "yuv420p"; case PIX_FMT_YUYV422: return "yuyv422"; case PIX_FMT_RGB24: return "rgb24"; case PIX_FMT_BGR24: return "bgr24"; case PIX_FMT_YUV422P: return "yuv422p"; case PIX_FMT_YUV444P: return "yuv444p"; case PIX_FMT_RGB32: return "rgb32"; case PIX_FMT_YUV410P: return "yuv410p"; case PIX_FMT_YUV411P: return "yuv411p"; case PIX_FMT_RGB565: return "rgb565"; case PIX_FMT_RGB555: return "rgb555"; case PIX_FMT_GRAY16BE: return "gray16be"; case PIX_FMT_GRAY16LE: return "gray16le"; case PIX_FMT_GRAY8: return "gray8"; case PIX_FMT_MONOWHITE: return "mono white"; case PIX_FMT_MONOBLACK: return "mono black"; case PIX_FMT_PAL8: return "Palette"; case PIX_FMT_YUVJ420P: return "yuvj420p"; case PIX_FMT_YUVJ422P: return "yuvj422p"; case PIX_FMT_YUVJ444P: return "yuvj444p"; case PIX_FMT_XVMC_MPEG2_MC: return "xvmc_mpeg2_mc"; case PIX_FMT_XVMC_MPEG2_IDCT: return "xvmc_mpeg2_idct"; case PIX_FMT_UYVY422: return "uyvy422"; case PIX_FMT_UYYVYY411: return "uyyvyy411"; case PIX_FMT_RGB32_1: return "rgb32x"; case PIX_FMT_BGR32_1: return "bgr32x"; case PIX_FMT_BGR32: return "bgr32"; case PIX_FMT_BGR565: return "bgr565"; case PIX_FMT_BGR555: return "bgr555"; case PIX_FMT_BGR8: return "bgr8"; case PIX_FMT_BGR4: return "bgr4"; case PIX_FMT_BGR4_BYTE: return "bgr4 byte"; case PIX_FMT_RGB8: return "rgb8"; case PIX_FMT_RGB4: return "rgb4"; case PIX_FMT_RGB4_BYTE: return "rgb4 byte"; case PIX_FMT_NV12: return "nv12"; case PIX_FMT_NV21: return "nv21"; default: return "Unknown format"; } } #if defined(ARCH_X86) && defined (CONFIG_GPL) void in_asm_used_var_warning_killer() { volatile int i= bF8+bFC+w10+ bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+ M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101; if(i) i=0; } #endif static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW) { //FIXME Optimize (just quickly writen not opti..) int i; for(i=0; i>19, 0), 255); } if(uDest != NULL) for(i=0; i>19, 0), 255); vDest[i]= FFMIN(FFMAX(v>>19, 0), 255); } } static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat) { //FIXME Optimize (just quickly writen not opti..) int i; for(i=0; i>19, 0), 255); } if(uDest == NULL) return; if(dstFormat == PIX_FMT_NV12) for(i=0; i>19, 0), 255); uDest[2*i+1]= FFMIN(FFMAX(v>>19, 0), 255); } else for(i=0; i>19, 0), 255); uDest[2*i+1]= FFMIN(FFMAX(u>>19, 0), 255); } } #define YSCALE_YUV_2_PACKEDX_C(type) \ for(i=0; i<(dstW>>1); i++){\ int j;\ int Y1=1<<18;\ int Y2=1<<18;\ int U=1<<18;\ int V=1<<18;\ type *r, *b, *g;\ const int i2= 2*i;\ \ for(j=0; j>=19;\ Y2>>=19;\ U >>=19;\ V >>=19;\ if((Y1|Y2|U|V)&256)\ {\ if(Y1>255) Y1=255;\ else if(Y1<0)Y1=0;\ if(Y2>255) Y2=255;\ else if(Y2<0)Y2=0;\ if(U>255) U=255;\ else if(U<0) U=0;\ if(V>255) V=255;\ else if(V<0) V=0;\ } #define YSCALE_YUV_2_RGBX_C(type) \ YSCALE_YUV_2_PACKEDX_C(type)\ r = c->table_rV[V];\ g = c->table_gU[U] + c->table_gV[V];\ b = c->table_bU[U];\ #define YSCALE_YUV_2_PACKED2_C \ for(i=0; i<(dstW>>1); i++){\ const int i2= 2*i;\ int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\ int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\ int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\ int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\ #define YSCALE_YUV_2_RGB2_C(type) \ YSCALE_YUV_2_PACKED2_C\ type *r, *b, *g;\ r = c->table_rV[V];\ g = c->table_gU[U] + c->table_gV[V];\ b = c->table_bU[U];\ #define YSCALE_YUV_2_PACKED1_C \ for(i=0; i<(dstW>>1); i++){\ const int i2= 2*i;\ int Y1= buf0[i2 ]>>7;\ int Y2= buf0[i2+1]>>7;\ int U= (uvbuf1[i ])>>7;\ int V= (uvbuf1[i+2048])>>7;\ #define YSCALE_YUV_2_RGB1_C(type) \ YSCALE_YUV_2_PACKED1_C\ type *r, *b, *g;\ r = c->table_rV[V];\ g = c->table_gU[U] + c->table_gV[V];\ b = c->table_bU[U];\ #define YSCALE_YUV_2_PACKED1B_C \ for(i=0; i<(dstW>>1); i++){\ const int i2= 2*i;\ int Y1= buf0[i2 ]>>7;\ int Y2= buf0[i2+1]>>7;\ int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\ int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\ #define YSCALE_YUV_2_RGB1B_C(type) \ YSCALE_YUV_2_PACKED1B_C\ type *r, *b, *g;\ r = c->table_rV[V];\ g = c->table_gU[U] + c->table_gV[V];\ b = c->table_bU[U];\ #define YSCALE_YUV_2_ANYRGB_C(func, func2)\ switch(c->dstFormat)\ {\ case PIX_FMT_RGB32:\ case PIX_FMT_BGR32:\ func(uint32_t)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\ } \ break;\ case PIX_FMT_RGB24:\ func(uint8_t)\ ((uint8_t*)dest)[0]= r[Y1];\ ((uint8_t*)dest)[1]= g[Y1];\ ((uint8_t*)dest)[2]= b[Y1];\ ((uint8_t*)dest)[3]= r[Y2];\ ((uint8_t*)dest)[4]= g[Y2];\ ((uint8_t*)dest)[5]= b[Y2];\ dest+=6;\ }\ break;\ case PIX_FMT_BGR24:\ func(uint8_t)\ ((uint8_t*)dest)[0]= b[Y1];\ ((uint8_t*)dest)[1]= g[Y1];\ ((uint8_t*)dest)[2]= r[Y1];\ ((uint8_t*)dest)[3]= b[Y2];\ ((uint8_t*)dest)[4]= g[Y2];\ ((uint8_t*)dest)[5]= r[Y2];\ dest+=6;\ }\ break;\ case PIX_FMT_RGB565:\ case PIX_FMT_BGR565:\ {\ const int dr1= dither_2x2_8[y&1 ][0];\ const int dg1= dither_2x2_4[y&1 ][0];\ const int db1= dither_2x2_8[(y&1)^1][0];\ const int dr2= dither_2x2_8[y&1 ][1];\ const int dg2= dither_2x2_4[y&1 ][1];\ const int db2= dither_2x2_8[(y&1)^1][1];\ func(uint16_t)\ ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\ ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\ }\ }\ break;\ case PIX_FMT_RGB555:\ case PIX_FMT_BGR555:\ {\ const int dr1= dither_2x2_8[y&1 ][0];\ const int dg1= dither_2x2_8[y&1 ][1];\ const int db1= dither_2x2_8[(y&1)^1][0];\ const int dr2= dither_2x2_8[y&1 ][1];\ const int dg2= dither_2x2_8[y&1 ][0];\ const int db2= dither_2x2_8[(y&1)^1][1];\ func(uint16_t)\ ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\ ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\ }\ }\ break;\ case PIX_FMT_RGB8:\ case PIX_FMT_BGR8:\ {\ const uint8_t * const d64= dither_8x8_73[y&7];\ const uint8_t * const d32= dither_8x8_32[y&7];\ func(uint8_t)\ ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\ ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\ }\ }\ break;\ case PIX_FMT_RGB4:\ case PIX_FMT_BGR4:\ {\ const uint8_t * const d64= dither_8x8_73 [y&7];\ const uint8_t * const d128=dither_8x8_220[y&7];\ func(uint8_t)\ ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\ + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\ }\ }\ break;\ case PIX_FMT_RGB4_BYTE:\ case PIX_FMT_BGR4_BYTE:\ {\ const uint8_t * const d64= dither_8x8_73 [y&7];\ const uint8_t * const d128=dither_8x8_220[y&7];\ func(uint8_t)\ ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\ ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\ }\ }\ break;\ case PIX_FMT_MONOBLACK:\ {\ const uint8_t * const d128=dither_8x8_220[y&7];\ uint8_t *g= c->table_gU[128] + c->table_gV[128];\ for(i=0; i>19) + d128[0]];\ acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\ acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\ acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\ acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\ acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\ acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\ acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\ ((uint8_t*)dest)[0]= acc;\ dest++;\ }\ \ /*\ ((uint8_t*)dest)-= dstW>>4;\ {\ int acc=0;\ int left=0;\ static int top[1024];\ static int last_new[1024][1024];\ static int last_in3[1024][1024];\ static int drift[1024][1024];\ int topLeft=0;\ int shift=0;\ int count=0;\ const uint8_t * const d128=dither_8x8_220[y&7];\ int error_new=0;\ int error_in3=0;\ int f=0;\ \ for(i=dstW>>1; i>19);\ int in2 = (76309 * (in - 16) + 32768) >> 16;\ int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\ int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\ + (last_new[y][i] - in3)*f/256;\ int new= old> 128 ? 255 : 0;\ \ error_new+= FFABS(last_new[y][i] - new);\ error_in3+= FFABS(last_in3[y][i] - in3);\ f= error_new - error_in3*4;\ if(f<0) f=0;\ if(f>256) f=256;\ \ topLeft= top[i];\ left= top[i]= old - new;\ last_new[y][i]= new;\ last_in3[y][i]= in3;\ \ acc+= acc + (new&1);\ if((i&7)==6){\ ((uint8_t*)dest)[0]= acc;\ ((uint8_t*)dest)++;\ }\ }\ }\ */\ }\ break;\ case PIX_FMT_YUYV422:\ func2\ ((uint8_t*)dest)[2*i2+0]= Y1;\ ((uint8_t*)dest)[2*i2+1]= U;\ ((uint8_t*)dest)[2*i2+2]= Y2;\ ((uint8_t*)dest)[2*i2+3]= V;\ } \ break;\ case PIX_FMT_UYVY422:\ func2\ ((uint8_t*)dest)[2*i2+0]= U;\ ((uint8_t*)dest)[2*i2+1]= Y1;\ ((uint8_t*)dest)[2*i2+2]= V;\ ((uint8_t*)dest)[2*i2+3]= Y2;\ } \ break;\ }\ static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, int dstW, int y) { int i; switch(c->dstFormat) { case PIX_FMT_BGR32: case PIX_FMT_RGB32: YSCALE_YUV_2_RGBX_C(uint32_t) ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1]; ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2]; } break; case PIX_FMT_RGB24: YSCALE_YUV_2_RGBX_C(uint8_t) ((uint8_t*)dest)[0]= r[Y1]; ((uint8_t*)dest)[1]= g[Y1]; ((uint8_t*)dest)[2]= b[Y1]; ((uint8_t*)dest)[3]= r[Y2]; ((uint8_t*)dest)[4]= g[Y2]; ((uint8_t*)dest)[5]= b[Y2]; dest+=6; } break; case PIX_FMT_BGR24: YSCALE_YUV_2_RGBX_C(uint8_t) ((uint8_t*)dest)[0]= b[Y1]; ((uint8_t*)dest)[1]= g[Y1]; ((uint8_t*)dest)[2]= r[Y1]; ((uint8_t*)dest)[3]= b[Y2]; ((uint8_t*)dest)[4]= g[Y2]; ((uint8_t*)dest)[5]= r[Y2]; dest+=6; } break; case PIX_FMT_RGB565: case PIX_FMT_BGR565: { const int dr1= dither_2x2_8[y&1 ][0]; const int dg1= dither_2x2_4[y&1 ][0]; const int db1= dither_2x2_8[(y&1)^1][0]; const int dr2= dither_2x2_8[y&1 ][1]; const int dg2= dither_2x2_4[y&1 ][1]; const int db2= dither_2x2_8[(y&1)^1][1]; YSCALE_YUV_2_RGBX_C(uint16_t) ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1]; ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2]; } } break; case PIX_FMT_RGB555: case PIX_FMT_BGR555: { const int dr1= dither_2x2_8[y&1 ][0]; const int dg1= dither_2x2_8[y&1 ][1]; const int db1= dither_2x2_8[(y&1)^1][0]; const int dr2= dither_2x2_8[y&1 ][1]; const int dg2= dither_2x2_8[y&1 ][0]; const int db2= dither_2x2_8[(y&1)^1][1]; YSCALE_YUV_2_RGBX_C(uint16_t) ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1]; ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2]; } } break; case PIX_FMT_RGB8: case PIX_FMT_BGR8: { const uint8_t * const d64= dither_8x8_73[y&7]; const uint8_t * const d32= dither_8x8_32[y&7]; YSCALE_YUV_2_RGBX_C(uint8_t) ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]]; ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]]; } } break; case PIX_FMT_RGB4: case PIX_FMT_BGR4: { const uint8_t * const d64= dither_8x8_73 [y&7]; const uint8_t * const d128=dither_8x8_220[y&7]; YSCALE_YUV_2_RGBX_C(uint8_t) ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]] +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4); } } break; case PIX_FMT_RGB4_BYTE: case PIX_FMT_BGR4_BYTE: { const uint8_t * const d64= dither_8x8_73 [y&7]; const uint8_t * const d128=dither_8x8_220[y&7]; YSCALE_YUV_2_RGBX_C(uint8_t) ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]; ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]]; } } break; case PIX_FMT_MONOBLACK: { const uint8_t * const d128=dither_8x8_220[y&7]; uint8_t *g= c->table_gU[128] + c->table_gV[128]; int acc=0; for(i=0; i>=19; Y2>>=19; if((Y1|Y2)&256) { if(Y1>255) Y1=255; else if(Y1<0)Y1=0; if(Y2>255) Y2=255; else if(Y2<0)Y2=0; } acc+= acc + g[Y1+d128[(i+0)&7]]; acc+= acc + g[Y2+d128[(i+1)&7]]; if((i&7)==6){ ((uint8_t*)dest)[0]= acc; dest++; } } } break; case PIX_FMT_YUYV422: YSCALE_YUV_2_PACKEDX_C(void) ((uint8_t*)dest)[2*i2+0]= Y1; ((uint8_t*)dest)[2*i2+1]= U; ((uint8_t*)dest)[2*i2+2]= Y2; ((uint8_t*)dest)[2*i2+3]= V; } break; case PIX_FMT_UYVY422: YSCALE_YUV_2_PACKEDX_C(void) ((uint8_t*)dest)[2*i2+0]= U; ((uint8_t*)dest)[2*i2+1]= Y1; ((uint8_t*)dest)[2*i2+2]= V; ((uint8_t*)dest)[2*i2+3]= Y2; } break; } } //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one //Plain C versions #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL) #define COMPILE_C #endif #ifdef ARCH_POWERPC #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL) #define COMPILE_ALTIVEC #endif //HAVE_ALTIVEC #endif //ARCH_POWERPC #if defined(ARCH_X86) #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL) #define COMPILE_MMX #endif #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL) #define COMPILE_MMX2 #endif #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL) #define COMPILE_3DNOW #endif #endif //ARCH_X86 || ARCH_X86_64 #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #ifdef COMPILE_C #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #undef HAVE_ALTIVEC #define RENAME(a) a ## _C #include "swscale_template.c" #endif #ifdef ARCH_POWERPC #ifdef COMPILE_ALTIVEC #undef RENAME #define HAVE_ALTIVEC #define RENAME(a) a ## _altivec #include "swscale_template.c" #endif #endif //ARCH_POWERPC #if defined(ARCH_X86) //X86 versions /* #undef RENAME #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define ARCH_X86 #define RENAME(a) a ## _X86 #include "swscale_template.c" */ //MMX versions #ifdef COMPILE_MMX #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX #include "swscale_template.c" #endif //MMX2 versions #ifdef COMPILE_MMX2 #undef RENAME #define HAVE_MMX #define HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX2 #include "swscale_template.c" #endif //3DNOW versions #ifdef COMPILE_3DNOW #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #define HAVE_3DNOW #define RENAME(a) a ## _3DNow #include "swscale_template.c" #endif #endif //ARCH_X86 || ARCH_X86_64 // minor note: the HAVE_xyz is messed up after that line so don't use it static double getSplineCoeff(double a, double b, double c, double d, double dist) { // printf("%f %f %f %f %f\n", a,b,c,d,dist); if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a; else return getSplineCoeff( 0.0, b+ 2.0*c + 3.0*d, c + 3.0*d, -b- 3.0*c - 6.0*d, dist-1.0); } static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2]) { int i; int filterSize; int filter2Size; int minFilterSize; double *filter=NULL; double *filter2=NULL; #if defined(ARCH_X86) if(flags & SWS_CPU_CAPS_MMX) asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) #endif // Note the +1 is for the MMXscaler which reads over the end *filterPos = av_malloc((dstW+1)*sizeof(int16_t)); if(FFABS(xInc - 0x10000) <10) // unscaled { int i; filterSize= 1; filter= av_malloc(dstW*sizeof(double)*filterSize); for(i=0; i>16; (*filterPos)[i]= xx; filter[i]= 1.0; xDstInSrc+= xInc; } } else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale { int i; int xDstInSrc; if (flags&SWS_BICUBIC) filterSize= 4; else if(flags&SWS_X ) filterSize= 4; else filterSize= 2; // SWS_BILINEAR / SWS_AREA filter= av_malloc(dstW*sizeof(double)*filterSize); xDstInSrc= xInc/2 - 0x8000; for(i=0; i>16; int j; (*filterPos)[i]= xx; //Bilinear upscale / linear interpolate / Area averaging for(j=0; j srcW-2) filterSize=srcW-2; filter= av_malloc(dstW*sizeof(double)*filterSize); xDstInSrc= xInc1 / 2.0 - 0.5; for(i=0; ip) coeff=0; } else if(flags & SWS_BILINEAR) { coeff= 1.0 - d; if(coeff<0) coeff=0; } else if(flags & SWS_SPLINE) { double p=-2.196152422706632; coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d); } else { coeff= 0.0; //GCC warning killer ASSERT(0) } filter[i*filterSize + j]= coeff; xx++; } xDstInSrc+= xInc1; } } /* apply src & dst Filter to filter -> filter2 av_free(filter); */ ASSERT(filterSize>0) filter2Size= filterSize; if(srcFilter) filter2Size+= srcFilter->length - 1; if(dstFilter) filter2Size+= dstFilter->length - 1; ASSERT(filter2Size>0) filter2= av_malloc(filter2Size*dstW*sizeof(double)); for(i=0; ilength == filter2Size) //FIXME dstFilter for(j=0; jlength; j++) { filter2[i*filter2Size + j]= outVec->coeff[j]; } (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2; if(outVec != &scaleFilter) sws_freeVec(outVec); } av_free(filter); filter=NULL; /* try to reduce the filter-size (step1 find size and shift left) */ // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not) minFilterSize= 0; for(i=dstW-1; i>=0; i--) { int min= filter2Size; int j; double cutOff=0.0; /* get rid off near zero elements on the left by shifting left */ for(j=0; j SWS_MAX_REDUCE_CUTOFF) break; /* preserve Monotonicity because the core can't handle the filter otherwise */ if(i= (*filterPos)[i+1]) break; // Move filter coeffs left for(k=1; k0; j--) { cutOff += FFABS(filter2[i*filter2Size + j]); if(cutOff > SWS_MAX_REDUCE_CUTOFF) break; min--; } if(min>minFilterSize) minFilterSize= min; } if (flags & SWS_CPU_CAPS_ALTIVEC) { // we can handle the special case 4, // so we don't want to go to the full 8 if (minFilterSize < 5) filterAlign = 4; // we really don't want to waste our time // doing useless computation, so fall-back on // the scalar C code for very small filter. // vectorizing is worth it only if you have // decent-sized vector. if (minFilterSize < 3) filterAlign = 1; } if (flags & SWS_CPU_CAPS_MMX) { // special case for unscaled vertical filtering if(minFilterSize == 1 && filterAlign == 2) filterAlign= 1; } ASSERT(minFilterSize > 0) filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1)); ASSERT(filterSize > 0) filter= av_malloc(filterSize*dstW*sizeof(double)); if(filterSize >= MAX_FILTER_SIZE) return -1; *outFilterSize= filterSize; if(flags&SWS_PRINT_INFO) MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for(i=0; i=filter2Size) filter[i*filterSize + j]= 0.0; else filter[i*filterSize + j]= filter2[i*filter2Size + j]; } } av_free(filter2); filter2=NULL; //FIXME try to align filterpos if possible //fix borders for(i=0; i srcW) { int shift= (*filterPos)[i] + filterSize - srcW; // Move filter coeffs right to compensate for filterPos for(j=filterSize-2; j>=0; j--) { int right= FFMIN(j + shift, filterSize-1); filter[i*filterSize +right] += filter[i*filterSize +j]; filter[i*filterSize +j]=0; } (*filterPos)[i]= srcW - filterSize; } } // Note the +1 is for the MMXscaler which reads over the end /* align at 16 for AltiVec (needed by hScale_altivec_real) */ *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t)); memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t)); /* Normalize & Store in outFilter */ for(i=0; i>16; if((i&3) == 0) { int a=0; int b=((xpos+xInc)>>16) - xx; int c=((xpos+xInc*2)>>16) - xx; int d=((xpos+xInc*3)>>16) - xx; filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9; filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9; filterPos[i/2]= xx; if(d+1<4) { int maxShift= 3-(d+1); int shift=0; memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB); funnyCode[fragmentPos + imm8OfPShufW1B]= (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6); funnyCode[fragmentPos + imm8OfPShufW2B]= a | (b<<2) | (c<<4) | (d<<6); if(i+3>=dstW) shift=maxShift; //avoid overread else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align if(shift && i>=shift) { funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift; funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift; filterPos[i/2]-=shift; } fragmentPos+= fragmentLengthB; } else { int maxShift= 3-d; int shift=0; memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA); funnyCode[fragmentPos + imm8OfPShufW1A]= funnyCode[fragmentPos + imm8OfPShufW2A]= a | (b<<2) | (c<<4) | (d<<6); if(i+4>=dstW) shift=maxShift; //avoid overread else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align if(shift && i>=shift) { funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift; funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift; filterPos[i/2]-=shift; } fragmentPos+= fragmentLengthA; } funnyCode[fragmentPos]= RET; } xpos+=xInc; } filterPos[i/2]= xpos>>16; // needed to jump to the next part } #endif /* COMPILE_MMX2 */ static void globalInit(void){ // generating tables: int i; for(i=0; i<768; i++){ int c= FFMIN(FFMAX(i-256, 0), 255); clip_table[i]=c; } } static SwsFunc getSwsFunc(int flags){ #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL) #if defined(ARCH_X86) // ordered per speed fasterst first if(flags & SWS_CPU_CAPS_MMX2) return swScale_MMX2; else if(flags & SWS_CPU_CAPS_3DNOW) return swScale_3DNow; else if(flags & SWS_CPU_CAPS_MMX) return swScale_MMX; else return swScale_C; #else #ifdef ARCH_POWERPC if(flags & SWS_CPU_CAPS_ALTIVEC) return swScale_altivec; else return swScale_C; #endif return swScale_C; #endif /* defined(ARCH_X86) */ #else //RUNTIME_CPUDETECT #ifdef HAVE_MMX2 return swScale_MMX2; #elif defined (HAVE_3DNOW) return swScale_3DNow; #elif defined (HAVE_MMX) return swScale_MMX; #elif defined (HAVE_ALTIVEC) return swScale_altivec; #else return swScale_C; #endif #endif //!RUNTIME_CPUDETECT } static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; /* Copy Y plane */ if(dstStride[0]==srcStride[0] && srcStride[0] > 0) memcpy(dst, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst; for(i=0; isrcW); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } dst = dstParam[1] + dstStride[1]*srcSliceY/2; if (c->dstFormat == PIX_FMT_NV12) interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] ); else interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] ); return srcSliceH; } static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] ); return srcSliceH; } static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] ); return srcSliceH; } /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */ static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ const int srcFormat= c->srcFormat; const int dstFormat= c->dstFormat; const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3; const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3; const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */ const int dstId= fmt_depth(dstFormat) >> 2; void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL; /* BGR -> BGR */ if( (isBGR(srcFormat) && isBGR(dstFormat)) || (isRGB(srcFormat) && isRGB(dstFormat))){ switch(srcId | (dstId<<4)){ case 0x34: conv= rgb16to15; break; case 0x36: conv= rgb24to15; break; case 0x38: conv= rgb32to15; break; case 0x43: conv= rgb15to16; break; case 0x46: conv= rgb24to16; break; case 0x48: conv= rgb32to16; break; case 0x63: conv= rgb15to24; break; case 0x64: conv= rgb16to24; break; case 0x68: conv= rgb32to24; break; case 0x83: conv= rgb15to32; break; case 0x84: conv= rgb16to32; break; case 0x86: conv= rgb24to32; break; default: MSG_ERR("swScaler: internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); break; } }else if( (isBGR(srcFormat) && isRGB(dstFormat)) || (isRGB(srcFormat) && isBGR(dstFormat))){ switch(srcId | (dstId<<4)){ case 0x33: conv= rgb15tobgr15; break; case 0x34: conv= rgb16tobgr15; break; case 0x36: conv= rgb24tobgr15; break; case 0x38: conv= rgb32tobgr15; break; case 0x43: conv= rgb15tobgr16; break; case 0x44: conv= rgb16tobgr16; break; case 0x46: conv= rgb24tobgr16; break; case 0x48: conv= rgb32tobgr16; break; case 0x63: conv= rgb15tobgr24; break; case 0x64: conv= rgb16tobgr24; break; case 0x66: conv= rgb24tobgr24; break; case 0x68: conv= rgb32tobgr24; break; case 0x83: conv= rgb15tobgr32; break; case 0x84: conv= rgb16tobgr32; break; case 0x86: conv= rgb24tobgr32; break; case 0x88: conv= rgb32tobgr32; break; default: MSG_ERR("swScaler: internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); break; } }else{ MSG_ERR("swScaler: internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); } if(dstStride[0]*srcBpp == srcStride[0]*dstBpp) conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW*srcBpp); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } return srcSliceH; } static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ rgb24toyv12( src[0], dst[0]+ srcSliceY *dstStride[0], dst[1]+(srcSliceY>>1)*dstStride[1], dst[2]+(srcSliceY>>1)*dstStride[2], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); return srcSliceH; } static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ int i; /* copy Y */ if(srcStride[0]==dstStride[0] && srcStride[0] > 0) memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH); else{ uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } if(c->dstFormat==PIX_FMT_YUV420P){ planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]); planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]); }else{ planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]); planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]); } return srcSliceH; } /* unscaled copy like stuff (assumes nearly identical formats) */ static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(isPacked(c->srcFormat)) { if(dstStride[0]==srcStride[0] && srcStride[0] > 0) memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; int length=0; /* universal length finder */ while(length+c->srcW <= FFABS(dstStride[0]) && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW; ASSERT(length!