/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include "mpv_talloc.h"
#include "config.h"
#include "osdep/timer.h"
#include "osdep/threads.h"
#include "misc/dispatch.h"
#include "misc/rendezvous.h"
#include "options/options.h"
#include "misc/bstr.h"
#include "vo.h"
#include "aspect.h"
#include "dr_helper.h"
#include "input/input.h"
#include "options/m_config.h"
#include "common/msg.h"
#include "common/global.h"
#include "common/stats.h"
#include "video/hwdec.h"
#include "video/mp_image.h"
#include "sub/osd.h"
#include "osdep/io.h"
#include "osdep/threads.h"
extern const struct vo_driver video_out_mediacodec_embed;
extern const struct vo_driver video_out_x11;
extern const struct vo_driver video_out_vdpau;
extern const struct vo_driver video_out_xv;
extern const struct vo_driver video_out_gpu;
extern const struct vo_driver video_out_gpu_next;
extern const struct vo_driver video_out_libmpv;
extern const struct vo_driver video_out_null;
extern const struct vo_driver video_out_image;
extern const struct vo_driver video_out_lavc;
extern const struct vo_driver video_out_caca;
extern const struct vo_driver video_out_drm;
extern const struct vo_driver video_out_direct3d;
extern const struct vo_driver video_out_sdl;
extern const struct vo_driver video_out_vaapi;
extern const struct vo_driver video_out_dmabuf_wayland;
extern const struct vo_driver video_out_wlshm;
extern const struct vo_driver video_out_rpi;
extern const struct vo_driver video_out_tct;
extern const struct vo_driver video_out_sixel;
extern const struct vo_driver video_out_kitty;
static const struct vo_driver *const video_out_drivers[] =
{
&video_out_libmpv,
#if HAVE_ANDROID
&video_out_mediacodec_embed,
#endif
&video_out_gpu,
&video_out_gpu_next,
#if HAVE_VDPAU
&video_out_vdpau,
#endif
#if HAVE_DIRECT3D
&video_out_direct3d,
#endif
#if HAVE_WAYLAND && HAVE_MEMFD_CREATE
&video_out_wlshm,
#endif
#if HAVE_XV
&video_out_xv,
#endif
#if HAVE_SDL2_VIDEO
&video_out_sdl,
#endif
#if HAVE_DMABUF_WAYLAND
&video_out_dmabuf_wayland,
#endif
#if HAVE_VAAPI_X11 && HAVE_GPL
&video_out_vaapi,
#endif
#if HAVE_X11
&video_out_x11,
#endif
&video_out_null,
// should not be auto-selected
&video_out_image,
&video_out_tct,
#if HAVE_CACA
&video_out_caca,
#endif
#if HAVE_DRM
&video_out_drm,
#endif
#if HAVE_RPI_MMAL
&video_out_rpi,
#endif
#if HAVE_SIXEL
&video_out_sixel,
#endif
&video_out_kitty,
&video_out_lavc,
};
struct vo_internal {
mp_thread thread;
struct mp_dispatch_queue *dispatch;
struct dr_helper *dr_helper;
// --- The following fields are protected by lock
mp_mutex lock;
mp_cond wakeup;
bool need_wakeup;
bool terminate;
bool hasframe;
bool hasframe_rendered;
bool request_redraw; // redraw request from player to VO
bool want_redraw; // redraw request from VO to player
bool send_reset; // send VOCTRL_RESET
bool paused;
int queued_events; // event mask for the user
int internal_events; // event mask for us
double nominal_vsync_interval;
double vsync_interval;
int64_t *vsync_samples;
int num_vsync_samples;
int64_t num_total_vsync_samples;
int64_t prev_vsync;
double base_vsync;
int drop_point;
double estimated_vsync_interval;
double estimated_vsync_jitter;
bool expecting_vsync;
int64_t num_successive_vsyncs;
int64_t flip_queue_offset; // queue flip events at most this much in advance
int64_t timing_offset; // same (but from options; not VO configured)
int64_t delayed_count;
int64_t drop_count;
bool dropped_frame; // the previous frame was dropped
struct vo_frame *current_frame; // last frame queued to the VO
int64_t wakeup_pts; // time at which to pull frame from decoder
bool rendering; // true if an image is being rendered
struct vo_frame *frame_queued; // should be drawn next
int req_frames; // VO's requested value of num_frames
uint64_t current_frame_id;
double display_fps;
double reported_display_fps;
struct stats_ctx *stats;
};
extern const struct m_sub_options gl_video_conf;
static void forget_frames(struct vo *vo);
static MP_THREAD_VOID vo_thread(void *ptr);
static bool get_desc(struct m_obj_desc *dst, int index)
{
if (index >= MP_ARRAY_SIZE(video_out_drivers))
return false;
const struct vo_driver *vo = video_out_drivers[index];
*dst = (struct m_obj_desc) {
.name = vo->name,
.description = vo->description,
.priv_size = vo->priv_size,
.priv_defaults = vo->priv_defaults,
.options = vo->options,
.options_prefix = vo->options_prefix,
.global_opts = vo->global_opts,
.hidden = vo->encode,
.p = vo,
};
return true;
}
// For the vo option
const struct m_obj_list vo_obj_list = {
.get_desc = get_desc,
.description = "video outputs",
.aliases = {
{"gl", "gpu"},
{"direct3d_shaders", "direct3d"},
{"opengl", "gpu"},
{"opengl-cb", "libmpv"},
{0}
},
.allow_trailer = true,
.disallow_positional_parameters = true,
.use_global_options = true,
};
static void dispatch_wakeup_cb(void *ptr)
{
struct vo *vo = ptr;
vo_wakeup(vo);
}
// Initialize or update options from vo->opts
static void read_opts(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
in->timing_offset = (uint64_t)(MP_TIME_S_TO_NS(vo->opts->timing_offset));
mp_mutex_unlock(&in->lock);
}
static void update_opts(void *p)
{
struct vo *vo = p;
if (m_config_cache_update(vo->opts_cache)) {
read_opts(vo);
if (vo->driver->control) {
vo->driver->control(vo, VOCTRL_VO_OPTS_CHANGED, NULL);
// "Legacy" update of video position related options.
