/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with mpv. If not, see . */ #include #include #include #include #include #include "mpv_talloc.h" #include "common/msg.h" #include "options/options.h" #include "options/m_config.h" #include "options/m_option.h" #include "common/common.h" #include "common/encode.h" #include "options/m_property.h" #include "osdep/timer.h" #include "audio/out/ao.h" #include "audio/format.h" #include "demux/demux.h" #include "stream/stream.h" #include "sub/osd.h" #include "video/hwdec.h" #include "filters/f_decoder_wrapper.h" #include "video/out/vo.h" #include "core.h" #include "command.h" #include "screenshot.h" enum { // update_video() - code also uses: <0 error, 0 eof, >0 progress VD_ERROR = -1, VD_EOF = 0, // end of file - no new output VD_PROGRESS = 1, // progress, but no output; repeat call with no waiting VD_NEW_FRAME = 2, // the call produced a new frame VD_WAIT = 3, // no EOF, but no output; wait until wakeup }; static const char av_desync_help_text[] = "\n" "Audio/Video desynchronisation detected! Possible reasons include too slow\n" "hardware, temporary CPU spikes, broken drivers, and broken files. Audio\n" "position will not match to the video (see A-V status field).\n" "Consider trying `--profile=fast` and/or `--hwdec=auto-safe` as they may help.\n" "\n"; static bool recreate_video_filters(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; struct vo_chain *vo_c = mpctx->vo_chain; assert(vo_c); return mp_output_chain_update_filters(vo_c->filter, opts->vf_settings); } int reinit_video_filters(struct MPContext *mpctx) { struct vo_chain *vo_c = mpctx->vo_chain; if (!vo_c) return 0; if (!recreate_video_filters(mpctx)) return -1; mp_force_video_refresh(mpctx); mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL); return 0; } static void vo_chain_reset_state(struct vo_chain *vo_c) { vo_seek_reset(vo_c->vo); vo_c->underrun = false; vo_c->underrun_signaled = false; } void reset_video_state(struct MPContext *mpctx) { if (mpctx->vo_chain) { vo_chain_reset_state(mpctx->vo_chain); struct track *t = mpctx->vo_chain->track; if (t && t->dec) mp_decoder_wrapper_set_play_dir(t->dec, mpctx->play_dir); } for (int n = 0; n < mpctx->num_next_frames; n++) mp_image_unrefp(&mpctx->next_frames[n]); mpctx->num_next_frames = 0; mp_image_unrefp(&mpctx->saved_frame); mpctx->delay = 0; mpctx->time_frame = 0; mpctx->video_pts = MP_NOPTS_VALUE; mpctx->last_frame_duration = 0; mpctx->num_past_frames = 0; mpctx->total_avsync_change = 0; mpctx->last_av_difference = 0; mpctx->mistimed_frames_total = 0; mpctx->drop_message_shown = 0; mpctx->display_sync_drift_dir = 0; mpctx->display_sync_error = 0; mpctx->video_status = mpctx->vo_chain ? STATUS_SYNCING : STATUS_EOF; } void uninit_video_out(struct MPContext *mpctx) { uninit_video_chain(mpctx); if (mpctx->video_out) { vo_destroy(mpctx->video_out); mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL); } mpctx->video_out = NULL; } static void vo_chain_uninit(struct vo_chain *vo_c) { struct track *track = vo_c->track; if (track) { assert(track->vo_c == vo_c); track->vo_c = NULL; if (vo_c->dec_src) assert(track->dec->f->pins[0] == vo_c->dec_src); talloc_free(track->dec->f); track->dec = NULL; } if (vo_c->filter_src) mp_pin_disconnect(vo_c->filter_src); talloc_free(vo_c->filter->f); talloc_free(vo_c); // this does not free the VO } void uninit_video_chain(struct MPContext *mpctx) { if (mpctx->vo_chain) { reset_video_state(mpctx); vo_chain_uninit(mpctx->vo_chain); mpctx->vo_chain = NULL; mpctx->video_status = STATUS_EOF; mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL); } } int init_video_decoder(struct MPContext *mpctx, struct track *track) { assert(!track->dec); if (!track->stream) goto err_out; struct mp_filter *parent = mpctx->filter_root; // If possible, set this as parent so the decoder gets the hwdec and DR // interfaces. // Note: We rely on being able to get rid of all references to the VO by // destroying the VO chain. Thus, decoders not linked to vo_chain // must not use the hwdec context. if (track->vo_c) parent = track->vo_c->filter->f; track->dec = mp_decoder_wrapper_create(parent, track->stream); if (!track->dec) goto err_out; if (!mp_decoder_wrapper_reinit(track->dec)) goto err_out; return 1; err_out: if (track->sink) mp_pin_disconnect(track->sink); track->sink = NULL; error_on_track(mpctx, track); return 0; } void reinit_video_chain(struct MPContext *mpctx) { struct track *track = mpctx->current_track[0][STREAM_VIDEO]; if (!track || !track->stream) { error_on_track(mpctx, track); return; } reinit_video_chain_src(mpctx, track); } static void filter_update_subtitles(void *ctx, double pts) { struct MPContext *mpctx = ctx; if (osd_get_render_subs_in_filter(mpctx->osd)) update_subtitles(mpctx, pts); } // (track=NULL creates a blank chain, used for lavfi-complex) void reinit_video_chain_src(struct MPContext *mpctx, struct track *track) { assert(!mpctx->vo_chain); if (!mpctx->video_out) { struct vo_extra ex = { .input_ctx = mpctx->input, .osd = mpctx->osd, .encode_lavc_ctx = mpctx->encode_lavc_ctx, .wakeup_cb = mp_wakeup_core_cb, .wakeup_ctx = mpctx, }; mpctx->video_out = init_best_video_out(mpctx->global, &ex); if (!mpctx->video_out) { MP_FATAL(mpctx, "Error opening/initializing " "the selected video_out (--vo) device.