=0); for(i=0; isrcW : -((-c->srcW )>>c->chrDstHSubSample); int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample); int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample); if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0) { if(!isGray(c->dstFormat)) memset(dst[plane], 128, dstStride[plane]*height); } else { if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0) memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]); else { int i; uint8_t *srcPtr= src[plane]; uint8_t *dstPtr= dst[plane] + dstStride[plane]*y; for(i=0; isrcW; int y= srcSliceY; int height= srcSliceH; int i, j; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*y; if(!isGray(c->dstFormat)){ int height= -((-srcSliceH)>>c->chrDstVSubSample); memset(dst[1], 128, dstStride[1]*height); memset(dst[2], 128, dstStride[2]*height); } if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++; for(i=0; isrcW; int y= srcSliceY; int height= srcSliceH; int i, j; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*y; for(i=0; isrcW; int y= srcSliceY; int height= srcSliceH; int i, j; uint16_t *srcPtr= src[0]; uint16_t *dstPtr= dst[0] + dstStride[0]*y/2; for(i=0; i>16; if(r<-0x7FFF) return 0x8000; else if(r> 0x7FFF) return 0x7FFF; else return r; } /** * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x] * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235 * @return -1 if not supported */ int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){ int64_t crv = inv_table[0]; int64_t cbu = inv_table[1]; int64_t cgu = -inv_table[2]; int64_t cgv = -inv_table[3]; int64_t cy = 1<<16; int64_t oy = 0; if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4); memcpy(c->dstColorspaceTable, table, sizeof(int)*4); c->brightness= brightness; c->contrast = contrast; c->saturation= saturation; c->srcRange = srcRange; c->dstRange = dstRange; c->uOffset= 0x0400040004000400LL; c->vOffset= 0x0400040004000400LL; if(!srcRange){ cy= (cy*255) / 219; oy= 16<<16; } cy = (cy *contrast )>>16; crv= (crv*contrast * saturation)>>32; cbu= (cbu*contrast * saturation)>>32; cgu= (cgu*contrast * saturation)>>32; cgv= (cgv*contrast * saturation)>>32; oy -= 256*brightness; c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL; c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL; c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL; c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL; c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL; c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL; yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation); //FIXME factorize #ifdef COMPILE_ALTIVEC if (c->flags & SWS_CPU_CAPS_ALTIVEC) yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation); #endif return 0; } /** * @return -1 if not supported */ int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){ if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; *inv_table = c->srcColorspaceTable; *table = c->dstColorspaceTable; *srcRange = c->srcRange; *dstRange = c->dstRange; *brightness= c->brightness; *contrast = c->contrast; *saturation= c->saturation; return 0; } static int handle_jpeg(int *format) { switch (*format) { case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1; case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1; case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1; default: return 0; } } SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){ SwsContext *c; int i; int usesVFilter, usesHFilter; int unscaled, needsDither; int srcRange, dstRange; SwsFilter dummyFilter= {NULL, NULL, NULL, NULL}; #if defined(ARCH_X86) if(flags & SWS_CPU_CAPS_MMX) asm volatile("emms\n\t"::: "memory"); #endif #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC); #ifdef HAVE_MMX2 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2; #elif defined (HAVE_3DNOW) flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW; #elif defined (HAVE_MMX) flags |= SWS_CPU_CAPS_MMX; #elif defined (HAVE_ALTIVEC) flags |= SWS_CPU_CAPS_ALTIVEC; #endif #endif /* RUNTIME_CPUDETECT */ if(clip_table[512] != 255) globalInit(); if(rgb15to16 == NULL) sws_rgb2rgb_init(flags); unscaled = (srcW == dstW && srcH == dstH); needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) && (fmt_depth(dstFormat))<24 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat)))); srcRange = handle_jpeg(&srcFormat); dstRange = handle_jpeg(&dstFormat); if(!isSupportedIn(srcFormat)) { MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat)); return NULL; } if(!isSupportedOut(dstFormat)) { MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat)); return NULL; } /* sanity check */ if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code { MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", srcW, srcH, dstW, dstH); return NULL; } if(!dstFilter) dstFilter= &dummyFilter; if(!srcFilter) srcFilter= &dummyFilter; c= av_malloc(sizeof(SwsContext)); memset(c, 0, sizeof(SwsContext)); c->srcW= srcW; c->srcH= srcH; c->dstW= dstW; c->dstH= dstH; c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; c->flags= flags; c->dstFormat= dstFormat; c->srcFormat= srcFormat; c->vRounder= 4* 0x0001000100010001ULL; usesHFilter= usesVFilter= 0; if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1; if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1; if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1; if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1; if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1; if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1; if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1; if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1; getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat); getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat); // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1; // drop some chroma lines if the user wants it c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT; c->chrSrcVSubSample+= c->vChrDrop; // drop every 2. pixel for chroma calculation unless user wants full chroma if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) c->chrSrcHSubSample=1; if(param){ c->param[0] = param[0]; c->param[1] = param[1]; }else{ c->param[0] = c->param[1] = SWS_PARAM_DEFAULT; } c->chrIntHSubSample= c->chrDstHSubSample; c->chrIntVSubSample= c->chrSrcVSubSample; // note the -((-x)>>y) is so that we allways round toward +inf c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample); c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample); c->chrDstW= -((-dstW) >> c->chrDstHSubSample); c->chrDstH= -((-dstH) >> c->chrDstVSubSample); sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); /* unscaled