// Unlike VOCTRL_VO_OPTS_CHANGED, often not propagated to backends.
vo->driver->control(vo, VOCTRL_SET_PANSCAN, NULL);
}
}
if (vo->gl_opts_cache && m_config_cache_update(vo->gl_opts_cache)) {
// "Legacy" update of video GL renderer related options.
if (vo->driver->control)
vo->driver->control(vo, VOCTRL_UPDATE_RENDER_OPTS, NULL);
}
if (m_config_cache_update(vo->eq_opts_cache)) {
// "Legacy" update of video equalizer related options.
if (vo->driver->control)
vo->driver->control(vo, VOCTRL_SET_EQUALIZER, NULL);
}
}
// Does not include thread- and VO uninit.
static void dealloc_vo(struct vo *vo)
{
forget_frames(vo); // implicitly synchronized
// These must be free'd before vo->in->dispatch.
talloc_free(vo->opts_cache);
talloc_free(vo->gl_opts_cache);
talloc_free(vo->eq_opts_cache);
mp_mutex_destroy(&vo->params_mutex);
mp_mutex_destroy(&vo->in->lock);
mp_cond_destroy(&vo->in->wakeup);
talloc_free(vo);
}
static struct vo *vo_create(bool probing, struct mpv_global *global,
struct vo_extra *ex, char *name)
{
assert(ex->wakeup_cb);
struct mp_log *log = mp_log_new(NULL, global->log, "vo");
struct m_obj_desc desc;
if (!m_obj_list_find(&desc, &vo_obj_list, bstr0(name))) {
mp_msg(log, MSGL_ERR, "Video output %s not found!\n", name);
talloc_free(log);
return NULL;
};
struct vo *vo = talloc_ptrtype(NULL, vo);
*vo = (struct vo) {
.log = mp_log_new(vo, log, name),
.driver = desc.p,
.global = global,
.encode_lavc_ctx = ex->encode_lavc_ctx,
.input_ctx = ex->input_ctx,
.osd = ex->osd,
.monitor_par = 1,
.extra = *ex,
.probing = probing,
.in = talloc(vo, struct vo_internal),
};
mp_mutex_init(&vo->params_mutex);
talloc_steal(vo, log);
*vo->in = (struct vo_internal) {
.dispatch = mp_dispatch_create(vo),
.req_frames = 1,
.estimated_vsync_jitter = -1,
.stats = stats_ctx_create(vo, global, "vo"),
};
mp_dispatch_set_wakeup_fn(vo->in->dispatch, dispatch_wakeup_cb, vo);
mp_mutex_init(&vo->in->lock);
mp_cond_init(&vo->in->wakeup);
vo->opts_cache = m_config_cache_alloc(NULL, global, &vo_sub_opts);
vo->opts = vo->opts_cache->opts;
m_config_cache_set_dispatch_change_cb(vo->opts_cache, vo->in->dispatch,
update_opts, vo);
vo->gl_opts_cache = m_config_cache_alloc(NULL, global, &gl_video_conf);
m_config_cache_set_dispatch_change_cb(vo->gl_opts_cache, vo->in->dispatch,
update_opts, vo);
vo->eq_opts_cache = m_config_cache_alloc(NULL, global, &mp_csp_equalizer_conf);
m_config_cache_set_dispatch_change_cb(vo->eq_opts_cache, vo->in->dispatch,
update_opts, vo);
mp_input_set_mouse_transform(vo->input_ctx, NULL, NULL);
if (vo->driver->encode != !!vo->encode_lavc_ctx)
goto error;
vo->priv = m_config_group_from_desc(vo, vo->log, global, &desc, name);
if (!vo->priv)
goto error;
if (mp_thread_create(&vo->in->thread, vo_thread, vo))
goto error;
if (mp_rendezvous(vo, 0) < 0) { // init barrier
mp_thread_join(vo->in->thread);
goto error;
}
return vo;
error:
dealloc_vo(vo);
return NULL;
}
struct vo *init_best_video_out(struct mpv_global *global, struct vo_extra *ex)
{
struct mp_vo_opts *opts = mp_get_config_group(NULL, global, &vo_sub_opts);
struct m_obj_settings *vo_list = opts->video_driver_list;
struct vo *vo = NULL;
// first try the preferred drivers, with their optional subdevice param:
if (vo_list && vo_list[0].name) {
for (int n = 0; vo_list[n].name; n++) {
// Something like "-vo name," allows fallback to autoprobing.