\n"); mpctx->error_playing = MPV_ERROR_VO_INIT_FAILED; goto err_out; } mpctx->mouse_cursor_visible = true; } update_window_title(mpctx, true); struct vo_chain *vo_c = talloc_zero(NULL, struct vo_chain); mpctx->vo_chain = vo_c; vo_c->log = mpctx->log; vo_c->vo = mpctx->video_out; vo_c->filter = mp_output_chain_create(mpctx->filter_root, MP_OUTPUT_CHAIN_VIDEO); mp_output_chain_set_vo(vo_c->filter, vo_c->vo); vo_c->filter->update_subtitles = filter_update_subtitles; vo_c->filter->update_subtitles_ctx = mpctx; if (track) { vo_c->track = track; track->vo_c = vo_c; if (!init_video_decoder(mpctx, track)) goto err_out; vo_c->dec_src = track->dec->f->pins[0]; vo_c->filter->container_fps = mp_decoder_wrapper_get_container_fps(track->dec); vo_c->is_coverart = !!track->attached_picture; vo_c->is_sparse = track->stream->still_image || vo_c->is_coverart; if (vo_c->is_coverart) mp_decoder_wrapper_set_coverart_flag(track->dec, true); track->vo_c = vo_c; vo_c->track = track; mp_pin_connect(vo_c->filter->f->pins[0], vo_c->dec_src); } if (!recreate_video_filters(mpctx)) goto err_out; update_content_type(mpctx, track); update_screensaver_state(mpctx); vo_set_paused(vo_c->vo, get_internal_paused(mpctx)); reset_video_state(mpctx); term_osd_set_subs(mpctx, NULL); return; err_out: uninit_video_chain(mpctx); error_on_track(mpctx, track); handle_force_window(mpctx, true); } // Try to refresh the video by doing a precise seek to the currently displayed // frame. This can go wrong in all sorts of ways, so use sparingly. void mp_force_video_refresh(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; struct vo_chain *vo_c = mpctx->vo_chain; if (!vo_c) return; // If not paused, the next frame should come soon enough. if (opts->pause || mpctx->time_frame >= 0.5 || mpctx->video_status == STATUS_EOF) { issue_refresh_seek(mpctx, MPSEEK_VERY_EXACT); } } static void check_framedrop(struct MPContext *mpctx, struct vo_chain *vo_c) { struct MPOpts *opts = mpctx->opts; // check for frame-drop: if (mpctx->video_status == STATUS_PLAYING && !mpctx->paused && mpctx->audio_status == STATUS_PLAYING && !ao_untimed(mpctx->ao) && vo_c->track && vo_c->track->dec && (opts->frame_dropping & 2)) { float fps = vo_c->filter->container_fps; // it's a crappy heuristic; avoid getting upset by incorrect fps if (fps <= 20 || fps >= 500) return; double frame_time = 1.0 / fps; // try to drop as many frames as we appear to be behind mp_decoder_wrapper_set_frame_drops(vo_c->track->dec, MPCLAMP((mpctx->last_av_difference - 0.010) / frame_time, 0, 100)); } } /* Modify video timing to match the audio timeline. There are two main * reasons this is needed. First, video and audio can start from different * positions at beginning of file or after a seek (MPlayer starts both * immediately even if they have different pts). Second, the file can have * audio timestamps that are inconsistent with the duration of the audio * packets, for example two consecutive timestamp values differing by * one second but only a packet with enough samples for half a second * of playback between them. */ static void adjust_sync(struct MPContext *mpctx, double v_pts, double frame_time) { struct MPOpts *opts = mpctx->opts; if (mpctx->audio_status == STATUS_EOF) return; mpctx->delay -= frame_time; double a_pts = written_audio_pts(mpctx) + opts->audio_delay - mpctx->delay; double av_delay = a_pts - v_pts; double change = av_delay * 0.1; double factor = fabs(av_delay) < 0.3 ? 0.1 : 0.4; double max_change = opts->default_max_pts_correction >= 0 ? opts->default_max_pts_correction : frame_time * factor; if (change < -max_change) change = -max_change; else if (change > max_change) change = max_change; mpctx->delay += change; mpctx->total_avsync_change += change; if (mpctx->display_sync_active) mpctx->total_avsync_change = 0; } // Make the frame at position 0 "known" to the playback logic. This must happen // only once for each frame, so this function has to be called carefully. // Generally, if position 0 gets a new frame, this must be called. static void handle_new_frame(struct MPContext *mpctx) { assert(mpctx->num_next_frames >= 1); double frame_time = 0; double pts = mpctx->next_frames[0]->pts; bool is_sparse = mpctx->vo_chain && mpctx->vo_chain->is_sparse; if (mpctx->video_pts != MP_NOPTS_VALUE) { frame_time = pts - mpctx->video_pts; double tolerance = mpctx->demuxer->ts_resets_possible && !is_sparse ? 