special Cases */ if(unscaled && !usesHFilter && !usesVFilter) { /* yv12_to_nv12 */ if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21)) { c->swScale= PlanarToNV12Wrapper; } #ifdef CONFIG_GPL /* yuv2bgr */ if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat))) { c->swScale= yuv2rgb_get_func_ptr(c); } #endif if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P ) { c->swScale= yvu9toyv12Wrapper; } /* bgr24toYV12 */ if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P) c->swScale= bgr24toyv12Wrapper; /* rgb/bgr -> rgb/bgr (no dither needed forms) */ if( (isBGR(srcFormat) || isRGB(srcFormat)) && (isBGR(dstFormat) || isRGB(dstFormat)) && !needsDither) c->swScale= rgb2rgbWrapper; /* LQ converters if -sws 0 or -sws 4*/ if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){ /* rgb/bgr -> rgb/bgr (dither needed forms) */ if( (isBGR(srcFormat) || isRGB(srcFormat)) && (isBGR(dstFormat) || isRGB(dstFormat)) && needsDither) c->swScale= rgb2rgbWrapper; /* yv12_to_yuy2 */ if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)) { if (dstFormat == PIX_FMT_YUYV422) c->swScale= PlanarToYuy2Wrapper; else c->swScale= PlanarToUyvyWrapper; } } #ifdef COMPILE_ALTIVEC if ((c->flags & SWS_CPU_CAPS_ALTIVEC) && ((srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) { // unscaled YV12 -> packed YUV, we want speed if (dstFormat == PIX_FMT_YUYV422) c->swScale= yv12toyuy2_unscaled_altivec; else c->swScale= yv12touyvy_unscaled_altivec; } #endif /* simple copy */ if( srcFormat == dstFormat || (isPlanarYUV(srcFormat) && isGray(dstFormat)) || (isPlanarYUV(dstFormat) && isGray(srcFormat)) ) { c->swScale= simpleCopy; } /* gray16{le,be} conversions */ if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8))) { c->swScale= gray16togray; } if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat)) { c->swScale= graytogray16; } if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat)) { c->swScale= gray16swap; } if(c->swScale){ if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); return c; } } if(flags & SWS_CPU_CAPS_MMX2) { c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) { if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n"); } if(usesHFilter) c->canMMX2BeUsed=0; } else c->canMMX2BeUsed=0; c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW; c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH; // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst // but only for the FAST_BILINEAR mode otherwise do correct scaling // n-2 is the last chrominance sample available // this is not perfect, but noone shuld notice the difference, the more correct variant // would be like the vertical one, but that would require some special code for the // first and last pixel if(flags&SWS_FAST_BILINEAR) { if(c->canMMX2BeUsed) { c->lumXInc+= 20; c->chrXInc+= 20; } //we don't use the x86asm scaler if mmx is available else if(flags & SWS_CPU_CAPS_MMX) { c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20; } } /* precalculate horizontal scaler filter coefficients */ { const int filterAlign= (flags & SWS_CPU_CAPS_MMX) ? 4 : (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 : 1; initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW , dstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, srcFilter->lumH, dstFilter->lumH, c->param); initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, c->chrSrcW, c->chrDstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, srcFilter->chrH, dstFilter->chrH, c->param); #define MAX_FUNNY_CODE_SIZE 10000 #if defined(COMPILE_MMX2) // can't downscale !!! if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) { #ifdef MAP_ANONYMOUS c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); #else c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE); c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE); #endif c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t)); c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t)); c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t)); c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t)); initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8); initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4); } #endif /* defined(COMPILE_MMX2) */ } // Init Horizontal stuff /* precalculate vertical scaler filter coefficients */ { const int filterAlign= (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 : (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 : 1; initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH , dstH, filterAlign, (1<<12)-4, (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, srcFilter->lumV, dstFilter->lumV, c->param); initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4, (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, srcFilter->chrV, dstFilter->chrV, c->param); #ifdef HAVE_ALTIVEC c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH); c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH); for (i=0;ivLumFilterSize*c->dstH;i++) { int j; short *p = (short *)&c->vYCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vLumFilter[i]; } for (i=0;ivChrFilterSize*c->chrDstH;i++) { int j; short *p = (short *)&c->vCCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vChrFilter[i]; } #endif } // Calculate Buffer Sizes so that they won't run out while handling these damn slices c->vLumBufSize= c->vLumFilterSize; c->vChrBufSize= c->vChrFilterSize; for(i=0; ichrDstH / dstH; int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<chrSrcVSubSample)); nextSlice>>= c->chrSrcVSubSample; nextSlice<<= c->chrSrcVSubSample; if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) c->vLumBufSize= nextSlice - c->vLumFilterPos[i ]; if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample)) c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI]; } // allocate pixbufs (we use dynamic allocation because otherwise we would need to c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*)); c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*)); //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000) /* align at 16 bytes for