if (strlen(vo_list[n].name) == 0)
goto autoprobe;
bool p = !!vo_list[n + 1].name;
vo = vo_create(p, global, ex, vo_list[n].name);
if (vo)
goto done;
}
goto done;
}
autoprobe:
// now try the rest...
for (int i = 0; i < MP_ARRAY_SIZE(video_out_drivers); i++) {
const struct vo_driver *driver = video_out_drivers[i];
if (driver == &video_out_null)
break;
vo = vo_create(true, global, ex, (char *)driver->name);
if (vo)
goto done;
}
done:
talloc_free(opts);
return vo;
}
static void terminate_vo(void *p)
{
struct vo *vo = p;
struct vo_internal *in = vo->in;
in->terminate = true;
}
void vo_destroy(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_dispatch_run(in->dispatch, terminate_vo, vo);
mp_thread_join(vo->in->thread);
dealloc_vo(vo);
}
// Wakeup the playloop to queue new video frames etc.
static void wakeup_core(struct vo *vo)
{
vo->extra.wakeup_cb(vo->extra.wakeup_ctx);
}
// Drop timing information on discontinuities like seeking.
// Always called locked.
static void reset_vsync_timings(struct vo *vo)
{
struct vo_internal *in = vo->in;
in->drop_point = 0;
in->base_vsync = 0;
in->expecting_vsync = false;
in->num_successive_vsyncs = 0;
}
static double vsync_stddef(struct vo *vo, double ref_vsync)
{
struct vo_internal *in = vo->in;
double jitter = 0;
for (int n = 0; n < in->num_vsync_samples; n++) {
double diff = in->vsync_samples[n] - ref_vsync;
jitter += diff * diff;
}
return sqrt(jitter / in->num_vsync_samples);
}
#define MAX_VSYNC_SAMPLES 1000
#define DELAY_VSYNC_SAMPLES 10
// Check if we should switch to measured average display FPS if it seems
// "better" then the system-reported one. (Note that small differences are
// handled as drift instead.)
static void check_estimated_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
bool use_estimated = false;
if (in->num_total_vsync_samples >= MAX_VSYNC_SAMPLES / 2 &&
in->estimated_vsync_interval <= 1e9 / 20.0 &&
in->estimated_vsync_interval >= 1e9 / 400.0)
{
for (int n = 0; n < in->num_vsync_samples; n++) {
if (fabs(in->vsync_samples[n] - in->estimated_vsync_interval)
>= in->estimated_vsync_interval / 4)
goto done;
}
double mjitter = vsync_stddef(vo, in->estimated_vsync_interval);
double njitter = vsync_stddef(vo, in->nominal_vsync_interval);
if (mjitter * 1.01 < njitter)
use_estimated = true;
done: ;
}
if (use_estimated == (fabs(in->vsync_interval - in->nominal_vsync_interval) < 1e9)) {
if (use_estimated) {
MP_TRACE(vo, "adjusting display FPS to a value closer to %.3f Hz\n",
1e9 / in->estimated_vsync_interval);
} else {
MP_TRACE(vo, "switching back to assuming display fps = %.3f Hz\n",
1e9 / in->nominal_vsync_interval);
}
}
in->vsync_interval = use_estimated ? in->estimated_vsync_interval
: in->nominal_vsync_interval;
}
// Attempt to detect vsyncs delayed/skipped by the driver. This tries to deal
// with strong jitter too, because some drivers have crap vsync timing.
static void vsync_skip_detection(struct vo *vo)
{
struct vo_internal *in = vo->in;
int window = 4;
double t_r = in->prev_vsync, t_e = in->base_vsync, diff = 0.0, desync_early = 0.0;
for (int n = 0; n < in->drop_point; n++) {
diff += t_r - t_e;
t_r -= in->vsync_samples[n];
t_e -= in->vsync_interval;
if (n == window + 1)
desync_early = diff / window;
}
double desync = diff / in->num_vsync_samples;
if (in->drop_point > window * 2 &&
fabs(desync - desync_early) >= in->vsync_interval * 3 / 4)
{
// Assume a drop. An underflow can technically speaking not be a drop
// (it's up to the driver what this is supposed to mean), but no reason
// to treat it differently.
in->base_vsync = in->prev_vsync;
in->delayed_count += 1;
in->drop_point = 0;
MP_STATS(vo, "vo-delayed");
}
if (in->drop_point > 10)
in->base_vsync += desync / 10; // smooth out drift
}
// Always called locked.