5 : 1e4; if (frame_time <= 0 || frame_time >= tolerance) { // Assume a discontinuity. MP_WARN(mpctx, "Invalid video timestamp: %f -> %f\n", mpctx->video_pts, pts); frame_time = 0; } } mpctx->time_frame += frame_time / mpctx->video_speed; if (frame_time) adjust_sync(mpctx, pts, frame_time); MP_TRACE(mpctx, "frametime=%5.3f\n", frame_time); } // Remove the first frame in mpctx->next_frames static void shift_frames(struct MPContext *mpctx) { if (mpctx->num_next_frames < 1) return; talloc_free(mpctx->next_frames[0]); for (int n = 0; n < mpctx->num_next_frames - 1; n++) mpctx->next_frames[n] = mpctx->next_frames[n + 1]; mpctx->num_next_frames -= 1; } static bool use_video_lookahead(struct MPContext *mpctx) { return mpctx->video_out && !(mpctx->video_out->driver->caps & VO_CAP_NORETAIN) && !(mpctx->opts->untimed || mpctx->video_out->driver->untimed) && !mpctx->opts->video_latency_hacks; } static int get_req_frames(struct MPContext *mpctx, bool eof) { // On EOF, drain all frames. if (eof) return 1; if (!use_video_lookahead(mpctx)) return 1; if (mpctx->vo_chain && mpctx->vo_chain->is_sparse) return 1; // Normally require at least 2 frames, so we can compute a frame duration. int min = 2; // On the first frame, output a new frame as quickly as possible. if (mpctx->video_pts == MP_NOPTS_VALUE) return min; int req = vo_get_num_req_frames(mpctx->video_out); return MPCLAMP(req, min, MP_ARRAY_SIZE(mpctx->next_frames) - 1); } // Whether it's fine to call add_new_frame() now. static bool needs_new_frame(struct MPContext *mpctx) { return mpctx->num_next_frames < get_req_frames(mpctx, false); } // Queue a frame to mpctx->next_frames[]. Call only if needs_new_frame() signals ok. static void add_new_frame(struct MPContext *mpctx, struct mp_image *frame) { assert(mpctx->num_next_frames < MP_ARRAY_SIZE(mpctx->next_frames)); assert(frame); mpctx->next_frames[mpctx->num_next_frames++] = frame; if (mpctx->num_next_frames == 1) handle_new_frame(mpctx); } // Enough video filtered already to push one frame to the VO? // Set eof to true if no new frames are to be expected. static bool have_new_frame(struct MPContext *mpctx, bool eof) { return mpctx->num_next_frames >= get_req_frames(mpctx, eof); } // Fill mpctx->next_frames[] with a newly filtered or decoded image. // logical_eof: is set to true if there is EOF after currently queued frames // returns VD_* code static int video_output_image(struct MPContext *mpctx, bool *logical_eof) { struct vo_chain *vo_c = mpctx->vo_chain; bool hrseek = false; double hrseek_pts = mpctx->hrseek_pts; double tolerance = mpctx->hrseek_backstep ? 0 : .005; if (mpctx->video_status == STATUS_SYNCING) { hrseek = mpctx->hrseek_active; // playback_pts is normally only set when audio and video have started // playing normally. If video is in syncing mode, then this must mean // video was just enabled via track switching - skip to current time. if (!hrseek && mpctx->playback_pts != MP_NOPTS_VALUE) { hrseek = true; hrseek_pts = mpctx->playback_pts; } } if (vo_c->is_coverart) { *logical_eof = true; if (vo_has_frame(mpctx->video_out)) return VD_EOF; hrseek = false; } if (have_new_frame(mpctx, false)) return VD_NEW_FRAME; // Get a new frame if we need one. int r = VD_PROGRESS; if (needs_new_frame(mpctx)) { // Filter a new frame. struct mp_image *img = NULL; struct mp_frame frame = mp_pin_out_read(vo_c->filter->f->pins[1]); if (frame.type == MP_FRAME_NONE) { r = vo_c->filter->got_output_eof ? VD_EOF : VD_WAIT; } else if (frame.type == MP_FRAME_EOF) { r = VD_EOF; } else if (frame.type == MP_FRAME_VIDEO) { img = frame.data; } else { MP_ERR(mpctx, "unexpected frame type %s\n", mp_frame_type_str(frame.type)); mp_frame_unref(&frame); return VD_ERROR; } if (img) { double endpts = get_play_end_pts(mpctx); if (endpts != MP_NOPTS_VALUE) endpts *= mpctx->play_dir; if ((endpts != MP_NOPTS_VALUE && img->pts >= endpts) || mpctx->max_frames == 0) { mp_pin_out_unread(vo_c->filter->f->pins[1], frame); img = NULL; r = VD_EOF; } else if (hrseek && (img->pts < hrseek_pts - tolerance || mpctx->hrseek_lastframe)) { /* just skip - but save in case it was the last frame */ mp_image_setrefp(&mpctx->saved_frame, img); } else { if (hrseek && mpctx->hrseek_backstep) { if (mpctx->saved_frame) { add_new_frame(mpctx, mpctx->saved_frame); mpctx->saved_frame = NULL; } else { MP_WARN(mpctx, "Backstep failed.