AltiVec */ for(i=0; ivLumBufSize; i++) c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000); for(i=0; ivChrBufSize; i++) c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000); //try to avoid drawing green stuff between the right end and the stride end for(i=0; ivLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000); for(i=0; ivChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000); ASSERT(c->chrDstH <= dstH) if(flags&SWS_PRINT_INFO) { #ifdef DITHER1XBPP char *dither= " dithered"; #else char *dither= ""; #endif if(flags&SWS_FAST_BILINEAR) MSG_INFO("SwScaler: FAST_BILINEAR scaler, "); else if(flags&SWS_BILINEAR) MSG_INFO("SwScaler: BILINEAR scaler, "); else if(flags&SWS_BICUBIC) MSG_INFO("SwScaler: BICUBIC scaler, "); else if(flags&SWS_X) MSG_INFO("SwScaler: Experimental scaler, "); else if(flags&SWS_POINT) MSG_INFO("SwScaler: Nearest Neighbor / POINT scaler, "); else if(flags&SWS_AREA) MSG_INFO("SwScaler: Area Averageing scaler, "); else if(flags&SWS_BICUBLIN) MSG_INFO("SwScaler: luma BICUBIC / chroma BILINEAR scaler, "); else if(flags&SWS_GAUSS) MSG_INFO("SwScaler: Gaussian scaler, "); else if(flags&SWS_SINC) MSG_INFO("SwScaler: Sinc scaler, "); else if(flags&SWS_LANCZOS) MSG_INFO("SwScaler: Lanczos scaler, "); else if(flags&SWS_SPLINE) MSG_INFO("SwScaler: Bicubic spline scaler, "); else MSG_INFO("SwScaler: ehh flags invalid?! "); if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565) MSG_INFO("from %s to%s %s ", sws_format_name(srcFormat), dither, sws_format_name(dstFormat)); else MSG_INFO("from %s to %s ", sws_format_name(srcFormat), sws_format_name(dstFormat)); if(flags & SWS_CPU_CAPS_MMX2) MSG_INFO("using MMX2\n"); else if(flags & SWS_CPU_CAPS_3DNOW) MSG_INFO("using 3DNOW\n"); else if(flags & SWS_CPU_CAPS_MMX) MSG_INFO("using MMX\n"); else if(flags & SWS_CPU_CAPS_ALTIVEC) MSG_INFO("using AltiVec\n"); else MSG_INFO("using C\n"); } if(flags & SWS_PRINT_INFO) { if(flags & SWS_CPU_CAPS_MMX) { if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR)) MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n"); else { if(c->hLumFilterSize==4) MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n"); else if(c->hLumFilterSize==8) MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n"); else MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n"); if(c->hChrFilterSize==4) MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n"); else if(c->hChrFilterSize==8) MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n"); else MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n"); } } else { #if defined(ARCH_X86) MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n"); #else if(flags & SWS_FAST_BILINEAR) MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n"); else MSG_V("SwScaler: using C scaler for horizontal scaling\n"); #endif } if(isPlanarYUV(dstFormat)) { if(c->vLumFilterSize==1) MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); } else { if(c->vLumFilterSize==1 && c->vChrFilterSize==2) MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n" "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if(c->vLumFilterSize==2 && c->vChrFilterSize==2) MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); } if(dstFormat==PIX_FMT_BGR24) MSG_V("SwScaler: using %s YV12->BGR24 Converter\n", (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C")); else if(dstFormat==PIX_FMT_RGB32) MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if(dstFormat==PIX_FMT_BGR565) MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if(dstFormat==PIX_FMT_BGR555) MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); } if(flags & SWS_PRINT_INFO) { MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); } c->swScale= getSwsFunc(flags); return c; } /** * swscale warper, so we don't need to export the SwsContext. * assumes planar YUV to be in YUV order instead of YVU */ int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) { MSG_ERR("swScaler: slices start in the middle!\n"); return 0; } if (c->sliceDir == 0) { if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1; } // copy strides, so they can safely be modified if (c->sliceDir == 1) { // slices go from top to bottom int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]}; int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]}; return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2); } else { // slices go from bottom to top => we flip the image internally uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0], src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1], src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2] }; uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0], dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1], dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]}; int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]}; int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]}; return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2); } } /** * swscale warper, so we don't need to export the SwsContext */ int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *src[3]; uint8_t *dst[3]; src[0] = srcParam[0]; src[1] = srcParam[1]; src[2] = srcParam[2]; dst[0] = dstParam[0]; dst[1] = dstParam[1]; dst[2] = dstParam[2]; //printf("sws: slice %d %d\n", srcSliceY, srcSliceH); return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride); } SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose) { SwsFilter *filter= av_malloc(sizeof(SwsFilter)); if(lumaGBlur!=0.0){ filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0); filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0); }else{ filter->lumH= sws_getIdentityVec(); filter->lumV= sws_getIdentityVec(); } if(chromaGBlur!=0.0){ filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0); filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0); }else{ filter->chrH= sws_getIdentityVec(); filter->chrV= sws_getIdentityVec(); } if(chromaSharpen!=0.0){ SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->chrH, -chromaSharpen); sws_scaleVec(filter->chrV, -chromaSharpen); sws_addVec(filter->chrH, id); sws_addVec(filter->chrV, id); sws_freeVec(id); } if(lumaSharpen!