static void update_vsync_timing_after_swap(struct vo *vo,
struct vo_vsync_info *vsync)
{
struct vo_internal *in = vo->in;
int64_t vsync_time = vsync->last_queue_display_time;
int64_t prev_vsync = in->prev_vsync;
in->prev_vsync = vsync_time;
if (!in->expecting_vsync) {
reset_vsync_timings(vo);
return;
}
in->num_successive_vsyncs++;
if (in->num_successive_vsyncs <= DELAY_VSYNC_SAMPLES)
return;
if (vsync_time <= 0 || vsync_time <= prev_vsync) {
in->prev_vsync = 0;
return;
}
if (prev_vsync <= 0)
return;
if (in->num_vsync_samples >= MAX_VSYNC_SAMPLES)
in->num_vsync_samples -= 1;
MP_TARRAY_INSERT_AT(in, in->vsync_samples, in->num_vsync_samples, 0,
vsync_time - prev_vsync);
in->drop_point = MPMIN(in->drop_point + 1, in->num_vsync_samples);
in->num_total_vsync_samples += 1;
if (in->base_vsync) {
in->base_vsync += in->vsync_interval;
} else {
in->base_vsync = vsync_time;
}
double avg = 0;
for (int n = 0; n < in->num_vsync_samples; n++) {
assert(in->vsync_samples[n] > 0);
avg += in->vsync_samples[n];
}
in->estimated_vsync_interval = avg / in->num_vsync_samples;
in->estimated_vsync_jitter =
vsync_stddef(vo, in->vsync_interval) / in->vsync_interval;
check_estimated_display_fps(vo);
vsync_skip_detection(vo);
MP_STATS(vo, "value %f jitter", in->estimated_vsync_jitter);
MP_STATS(vo, "value %f vsync-diff", MP_TIME_NS_TO_S(in->vsync_samples[0]));
}
// to be called from VO thread only
static void update_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
if (in->internal_events & VO_EVENT_WIN_STATE) {
in->internal_events &= ~(unsigned)VO_EVENT_WIN_STATE;
mp_mutex_unlock(&in->lock);
double fps = 0;
vo->driver->control(vo, VOCTRL_GET_DISPLAY_FPS, &fps);
mp_mutex_lock(&in->lock);
in->reported_display_fps = fps;
}
double display_fps = vo->opts->display_fps_override;
if (display_fps <= 0)
display_fps = in->reported_display_fps;
if (in->display_fps != display_fps) {
in->nominal_vsync_interval = display_fps > 0 ? 1e9 / display_fps : 0;
in->vsync_interval = MPMAX(in->nominal_vsync_interval, 1);
in->display_fps = display_fps;
MP_VERBOSE(vo, "Assuming %f FPS for display sync.\n", display_fps);
// make sure to update the player
in->queued_events |= VO_EVENT_WIN_STATE;
wakeup_core(vo);
}
mp_mutex_unlock(&in->lock);
}
static void check_vo_caps(struct vo *vo)
{
int rot = vo->params->rotate;
if (rot) {
bool ok = rot % 90 ? false : (vo->driver->caps & VO_CAP_ROTATE90);
if (!ok) {
MP_WARN(vo, "Video is flagged as rotated by %d degrees, but the "
"video output does not support this.\n", rot);
}
}
}
static void run_reconfig(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
struct mp_image *img = pp[1];
int *ret = pp[2];
struct mp_image_params *params = &img->params;
struct vo_internal *in = vo->in;
MP_VERBOSE(vo, "reconfig to %s\n", mp_image_params_to_str(params));
update_opts(vo);
mp_image_params_get_dsize(params, &vo->dwidth, &vo->dheight);
mp_mutex_lock(&vo->params_mutex);
talloc_free(vo->params);
vo->params = talloc_dup(vo, params);
mp_mutex_unlock(&vo->params_mutex);
if (vo->driver->reconfig2) {
*ret = vo->driver->reconfig2(vo, img);
} else {
*ret = vo->driver->reconfig(vo, vo->params);
}
vo->config_ok = *ret >= 0;
if (vo->config_ok) {
check_vo_caps(vo);
} else {
mp_mutex_lock(&vo->params_mutex);
talloc_free(vo->params);
vo->params = NULL;
mp_mutex_unlock(&vo->params_mutex);
}
mp_mutex_lock(&in->lock);
talloc_free(in->current_frame);
in->current_frame = NULL;
forget_frames(vo);
reset_vsync_timings(vo);
mp_mutex_unlock(&in->lock);
update_display_fps(vo);
}
int vo_reconfig(struct vo *vo, struct mp_image_params *params)
{
int ret;
struct mp_image dummy = {0};
mp_image_set_params(&dummy, params);
void *p[] = {vo, &dummy, &ret};
mp_dispatch_run(vo->in->dispatch, run_reconfig, p);
return ret;
}
int vo_reconfig2(struct vo *vo, struct mp_image *img)
{
int ret;
void *p[] = {vo, img, &ret};
mp_dispatch_run(vo->in->dispatch, run_reconfig, p);
return ret;
}
static void run_control(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
int request = (intptr_t)pp[1];
void *data = pp[2];
update_opts(vo);
int ret = vo->driver->control(vo, request, data);
if (pp[3])
*(int *)pp[3] = ret;
}
int vo_control(struct vo *vo, int request, void *data)
{
int ret;
void *p[] = {vo, (void *)(intptr_t)request, data, &ret};
mp_dispatch_run(vo->in->dispatch, run_control, p);
return ret;
}
// Run vo_control() without waiting for a reply.