\n"); } mpctx->hrseek_backstep = false; } mp_image_unrefp(&mpctx->saved_frame); add_new_frame(mpctx, img); img = NULL; } talloc_free(img); } } if (!hrseek) mp_image_unrefp(&mpctx->saved_frame); if (r == VD_EOF) { // If hr-seek went past EOF, use the last frame. if (mpctx->saved_frame) add_new_frame(mpctx, mpctx->saved_frame); mpctx->saved_frame = NULL; *logical_eof = true; } return have_new_frame(mpctx, r <= 0) ? VD_NEW_FRAME : r; } static bool check_for_hwdec_fallback(struct MPContext *mpctx) { struct vo_chain *vo_c = mpctx->vo_chain; if (!vo_c->filter->failed_output_conversion || !vo_c->track || !vo_c->track->dec) return false; if (mp_decoder_wrapper_control(vo_c->track->dec, VDCTRL_FORCE_HWDEC_FALLBACK, NULL) != CONTROL_OK) return false; mp_output_chain_reset_harder(vo_c->filter); return true; } static bool check_for_forced_eof(struct MPContext *mpctx) { struct vo_chain *vo_c = mpctx->vo_chain; if (!vo_c->track || !vo_c->track->dec) return false; struct mp_decoder_wrapper *dec = vo_c->track->dec; bool forced_eof = false; mp_decoder_wrapper_control(dec, VDCTRL_CHECK_FORCED_EOF, &forced_eof); return forced_eof; } /* Update avsync before a new video frame is displayed. Actually, this can be * called arbitrarily often before the actual display. * This adjusts the time of the next video frame */ static void update_avsync_before_frame(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; struct vo *vo = mpctx->video_out; if (mpctx->video_status < STATUS_READY) { mpctx->time_frame = 0; } else if (mpctx->display_sync_active || vo->opts->video_sync == VS_NONE) { // don't touch the timing } else if (mpctx->audio_status == STATUS_PLAYING && mpctx->video_status == STATUS_PLAYING && !ao_untimed(mpctx->ao)) { double buffered_audio = ao_get_delay(mpctx->ao); double predicted = mpctx->delay / mpctx->video_speed + mpctx->time_frame; double difference = buffered_audio - predicted; MP_STATS(mpctx, "value %f audio-diff", difference); if (opts->autosync) { /* Smooth reported playback position from AO by averaging * it with the value expected based on previous value and * time elapsed since then. May help smooth video timing * with audio output that have inaccurate position reporting. * This is badly implemented; the behavior of the smoothing * now undesirably depends on how often this code runs * (mainly depends on video frame rate). */ buffered_audio = predicted + difference / opts->autosync; } mpctx->time_frame = buffered_audio - mpctx->delay / mpctx->video_speed; } else { /* If we're more than 200 ms behind the right playback * position, don't try to speed up display of following * frames to catch up; continue with default speed from * the current frame instead. * If untimed is set always output frames immediately * without sleeping. */ if (mpctx->time_frame < -0.2 || opts->untimed || vo->driver->untimed) mpctx->time_frame = 0; } } // Update the A/V sync difference when a new video frame is being shown. static void update_av_diff(struct MPContext *mpctx, double offset) { struct MPOpts *opts = mpctx->opts; mpctx->last_av_difference = 0; if (mpctx->audio_status != STATUS_PLAYING || mpctx->video_status != STATUS_PLAYING) return; if (mpctx->vo_chain && mpctx->vo_chain->is_sparse) return; double a_pos = playing_audio_pts(mpctx); if (a_pos != MP_NOPTS_VALUE && mpctx->video_pts != MP_NOPTS_VALUE) { mpctx->last_av_difference = a_pos - mpctx->video_pts + opts->audio_delay + offset; } if (fabs(mpctx->last_av_difference) > 0.5 && !mpctx->drop_message_shown) { MP_WARN(mpctx, "%s", av_desync_help_text); mpctx->drop_message_shown = true; } } double calc_average_frame_duration(struct MPContext *mpctx) { double total = 0; int num = 0; for (int n = 0; n < mpctx->num_past_frames; n++) { double dur = mpctx->past_frames[n].approx_duration; if (dur <= 0) continue; total += dur; num += 1; } return num > 0 ? total / num : 0; } // Find a speed factor such that the display FPS is an integer multiple of the // effective video FPS. If this is not possible, try to do it for multiples, // which still leads to an improved end result. // Both parameters are durations in seconds. static double calc_best_speed(double vsync, double frame, double max_change, int max_factor) { double ratio = frame / vsync; for (int factor = 1; factor <= max_factor; factor++) { double scale = ratio * factor / rint(ratio * factor); if (fabs(scale - 1) <= max_change) return scale; } return -1; } static double find_best_speed(struct MPContext *mpctx, double vsync) { double total = 0; int num = 0; for (int n = 0; n < mpctx->num_past_frames; n++) { double dur = mpctx->past_frames[n].approx_duration; if (dur <= 0) continue; double best = calc_best_speed(vsync, dur / mpctx->opts->playback_speed, mpctx->opts->sync_max_video_change / 100, mpctx->opts->sync_max_factor); if (best <= 0) continue; total += best; num++; } // If it doesn't work, play at normal speed. return num > 0 ? total / num : 1; } static bool using_spdif_passthrough(struct MPContext *mpctx) { if (mpctx->ao_chain && mpctx->ao_chain->ao) { int samplerate; int format; struct mp_chmap