=0.0){ SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->lumH, -lumaSharpen); sws_scaleVec(filter->lumV, -lumaSharpen); sws_addVec(filter->lumH, id); sws_addVec(filter->lumV, id); sws_freeVec(id); } if(chromaHShift != 0.0) sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5)); if(chromaVShift != 0.0) sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5)); sws_normalizeVec(filter->chrH, 1.0); sws_normalizeVec(filter->chrV, 1.0); sws_normalizeVec(filter->lumH, 1.0); sws_normalizeVec(filter->lumV, 1.0); if(verbose) sws_printVec(filter->chrH); if(verbose) sws_printVec(filter->lumH); return filter; } /** * returns a normalized gaussian curve used to filter stuff * quality=3 is high quality, lowwer is lowwer quality */ SwsVector *sws_getGaussianVec(double variance, double quality){ const int length= (int)(variance*quality + 0.5) | 1; int i; double *coeff= av_malloc(length*sizeof(double)); double middle= (length-1)*0.5; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; icoeff= coeff; vec->length= length; for(i=0; ilength; i++) sum+= a->coeff[i]; return sum; } void sws_scaleVec(SwsVector *a, double scalar){ int i; for(i=0; ilength; i++) a->coeff[i]*= scalar; } void sws_normalizeVec(SwsVector *a, double height){ sws_scaleVec(a, height/sws_dcVec(a)); } static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){ int length= a->length + b->length - 1; double *coeff= av_malloc(length*sizeof(double)); int i, j; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { for(j=0; jlength; j++) { coeff[i+j]+= a->coeff[i]*b->coeff[j]; } } return vec; } static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){ int length= FFMAX(a->length, b->length); double *coeff= av_malloc(length*sizeof(double)); int i; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; return vec; } static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){ int length= FFMAX(a->length, b->length); double *coeff= av_malloc(length*sizeof(double)); int i; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){ int length= a->length + FFABS(shift)*2; double *coeff= av_malloc(length*sizeof(double)); int i; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; } return vec; } void sws_shiftVec(SwsVector *a, int shift){ SwsVector *shifted= sws_getShiftedVec(a, shift); av_free(a->coeff); a->coeff= shifted->coeff; a->length= shifted->length; av_free(shifted); } void sws_addVec(SwsVector *a, SwsVector *b){ SwsVector *sum= sws_sumVec(a, b); av_free(a->coeff); a->coeff= sum->coeff; a->length= sum->length; av_free(sum); } void sws_subVec(SwsVector *a, SwsVector *b){ SwsVector *diff= sws_diffVec(a, b); av_free(a->coeff); a->coeff= diff->coeff; a->length= diff->length; av_free(diff); } void sws_convVec(SwsVector *a, SwsVector *b){ SwsVector *conv= sws_getConvVec(a, b); av_free(a->coeff); a->coeff= conv->coeff; a->length= conv->length; av_free(conv); } SwsVector *sws_cloneVec(SwsVector *a){ double *coeff= av_malloc(a->length*sizeof(double)); int i; SwsVector *vec= av_malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= a->length; for(i=0; ilength; i++) coeff[i]= a->coeff[i]; return vec; } void sws_printVec(SwsVector *a){ int i; double max=0; double min=0; double range; for(i=0; ilength; i++) if(a->coeff[i]>max) max= a->coeff[i]; for(i=0; ilength; i++) if(a->coeff[i]coeff[i]; range= max - min; for(i=0; ilength; i++) { int x= (int)((a->coeff[i]-min)*60.0/range +0.5); MSG_DBG2("%1.3f ", a->coeff[i]); for(;x>0; x--) MSG_DBG2(" "); MSG_DBG2("|\n"); } } void sws_freeVec(SwsVector *a){ if(!a) return; av_free(a->coeff); a->coeff=NULL; a->length=0; av_free(a); } void sws_freeFilter(SwsFilter *filter){ if(!filter) return; if(filter->lumH) sws_freeVec(filter->lumH); if(filter->lumV) sws_freeVec(filter->lumV); if(filter->chrH) sws_freeVec(filter->chrH); if(filter->chrV) sws_freeVec(filter->chrV); av_free(filter); } void sws_freeContext(SwsContext *c){ int i; if(!c) return; if(c->lumPixBuf) { for(i=0; ivLumBufSize; i++) { av_free(c->lumPixBuf[i]); c->lumPixBuf[i]=NULL; } av_free(c->lumPixBuf); c->lumPixBuf=NULL; } if(c->chrPixBuf) { for(i=0; ivChrBufSize; i++) { av_free(c->chrPixBuf[i]); c->chrPixBuf[i]=NULL; } av_free(c->chrPixBuf); c->chrPixBuf=NULL; } av_free(c->vLumFilter); c->vLumFilter = NULL; av_free(c->vChrFilter); c->vChrFilter = NULL; av_free(c->hLumFilter); c->hLumFilter = NULL; av_free(c->hChrFilter); c->hChrFilter = NULL; #ifdef HAVE_ALTIVEC av_free(c->vYCoeffsBank); c->vYCoeffsBank = NULL; av_free(c->vCCoeffsBank); c->vCCoeffsBank = NULL; #endif av_free(c->vLumFilterPos); c->vLumFilterPos = NULL; av_free(c->vChrFilterPos); c->vChrFilterPos = NULL; av_free(c->hLumFilterPos); c->hLumFilterPos = NULL; av_free(c->hChrFilterPos); c->hChrFilterPos = NULL; #if defined(ARCH_X86) && defined(CONFIG_GPL) #ifdef MAP_ANONYMOUS if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE); if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE); #else av_free(c->funnyYCode); av_free(c->funnyUVCode); #endif c->funnyYCode=NULL; c->funnyUVCode=NULL; #endif /* defined(ARCH_X86) */ av_free(c->lumMmx2Filter); c->lumMmx2Filter=NULL; av_free(c->chrMmx2Filter); c->chrMmx2Filter=NULL; av_free(c->lumMmx2FilterPos); c->lumMmx2FilterPos=NULL; av_free(c->chrMmx2FilterPos); c->chrMmx2FilterPos=NULL; av_free(c->yuvTable); c->yuvTable=NULL; av_free(c); } /** * Checks if context is valid or reallocs a new one instead. * If context is NULL, just calls sws_getContext() to get a new one. * Otherwise, checks if the parameters are the same already saved in context. * If that is the case, returns the current context. * Otherwise, frees context and gets a new one. * * Be warned that srcFilter, dstFilter are not checked, they are * asumed to remain valid. */ struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, double *param) { if (context != NULL) { if ((context->srcW != srcW) || (context->srcH != srcH) || (context->srcFormat != srcFormat) || (context->dstW != dstW) || (context->dstH != dstH) || (context->dstFormat != dstFormat) || (context->flags != flags) || (context->param != param)) { sws_freeContext(context); context = NULL; } } if (context == NULL) { return sws_getContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, srcFilter, dstFilter, param); } return context; }