// (Only works for some VOCTRLs.)
void vo_control_async(struct vo *vo, int request, void *data)
{
void *p[4] = {vo, (void *)(intptr_t)request, NULL, NULL};
void **d = talloc_memdup(NULL, p, sizeof(p));
switch (request) {
case VOCTRL_UPDATE_PLAYBACK_STATE:
d[2] = talloc_dup(d, (struct voctrl_playback_state *)data);
break;
case VOCTRL_KILL_SCREENSAVER:
case VOCTRL_RESTORE_SCREENSAVER:
break;
default:
abort(); // requires explicit support
}
mp_dispatch_enqueue_autofree(vo->in->dispatch, run_control, d);
}
// must be called locked
static void forget_frames(struct vo *vo)
{
struct vo_internal *in = vo->in;
in->hasframe = false;
in->hasframe_rendered = false;
in->drop_count = 0;
in->delayed_count = 0;
talloc_free(in->frame_queued);
in->frame_queued = NULL;
in->current_frame_id += VO_MAX_REQ_FRAMES + 1;
// don't unref current_frame; we always want to be able to redraw it
if (in->current_frame) {
in->current_frame->num_vsyncs = 0; // but reset future repeats
in->current_frame->display_synced = false; // mark discontinuity
}
}
// VOs which have no special requirements on UI event loops etc. can set the
// vo_driver.wait_events callback to this (and leave vo_driver.wakeup unset).
// This function must not be used or called for other purposes.
void vo_wait_default(struct vo *vo, int64_t until_time)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
if (!in->need_wakeup)
mp_cond_timedwait_until(&in->wakeup, &in->lock, until_time);
mp_mutex_unlock(&in->lock);
}
// Called unlocked.
static void wait_vo(struct vo *vo, int64_t until_time)
{
struct vo_internal *in = vo->in;
if (vo->driver->wait_events) {
vo->driver->wait_events(vo, until_time);
} else {
vo_wait_default(vo, until_time);
}
mp_mutex_lock(&in->lock);
in->need_wakeup = false;
mp_mutex_unlock(&in->lock);
}
static void wakeup_locked(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_cond_broadcast(&in->wakeup);
if (vo->driver->wakeup)
vo->driver->wakeup(vo);
in->need_wakeup = true;
}
// Wakeup VO thread, and make it check for new events with VOCTRL_CHECK_EVENTS.
// To be used by threaded VO backends.
void vo_wakeup(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
wakeup_locked(vo);
mp_mutex_unlock(&in->lock);
}
// Whether vo_queue_frame() can be called. If the VO is not ready yet, the
// function will return false, and the VO will call the wakeup callback once
// it's ready.
// next_pts is the exact time when the next frame should be displayed. If the
// VO is ready, but the time is too "early", return false, and call the wakeup
// callback once the time is right.
// If next_pts is negative, disable any timing and draw the frame as fast as
// possible.
bool vo_is_ready_for_frame(struct vo *vo, int64_t next_pts)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
bool blocked = vo->driver->initially_blocked &&
!(in->internal_events & VO_EVENT_INITIAL_UNBLOCK);
bool r = vo->config_ok && !in->frame_queued && !blocked &&
(!in->current_frame || in->current_frame->num_vsyncs < 1);
if (r && next_pts >= 0) {
// Don't show the frame too early - it would basically freeze the
// display by disallowing OSD redrawing or VO interaction.
// Actually render the frame at earliest the given offset before target
// time.
next_pts -= in->timing_offset;
next_pts -= in->flip_queue_offset;
int64_t now = mp_time_ns();
if (next_pts > now)
r = false;
if (!in->wakeup_pts || next_pts < in->wakeup_pts) {
in->wakeup_pts = next_pts;
// If we have to wait, update the vo thread's timer.
if (!r)
wakeup_locked(vo);
}
}
mp_mutex_unlock(&in->lock);
return r;
}
// Direct the VO thread to put the currently queued image on the screen.
// vo_is_ready_for_frame() must have returned true before this call.
// Ownership of frame is handed to the vo.
void vo_queue_frame(struct vo *vo, struct vo_frame *frame)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
assert(vo->config_ok && !in->frame_queued &&
(!in->current_frame || in->current_frame->num_vsyncs < 1));
in->hasframe = true;
frame->frame_id = ++(in->current_frame_id);
in->frame_queued = frame;
in->wakeup_pts = frame->display_synced
? 0 : frame->pts + MPMAX(frame->duration, 0);
wakeup_locked(vo);
mp_mutex_unlock(&in->lock);
}
// If a frame is currently being rendered (or queued), wait until it's done.
// Otherwise, return immediately.
void vo_wait_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
while (in->frame_queued || in->rendering)
mp_cond_wait(&in->wakeup, &in->lock);
mp_mutex_unlock(&in->lock);
}
// Wait until realtime is >= ts
// called without lock
static void wait_until(struct vo *vo, int64_t target)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
while (target > mp_time_ns()) {
if (in->queued_events & VO_EVENT_LIVE_RESIZING)
break;
if (mp_cond_timedwait_until(&in->wakeup, &in->lock, target))
break;
}
mp_mutex_unlock(&in->lock);
}
static bool render_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
struct vo_frame *frame = NULL;
bool more_frames = false;
update_display_fps(vo);
mp_mutex_lock(&in->lock);
if (in->frame_queued) {
talloc_free(in->current_frame);
in->current_frame = in->frame_queued;
in->frame_queued = NULL;
} else if (in->paused || !in->current_frame || !in->hasframe ||
(in->current_frame->display_synced && in->current_frame->num_vsyncs < 1) ||
!in->current_frame->display_synced)
{
goto done;
}
frame = vo_frame_ref(in->current_frame);
assert(frame);
if (frame->display_synced) {
frame->pts = 0;
frame->duration = -1;
}
int64_t now = mp_time_ns();
int64_t pts = frame->pts;
int64_t duration = frame->duration;
int64_t end_time = pts + duration;
// Time at which we should flip_page on the VO.