channels; ao_get_format(mpctx->ao_chain->ao, &samplerate, &format, &channels); return !af_fmt_is_pcm(format); } return false; } // Compute the relative audio speed difference by taking A/V dsync into account. static double compute_audio_drift(struct MPContext *mpctx, double vsync) { // Least-squares linear regression, using relative real time for x, and // audio desync for y. Assume speed didn't change for the frames we're // looking at for simplicity. This also should actually use the realtime // (minus paused time) for x, but use vsync scheduling points instead. if (mpctx->num_past_frames <= 10) return NAN; int num = mpctx->num_past_frames - 1; double sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; double x = 0; for (int n = 0; n < num; n++) { struct frame_info *frame = &mpctx->past_frames[n + 1]; if (frame->num_vsyncs < 0) return NAN; double y = frame->av_diff; sum_x += x; sum_y += y; sum_xy += x * y; sum_xx += x * x; x -= frame->num_vsyncs * vsync; } return (sum_x * sum_y - num * sum_xy) / (sum_x * sum_x - num * sum_xx); } static void adjust_audio_drift_compensation(struct MPContext *mpctx, double vsync) { struct MPOpts *opts = mpctx->opts; int mode = mpctx->video_out->opts->video_sync; if ((mode != VS_DISP_RESAMPLE && mode != VS_DISP_TEMPO) || mpctx->audio_status != STATUS_PLAYING) { mpctx->speed_factor_a = mpctx->speed_factor_v; return; } // Try to smooth out audio timing drifts. This can happen if either // video isn't playing at expected speed, or audio is not playing at // the requested speed. Both are unavoidable. // The audio desync is made up of 2 parts: 1. drift due to rounding // errors and imperfect information, and 2. an offset, due to // unaligned audio/video start, or disruptive events halting audio // or video for a small time. // Instead of trying to be clever, just apply an awfully dumb drift // compensation with a constant factor, which does what we want. In // theory we could calculate the exact drift compensation needed, // but it likely would be wrong anyway, and we'd run into the same // issues again, except with more complex code. // 1 means drifts to positive, -1 means drifts to negative double max_drift = vsync / 2; double av_diff = mpctx->last_av_difference; int new = mpctx->display_sync_drift_dir; if (av_diff * -mpctx->display_sync_drift_dir >= 0) new = 0; if (fabs(av_diff) > max_drift) new = av_diff >= 0 ? 1 : -1; bool change = mpctx->display_sync_drift_dir != new; if (new || change) { if (change) MP_VERBOSE(mpctx, "Change display sync audio drift: %d\n", new); mpctx->display_sync_drift_dir = new; double max_correct = opts->sync_max_audio_change / 100; double audio_factor = 1 + max_correct * -mpctx->display_sync_drift_dir; if (new == 0) { // If we're resetting, actually try to be clever and pick a speed // which compensates the general drift we're getting. double drift = compute_audio_drift(mpctx, vsync); if (isnormal(drift)) { // other = will be multiplied with audio_factor for final speed double other = mpctx->opts->playback_speed * mpctx->speed_factor_v; audio_factor = (mpctx->audio_speed - drift) / other; MP_VERBOSE(mpctx, "Compensation factor: %f\n", audio_factor); } } audio_factor = MPCLAMP(audio_factor, 1 - max_correct, 1 + max_correct); mpctx->speed_factor_a = audio_factor * mpctx->speed_factor_v; } } // Manipulate frame timing for display sync, or do nothing for normal timing. static void handle_display_sync_frame(struct MPContext *mpctx, struct vo_frame *frame) { struct MPOpts *opts = mpctx->opts; struct vo *vo = mpctx->video_out; int mode = vo->opts->video_sync; if (!mpctx->display_sync_active) { mpctx->display_sync_error = 0.0; mpctx->display_sync_drift_dir = 0; } mpctx->display_sync_active = false; if (!VS_IS_DISP(mode)) return; bool resample = mode == VS_DISP_RESAMPLE || mode == VS_DISP_RESAMPLE_VDROP || mode == VS_DISP_RESAMPLE_NONE; bool drop = mode == VS_DISP_VDROP || mode == VS_DISP_RESAMPLE || mode == VS_DISP_ADROP || mode == VS_DISP_RESAMPLE_VDROP || mode == VS_DISP_TEMPO; drop &= frame->can_drop; if (resample && using_spdif_passthrough(mpctx)) return; double vsync = vo_get_vsync_interval(vo) / 1e9; if (vsync <= 0) return; double adjusted_duration = MPMAX(0, mpctx->past_frames[0].approx_duration); adjusted_duration /= opts->playback_speed; if (adjusted_duration > 0.5) return; mpctx->speed_factor_v = 1.0; if (mode != VS_DISP_VDROP) mpctx->speed_factor_v = find_best_speed(mpctx, vsync); // Determine for how many vsyncs a frame should be displayed. This can be // e.g. 2 for 30hz on a 60hz display. It can also be 0 if the video // framerate is higher than the display framerate. // We use the speed-adjusted (i.e. real) frame duration for this. double frame_duration = adjusted_duration / mpctx->speed_factor_v; double ratio = (frame_duration + mpctx->display_sync_error) / vsync; int