int64_t target = frame->display_synced ? 0 : pts - in->flip_queue_offset;
// "normal" strict drop threshold.
in->dropped_frame = duration >= 0 && end_time < now;
in->dropped_frame &= !frame->display_synced;
in->dropped_frame &= !(vo->driver->caps & VO_CAP_FRAMEDROP);
in->dropped_frame &= frame->can_drop;
// Even if we're hopelessly behind, rather degrade to 10 FPS playback,
// instead of just freezing the display forever.
in->dropped_frame &= now - in->prev_vsync < MP_TIME_MS_TO_NS(100);
in->dropped_frame &= in->hasframe_rendered;
// Setup parameters for the next time this frame is drawn. ("frame" is the
// frame currently drawn, while in->current_frame is the potentially next.)
in->current_frame->repeat = true;
if (frame->display_synced) {
// Increment the offset only if it's not the last vsync. The current_frame
// can still be reused. This is mostly important for redraws that might
// overshoot the target vsync point.
if (in->current_frame->num_vsyncs > 1) {
in->current_frame->vsync_offset += in->current_frame->vsync_interval;
in->current_frame->ideal_frame_vsync += in->current_frame->ideal_frame_vsync_duration;
}
in->dropped_frame |= in->current_frame->num_vsyncs < 1;
}
if (in->current_frame->num_vsyncs > 0)
in->current_frame->num_vsyncs -= 1;
// Always render when paused (it's typically the last frame for a while).
in->dropped_frame &= !in->paused;
bool use_vsync = in->current_frame->display_synced && !in->paused;
if (use_vsync && !in->expecting_vsync) // first DS frame in a row
in->prev_vsync = now;
in->expecting_vsync = use_vsync;
// Store the initial value before we unlock.
bool request_redraw = in->request_redraw;
if (in->dropped_frame) {
in->drop_count += 1;
} else {
in->rendering = true;
in->hasframe_rendered = true;
int64_t prev_drop_count = vo->in->drop_count;
// Can the core queue new video now? Non-display-sync uses a separate
// timer instead, but possibly benefits from preparing a frame early.
bool can_queue = !in->frame_queued &&
(in->current_frame->num_vsyncs < 1 || !use_vsync);
mp_mutex_unlock(&in->lock);
if (can_queue)
wakeup_core(vo);
stats_time_start(in->stats, "video-draw");
vo->driver->draw_frame(vo, frame);
stats_time_end(in->stats, "video-draw");
wait_until(vo, target);
stats_time_start(in->stats, "video-flip");
vo->driver->flip_page(vo);
struct vo_vsync_info vsync = {
.last_queue_display_time = -1,
.skipped_vsyncs = -1,
};
if (vo->driver->get_vsync)
vo->driver->get_vsync(vo, &vsync);
// Make up some crap if presentation feedback is missing.
if (vsync.last_queue_display_time <= 0)
vsync.last_queue_display_time = mp_time_ns();
stats_time_end(in->stats, "video-flip");
mp_mutex_lock(&in->lock);
in->dropped_frame = prev_drop_count < vo->in->drop_count;
in->rendering = false;
update_vsync_timing_after_swap(vo, &vsync);
}
if (vo->driver->caps & VO_CAP_NORETAIN) {
talloc_free(in->current_frame);
in->current_frame = NULL;
}
if (in->dropped_frame) {
MP_STATS(vo, "drop-vo");
} else {
// If the initial redraw request was true or mpv is still playing,
// then we can clear it here since we just performed a redraw, or the
// next loop will draw what we need. However if there initially is
// no redraw request, then something can change this (i.e. the OSD)
// while the vo was unlocked. If we are paused, don't touch
// in->request_redraw in that case.
if (request_redraw || !in->paused)
in->request_redraw = false;
}
if (in->current_frame && in->current_frame->num_vsyncs &&
in->current_frame->display_synced)
more_frames = true;
if (in->frame_queued && in->frame_queued->display_synced)
more_frames = true;
mp_cond_broadcast(&in->wakeup); // for vo_wait_frame()
wakeup_core(vo);
done:
if (!vo->driver->frame_owner)
talloc_free(frame);
mp_mutex_unlock(&in->lock);
return more_frames;
}
static void do_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
if (!vo->config_ok || (vo->driver->caps & VO_CAP_NORETAIN))
return;
mp_mutex_lock(&in->lock);
in->request_redraw = false;
bool full_redraw = in->dropped_frame;
struct vo_frame *frame = NULL;
if (!vo->driver->untimed)
frame = vo_frame_ref(in->current_frame);
if (frame)
in->dropped_frame = false;
struct vo_frame dummy = {0};
if (!frame)
frame = &dummy;
frame->redraw = !full_redraw; // unconditionally redraw if it was dropped
frame->repeat = false;
frame->still = true;
frame->pts = 0;
frame->duration = -1;
mp_mutex_unlock(&in->lock);
vo->driver->draw_frame(vo, frame);
vo->driver->flip_page(vo);
if (frame != &dummy && !vo->driver->frame_owner)
talloc_free(frame);
}
static struct mp_image *get_image_vo(void *ctx, int imgfmt, int w, int h,
int stride_align, int flags)
{
struct vo *vo = ctx;
return vo->driver->get_image(vo, imgfmt, w, h, stride_align, flags);