num_vsyncs = MPMAX(lrint(ratio), 0); double prev_error = mpctx->display_sync_error; mpctx->display_sync_error += frame_duration - num_vsyncs * vsync; MP_TRACE(mpctx, "s=%f vsyncs=%d dur=%f ratio=%f err=%.20f (%f/%f)\n", mpctx->speed_factor_v, num_vsyncs, adjusted_duration, ratio, mpctx->display_sync_error, mpctx->display_sync_error / vsync, mpctx->display_sync_error / frame_duration); double av_diff = mpctx->last_av_difference; MP_STATS(mpctx, "value %f avdiff", av_diff); // Intended number of additional display frames to drop (<0) or repeat (>0) int drop_repeat = 0; // If we are too far ahead/behind, attempt to drop/repeat frames. // Tolerate some desync to avoid frame dropping due to jitter. if (drop && fabs(av_diff) >= 0.020 && fabs(av_diff) / vsync >= 1) drop_repeat = -av_diff / vsync; // round towards 0 // We can only drop all frames at most. We can repeat much more frames, // but we still limit it to 10 times the original frames to avoid that // corner cases or exceptional situations cause too much havoc. drop_repeat = MPCLAMP(drop_repeat, -num_vsyncs, num_vsyncs * 10); num_vsyncs += drop_repeat; // Always show the first frame. if (mpctx->num_past_frames <= 1 && num_vsyncs < 1) num_vsyncs = 1; // Estimate the video position, so we can calculate a good A/V difference // value below. This is used to estimate A/V drift. double time_left = vo_get_delay(vo); // We also know that the timing is (necessarily) off, because we have to // align frame timings on the vsync boundaries. This is unavoidable, and // for the sake of the A/V sync calculations we pretend it's perfect. time_left += prev_error; // Likewise, we know sync is off, but is going to be compensated. time_left += drop_repeat * vsync; // If syncing took too long, disregard timing of the first frame. if (mpctx->num_past_frames == 2 && time_left < 0) { vo_discard_timing_info(vo); time_left = 0; } if (drop_repeat) { mpctx->mistimed_frames_total += 1; MP_STATS(mpctx, "mistimed"); } mpctx->total_avsync_change = 0; update_av_diff(mpctx, time_left * opts->playback_speed); mpctx->past_frames[0].num_vsyncs = num_vsyncs; mpctx->past_frames[0].av_diff = mpctx->last_av_difference; if (resample || mode == VS_DISP_ADROP || mode == VS_DISP_TEMPO) { adjust_audio_drift_compensation(mpctx, vsync); } else { mpctx->speed_factor_a = 1.0; } // A bad guess, only needed when reverting to audio sync. mpctx->time_frame = time_left; frame->vsync_interval = vsync; frame->vsync_offset = -prev_error; frame->ideal_frame_duration = frame_duration; frame->num_vsyncs = num_vsyncs; frame->display_synced = true; mpctx->display_sync_active = true; // Try to avoid audio underruns that may occur if we update // the playback speed while in the STATUS_SYNCING state. if (mpctx->video_status != STATUS_SYNCING) update_playback_speed(mpctx); MP_STATS(mpctx, "value %f aspeed", mpctx->speed_factor_a - 1); MP_STATS(mpctx, "value %f vspeed", mpctx->speed_factor_v - 1); } static void schedule_frame(struct MPContext *mpctx, struct vo_frame *frame) { handle_display_sync_frame(mpctx, frame); if (mpctx->num_past_frames > 1 && ((mpctx->past_frames[1].num_vsyncs >= 0) != mpctx->display_sync_active)) { MP_VERBOSE(mpctx, "Video sync mode %s.\n", mpctx->display_sync_active ? "enabled" : "disabled"); } if (!mpctx->display_sync_active) { mpctx->speed_factor_a = 1.0; mpctx->speed_factor_v = 1.0; update_playback_speed(mpctx); update_av_diff(mpctx, mpctx->time_frame > 0 ? mpctx->time_frame * mpctx->video_speed : 0); } } // Determine the mpctx->past_frames[0] frame duration. static void calculate_frame_duration(struct MPContext *mpctx) { struct vo_chain *vo_c = mpctx->vo_chain; assert(mpctx->num_past_frames >= 1 && mpctx->num_next_frames >= 1); double demux_duration = vo_c->filter->container_fps > 0 ? 1.0 / vo_c->filter->container_fps : -1; double duration = demux_duration; if (mpctx->num_next_frames >= 2) { double pts0 = mpctx->next_frames[0]->pts; double pts1 = mpctx->next_frames[1]->pts; if (pts0 != MP_NOPTS_VALUE && pts1 != MP_NOPTS_VALUE && pts1 >= pts0) duration = pts1 - pts0; } // The following code tries to compensate for rounded Matroska timestamps // by "unrounding" frame durations, or if not possible, approximating them. // These formats usually round on 1ms. Some muxers do this incorrectly, // and might go off by 1ms more, and compensate for it later by an equal // rounding error into the opposite direction. double tolerance = 0.001 * 3 + 0.0001; double total = 0; int num_dur = 0; for (int n = 1; n < mpctx->num_past_frames; n++) { // Eliminate likely outliers using a really dumb heuristic. double dur = mpctx->past_frames[n].duration; if (dur <= 0 || fabs(dur - duration) >= tolerance) break; total += dur; num_dur += 1; } double approx_duration = num_dur > 0 ? total / num_dur : duration; // Try if the demuxer frame rate fits - if so, just take it. if (demux_duration > 0) { // Note that even if each timestamp is within rounding tolerance, it // could literally not add up (e.g. if demuxer FPS is rounded itself). if (fabs(duration - demux_duration) < tolerance && fabs(total - demux_duration * num_dur) < tolerance && (num_dur >= 16 || num_dur >= mpctx->num_past_frames - 4)) { approx_duration = demux_duration; } } mpctx->past_frames[0].duration = duration; mpctx->past_frames[0].approx_duration = approx_duration; MP_STATS(mpctx, "value %f frame-duration", MPMAX(0, duration)); MP_STATS(mpctx, "value %f frame-duration-approx", MPMAX(0, approx_duration)); } static void apply_video_crop(struct MPContext *mpctx, struct vo *vo) { for (int n = 0; n < mpctx->num_next_frames; n++) { struct m_geometry *gm = &vo->opts->video_crop; struct mp_image_params p = mpctx->next_frames[n]->params; if (gm->xy_valid || (gm->wh_valid && (gm->w > 0 || gm->h > 0))) { m_rect_apply(&p.crop, p.w, p.h, gm); } if (p.crop.x1 == 0 && p.crop.y1 == 0) return; if (!mp_image_crop_valid(&p)) { char *str = m_option_type_rect.print(NULL, gm); MP_WARN(vo, "Ignoring invalid --video-crop=%s for %dx%d image\n", str, p.w, p.h); talloc_free(str); *gm = (struct m_geometry){0}; mp_property_do("video-crop", M_PROPERTY_SET, gm, mpctx); return; } mpctx->next_frames[n]->params.crop = p.crop; } } static bool video_reconfig_needed(const struct mp_image_params *p1, const struct mp_image_params *p2) { return p1->imgfmt != p2->imgfmt || p1->hw_subfmt != p2->hw_subfmt || p1->w != p2->w || p1->h != p2->h || p1->p_w != p2->p_w || p1->p_h != p2->p_h || p1->force_window != p2->force_window || p1->rotate != p2->rotate || p1->stereo3d != p2->stereo3d || !mp_rect_equals(&p1->crop, &p2->crop); } void write_video(struct MPContext *mpctx) { struct MPOpts *opts = mpctx->opts; if (!mpctx->vo_chain) return; struct track *track = mpctx->vo_chain->track; struct vo_chain *vo_c = mpctx->vo_chain; struct vo *vo = vo_c->vo; if (vo_c->filter->reconfig_happened) { mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL); vo_c->filter->reconfig_happened = false; } // Actual playback starts when both audio and video are ready. if (mpctx->video_status == STATUS_READY) return; if (mpctx->paused && mpctx->video_status >= STATUS_READY) return; bool logical_eof = false; int r = video_output_image(mpctx, &logical_eof); MP_TRACE(mpctx, "video_output_image: r=%d/eof=%d/st=%s\n", r, logical_eof, mp_status_str(mpctx->video_status)); if (r < 0) goto error; if (r == VD_WAIT) { // Heuristic to detect underruns. if (mpctx->video_status == STATUS_PLAYING && !vo_still_displaying(vo) && !vo_c->underrun_signaled) { vo_c->underrun = true; vo_c->underrun_signaled = true; } // Demuxer will wake us up for more packets to decode. return; } if (r == VD_EOF) { if (check_for_hwdec_fallback(mpctx)) return; if (check_for_forced_eof(mpctx)) { uninit_video_chain(mpctx); handle_force_window(mpctx, true); return; } if (vo_c->filter->failed_output_conversion) goto error; mpctx->delay = 0; mpctx->last_av_difference = 0; if (mpctx->video_status <= STATUS_PLAYING) { mpctx->video_status = STATUS_DRAINING; get_relative_time(mpctx); if (vo_c->is_sparse && !mpctx->ao_chain) { MP_VERBOSE(mpctx, "assuming this is an image\n"); mpctx->time_frame += opts->image_display_duration; } else if (mpctx->last_frame_duration > 0) { MP_VERBOSE(mpctx, "using demuxer frame duration for last frame\n"); mpctx->time_frame += mpctx->last_frame_duration; } else { mpctx->time_frame = 0; } // Encode mode can't honor this; it'll only delay finishing. if (mpctx->encode_lavc_ctx) mpctx->time_frame = 0; } // Wait for the VO to signal actual EOF, then exit if the frame timer // has expired. bool has_frame = vo_has_frame(vo); // maybe not configured if (mpctx->video_status == STATUS_DRAINING && (vo_is_ready_for_frame(vo, -1) || !has_frame)) { mpctx->time_frame -= get_relative_time(mpctx); mp_set_timeout(mpctx, mpctx->time_frame); if (mpctx->time_frame <= 0 || !has_frame) { MP_VERBOSE(mpctx, "video EOF reached\n"); mpctx->video_status = STATUS_EOF; } } // Avoid pointlessly spamming the logs every frame. if (!vo_c->is_sparse || !vo_c->sparse_eof_signalled) { MP_DBG(mpctx, "video EOF (status=%d)\n", mpctx->video_status); vo_c->sparse_eof_signalled = vo_c->is_sparse; } return; } if (mpctx->video_status > STATUS_PLAYING) mpctx->video_status = STATUS_PLAYING; if (r != VD_NEW_FRAME) { mp_wakeup_core(mpctx); // Decode more in next iteration. return; } if (logical_eof && !mpctx->num_past_frames && mpctx->num_next_frames == 1 && use_video_lookahead(mpctx) && !vo_c->is_sparse) { // Too much danger to accidentally mark video as sparse when e.g. // seeking exactly to the last frame, so as a heuristic, do this only // if