}
static MP_THREAD_VOID vo_thread(void *ptr)
{
struct vo *vo = ptr;
struct vo_internal *in = vo->in;
bool vo_paused = false;
mp_thread_set_name("vo");
if (vo->driver->get_image) {
in->dr_helper = dr_helper_create(in->dispatch, get_image_vo, vo);
dr_helper_acquire_thread(in->dr_helper);
}
int r = vo->driver->preinit(vo) ? -1 : 0;
mp_rendezvous(vo, r); // init barrier
if (r < 0)
goto done;
read_opts(vo);
update_display_fps(vo);
vo_event(vo, VO_EVENT_WIN_STATE);
while (1) {
mp_dispatch_queue_process(vo->in->dispatch, 0);
if (in->terminate)
break;
stats_event(in->stats, "iterations");
vo->driver->control(vo, VOCTRL_CHECK_EVENTS, NULL);
bool working = render_frame(vo);
int64_t now = mp_time_ns();
int64_t wait_until = now + MP_TIME_S_TO_NS(working ? 0 : 1000);
mp_mutex_lock(&in->lock);
if (in->wakeup_pts) {
if (in->wakeup_pts > now) {
wait_until = MPMIN(wait_until, in->wakeup_pts);
} else {
in->wakeup_pts = 0;
wakeup_core(vo);
}
}
if (vo->want_redraw && !in->want_redraw) {
in->want_redraw = true;
wakeup_core(vo);
}
vo->want_redraw = false;
bool redraw = in->request_redraw;
bool send_reset = in->send_reset;
in->send_reset = false;
bool send_pause = in->paused != vo_paused;
vo_paused = in->paused;
mp_mutex_unlock(&in->lock);
if (send_reset)
vo->driver->control(vo, VOCTRL_RESET, NULL);
if (send_pause)
vo->driver->control(vo, vo_paused ? VOCTRL_PAUSE : VOCTRL_RESUME, NULL);
if (wait_until > now && redraw) {
do_redraw(vo); // now is a good time
continue;
}
if (vo->want_redraw) // might have been set by VOCTRLs
wait_until = 0;
if (wait_until <= now)
continue;
wait_vo(vo, wait_until);
}
forget_frames(vo); // implicitly synchronized
talloc_free(in->current_frame);
in->current_frame = NULL;
vo->driver->uninit(vo);
done:
TA_FREEP(&in->dr_helper);
MP_THREAD_RETURN();
}
void vo_set_paused(struct vo *vo, bool paused)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
if (in->paused != paused) {
in->paused = paused;
if (in->paused && in->dropped_frame) {
in->request_redraw = true;
wakeup_core(vo);
}
reset_vsync_timings(vo);
wakeup_locked(vo);
}
mp_mutex_unlock(&in->lock);
}
int64_t vo_get_drop_count(struct vo *vo)
{
mp_mutex_lock(&vo->in->lock);
int64_t r = vo->in->drop_count;
mp_mutex_unlock(&vo->in->lock);
return r;
}
void vo_increment_drop_count(struct vo *vo, int64_t n)
{
mp_mutex_lock(&vo->in->lock);
vo->in->drop_count += n;
mp_mutex_unlock(&vo->in->lock);
}
// Make the VO redraw the OSD at some point in the future.
void vo_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
if (!in->request_redraw) {
in->request_redraw = true;
in->want_redraw = false;
wakeup_locked(vo);
}
mp_mutex_unlock(&in->lock);
}
bool vo_want_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
bool r = in->want_redraw;
mp_mutex_unlock(&in->lock);
return r;
}
void vo_seek_reset(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
forget_frames(vo);
reset_vsync_timings(vo);
in->send_reset = true;
wakeup_locked(vo);
mp_mutex_unlock(&in->lock);
}
// Return true if there is still a frame being displayed (or queued).
// If this returns true, a wakeup some time in the future is guaranteed.
bool vo_still_displaying(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
bool working = in->rendering || in->frame_queued;
mp_mutex_unlock(&in->lock);
return working && in->hasframe;
}
// Whether at least 1 frame was queued or rendered since last seek or reconfig.
bool vo_has_frame(struct vo *vo)
{
return vo->in->hasframe;
}
static void run_query_format(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
uint8_t *list = pp[1];
for (int format = IMGFMT_START; format < IMGFMT_END; format++)
list[format - IMGFMT_START] = vo->driver->query_format(vo, format);
}
// For each item in the list (allocated as uint8_t[IMGFMT_END - IMGFMT_START]),
// set the supported format flags.
void vo_query_formats(struct vo *vo, uint8_t *list)
{
void *p[] = {vo, list};
mp_dispatch_run(vo->in->dispatch, run_query_format, p);
}
// Calculate the appropriate source and destination rectangle to
// get a correctly scaled picture, including pan-scan.
// out_src: visible part of the video
// out_dst: area of screen covered by the video source rectangle
// out_osd: OSD size, OSD margins, etc.
// Must be called from the VO thread only.
void vo_get_src_dst_rects(struct vo *vo, struct mp_rect *out_src,
struct mp_rect *out_dst, struct mp_osd_res *out_osd)
{
if (!vo->params) {
*out_src = *out_dst = (struct mp_rect){0};
*out_osd = (struct mp_osd_res){0};
return;
}
mp_get_src_dst_rects(vo->log, vo->opts, vo->driver->caps, vo->params,
vo->dwidth, vo->dheight, vo->monitor_par,
out_src, out_dst, out_osd);
}
// flip_page[_timed] will be called offset_us nanoseconds too early.