it looks like the "first" video frame (unreliable, but often // works out well). Helps with seeking with single-image video tracks, // as well as detecting whether as video track is really an image. if (mpctx->next_frames[0]->pts == 0) { MP_VERBOSE(mpctx, "assuming single-image video stream\n"); vo_c->is_sparse = true; } } // Inject vo crop to notify and reconfig if needed apply_video_crop(mpctx, vo); // Filter output is different from VO input? struct mp_image_params *p = &mpctx->next_frames[0]->params; if (!vo->params || video_reconfig_needed(p, vo->params)) { // Changing config deletes the current frame; wait until it's finished. if (vo_still_displaying(vo)) return; const struct vo_driver *info = mpctx->video_out->driver; char extra[20] = {0}; if (p->p_w != p->p_h) { int d_w, d_h; mp_image_params_get_dsize(p, &d_w, &d_h); snprintf(extra, sizeof(extra), " => %dx%d", d_w, d_h); } char sfmt[20] = {0}; if (p->hw_subfmt) snprintf(sfmt, sizeof(sfmt), "[%s]", mp_imgfmt_to_name(p->hw_subfmt)); MP_INFO(mpctx, "VO: [%s] %dx%d%s %s%s\n", info->name, p->w, p->h, extra, mp_imgfmt_to_name(p->imgfmt), sfmt); MP_VERBOSE(mpctx, "VO: Description: %s\n", info->description); int vo_r = vo_reconfig2(vo, mpctx->next_frames[0]); if (vo_r < 0) { mpctx->error_playing = MPV_ERROR_VO_INIT_FAILED; goto error; } mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL); } mpctx->time_frame -= get_relative_time(mpctx); update_avsync_before_frame(mpctx); // Enforce timing subtitles to video frames. osd_set_force_video_pts(mpctx->osd, MP_NOPTS_VALUE); if (!update_subtitles(mpctx, mpctx->next_frames[0]->pts)) { MP_VERBOSE(mpctx, "Video frame delayed due to waiting on subtitles.\n"); return; } double time_frame = MPMAX(mpctx->time_frame, -1); int64_t pts = mp_time_ns() + (int64_t)(time_frame * 1e9); // wait until VO wakes us up to get more frames // (NB: in theory, the 1st frame after display sync mode change uses the // wrong waiting mode) if (!vo_is_ready_for_frame(vo, mpctx->display_sync_active ? -1 : pts)) return; assert(mpctx->num_next_frames >= 1); if (mpctx->num_past_frames >= MAX_NUM_VO_PTS) mpctx->num_past_frames--; MP_TARRAY_INSERT_AT(mpctx, mpctx->past_frames, mpctx->num_past_frames, 0, (struct frame_info){0}); mpctx->past_frames[0] = (struct frame_info){ .pts = mpctx->next_frames[0]->pts, .num_vsyncs = -1, }; calculate_frame_duration(mpctx); int req = vo_get_num_req_frames(mpctx->video_out); assert(req >= 1 && req <= VO_MAX_REQ_FRAMES); struct vo_frame dummy = { .pts = pts, .duration = -1, .still = mpctx->step_frames > 0, .can_drop = opts->frame_dropping & 1, .num_frames = MPMIN(mpctx->num_next_frames, req), .num_vsyncs = 1, }; for (int n = 0; n < dummy.num_frames; n++) dummy.frames[n] = mpctx->next_frames[n]; struct vo_frame *frame = vo_frame_ref(&dummy); double diff = mpctx->past_frames[0].approx_duration; if (opts->untimed || vo->driver->untimed) diff = -1; // disable frame dropping and aspects of frame timing if (diff >= 0) { // expected A/V sync correction is ignored diff /= mpctx->video_speed; if (mpctx->time_frame < 0) diff += mpctx->time_frame; frame->duration = MPCLAMP(diff, 0, 10) * 1e9; } mpctx->video_pts = mpctx->next_frames[0]->pts; mpctx->last_frame_duration = mpctx->next_frames[0]->pkt_duration / mpctx->video_speed; shift_frames(mpctx); schedule_frame(mpctx, frame); mpctx->osd_force_update = true; update_osd_msg(mpctx); vo_queue_frame(vo, frame); check_framedrop(mpctx, vo_c); // The frames were shifted down; "initialize" the new first entry. if (mpctx->num_next_frames >= 1) handle_new_frame(mpctx); mpctx->shown_vframes++; if (mpctx->video_status < STATUS_PLAYING) { mpctx->video_status = STATUS_READY; // After a seek, make sure to wait until the first frame is visible. if (!opts->video_latency_hacks) { vo_wait_frame(vo); MP_VERBOSE(mpctx, "first video frame after restart shown\n"); } } mp_notify(mpctx, MPV_EVENT_TICK, NULL); // hr-seek past EOF -> returns last frame, but terminates playback. The // early EOF is needed to trigger the exit before the next seek is executed. // Always using early EOF breaks other cases, like images. if (logical_eof && !mpctx->num_next_frames && mpctx->ao_chain) mpctx->video_status = STATUS_EOF; if (mpctx->video_status != STATUS_EOF) { if (mpctx->step_frames > 0) { mpctx->step_frames--; if (!mpctx->step_frames) set_pause_state(mpctx, true); } if (mpctx->max_frames == 0 && !mpctx->stop_play) mpctx->stop_play = AT_END_OF_FILE; if (mpctx->max_frames > 0) mpctx->max_frames--; } vo_c->underrun_signaled = false; if (mpctx->video_status == STATUS_EOF || mpctx->stop_play) mp_wakeup_core(mpctx); return; error: MP_FATAL(mpctx, "Could not initialize video chain.\n"); uninit_video_chain(mpctx); error_on_track(mpctx, track); handle_force_window(mpctx, true); mp_wakeup_core(mpctx); }