// (For vo_vdpau, which does its own timing.)
// num_req_frames set the requested number of requested vo_frame.frames.
// (For vo_gpu interpolation.)
void vo_set_queue_params(struct vo *vo, int64_t offset_ns, int num_req_frames)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
in->flip_queue_offset = offset_ns;
in->req_frames = MPCLAMP(num_req_frames, 1, VO_MAX_REQ_FRAMES);
mp_mutex_unlock(&in->lock);
}
int vo_get_num_req_frames(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
int res = in->req_frames;
mp_mutex_unlock(&in->lock);
return res;
}
double vo_get_vsync_interval(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
double res = vo->in->vsync_interval > 1 ? vo->in->vsync_interval : -1;
mp_mutex_unlock(&in->lock);
return res;
}
double vo_get_estimated_vsync_interval(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
double res = in->estimated_vsync_interval;
mp_mutex_unlock(&in->lock);
return res;
}
double vo_get_estimated_vsync_jitter(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
double res = in->estimated_vsync_jitter;
mp_mutex_unlock(&in->lock);
return res;
}
// Get the time in seconds at after which the currently rendering frame will
// end. Returns positive values if the frame is yet to be finished, negative
// values if it already finished.
// This can only be called while no new frame is queued (after
// vo_is_ready_for_frame). Returns 0 for non-display synced frames, or if the
// deadline for continuous display was missed.
double vo_get_delay(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
assert (!in->frame_queued);
int64_t res = 0;
if (in->base_vsync && in->vsync_interval > 1 && in->current_frame) {
res = in->base_vsync;
int extra = !!in->rendering;
res += (in->current_frame->num_vsyncs + extra) * in->vsync_interval;
if (!in->current_frame->display_synced)
res = 0;
}
mp_mutex_unlock(&in->lock);
return res ? MP_TIME_NS_TO_S(res - mp_time_ns()) : 0;
}
void vo_discard_timing_info(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
reset_vsync_timings(vo);
mp_mutex_unlock(&in->lock);
}
int64_t vo_get_delayed_count(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
int64_t res = vo->in->delayed_count;
mp_mutex_unlock(&in->lock);
return res;
}
double vo_get_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
double res = vo->in->display_fps;
mp_mutex_unlock(&in->lock);
return res;
}
// Set specific event flags, and wakeup the playback core if needed.
// vo_query_and_reset_events() can retrieve the events again.
void vo_event(struct vo *vo, int event)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
if ((in->queued_events & event & VO_EVENTS_USER) != (event & VO_EVENTS_USER))
wakeup_core(vo);
if (event)
wakeup_locked(vo);
in->queued_events |= event;
in->internal_events |= event;
mp_mutex_unlock(&in->lock);
}
// Check event flags set with vo_event(). Return the mask of events that was
// set and included in the events parameter. Clear the returned events.
int vo_query_and_reset_events(struct vo *vo, int events)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
int r = in->queued_events & events;
in->queued_events &= ~(unsigned)r;
mp_mutex_unlock(&in->lock);
return r;
}
struct mp_image *vo_get_current_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
struct mp_image *r = NULL;
if (vo->in->current_frame)
r = mp_image_new_ref(vo->in->current_frame->current);
mp_mutex_unlock(&in->lock);
return r;
}
struct vo_frame *vo_get_current_vo_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_mutex_lock(&in->lock);
struct vo_frame *r = vo_frame_ref(vo->in->current_frame);
mp_mutex_unlock(&in->lock);
return r;
}
struct mp_image *vo_get_image(struct vo *vo, int imgfmt, int w, int h,
int stride_align, int flags)
{
if (vo->driver->get_image_ts)
return vo->driver->get_image_ts(vo, imgfmt, w, h, stride_align, flags);
if (vo->in->dr_helper)
return dr_helper_get_image(vo->in->dr_helper, imgfmt, w, h, stride_align, flags);
return NULL;
}
static void destroy_frame(void *p)
{
struct vo_frame *frame = p;
for (int n = 0; n < frame->num_frames; n++)
talloc_free(frame->frames[n]);
}
// Return a new reference to the given frame. The image pointers are also new
// references. Calling talloc_free() on the frame unrefs all currently set
// image references. (Assuming current==frames[0].)
struct vo_frame *vo_frame_ref(struct vo_frame *frame)
{
if (!frame)
return NULL;
struct vo_frame *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, destroy_frame);
*new = *frame;
for (int n = 0; n < frame->num_frames; n++)
new->frames[n] = mp_image_new_ref(frame->frames[n]);
new->current = new->num_frames ? new->frames[0] : NULL;
return new;
}
/*
* lookup an integer in a table, table must have 0 as the last key
* param: key key to search for
* returns translation corresponding to key or "to" value of last mapping
* if not found.
*/
int lookup_keymap_table(const struct mp_keymap *map, int key)
{
while (map->from && map->from != key)
map++;
return map->to;
}
struct mp_image_params vo_get_current_params(struct vo *vo)
{
struct mp_image_params p = {0};
mp_mutex_lock(&vo->params_mutex);
if (vo->params)
p = *vo->params;
mp_mutex_unlock(&vo->params_mutex);
return p;
}