/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with mpv. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "cache.h" #include "config.h" #include "options/m_config.h" #include "options/m_option.h" #include "mpv_talloc.h" #include "common/av_common.h" #include "common/msg.h" #include "common/global.h" #include "common/recorder.h" #include "misc/charset_conv.h" #include "misc/thread_tools.h" #include "osdep/atomic.h" #include "osdep/timer.h" #include "osdep/threads.h" #include "stream/stream.h" #include "demux.h" #include "timeline.h" #include "stheader.h" #include "cue.h" // Demuxer list extern const struct demuxer_desc demuxer_desc_edl; extern const struct demuxer_desc demuxer_desc_cue; extern const demuxer_desc_t demuxer_desc_rawaudio; extern const demuxer_desc_t demuxer_desc_rawvideo; extern const demuxer_desc_t demuxer_desc_mf; extern const demuxer_desc_t demuxer_desc_matroska; extern const demuxer_desc_t demuxer_desc_lavf; extern const demuxer_desc_t demuxer_desc_playlist; extern const demuxer_desc_t demuxer_desc_disc; extern const demuxer_desc_t demuxer_desc_rar; extern const demuxer_desc_t demuxer_desc_libarchive; extern const demuxer_desc_t demuxer_desc_null; extern const demuxer_desc_t demuxer_desc_timeline; static const demuxer_desc_t *const demuxer_list[] = { &demuxer_desc_disc, &demuxer_desc_edl, &demuxer_desc_cue, &demuxer_desc_rawaudio, &demuxer_desc_rawvideo, &demuxer_desc_matroska, #if HAVE_LIBARCHIVE &demuxer_desc_libarchive, #endif &demuxer_desc_lavf, &demuxer_desc_mf, &demuxer_desc_playlist, &demuxer_desc_null, NULL }; struct demux_opts { int enable_cache; int disk_cache; int64_t max_bytes; int64_t max_bytes_bw; int donate_fw; double min_secs; int force_seekable; double min_secs_cache; int access_references; int seekable_cache; int create_ccs; char *record_file; int video_back_preroll; int audio_back_preroll; int back_batch[STREAM_TYPE_COUNT]; double back_seek_size; char *meta_cp; int force_retry_eof; }; #define OPT_BASE_STRUCT struct demux_opts #define MAX_BYTES MPMIN(INT64_MAX, SIZE_MAX / 2) static bool get_demux_sub_opts(int index, const struct m_sub_options **sub); const struct m_sub_options demux_conf = { .opts = (const struct m_option[]){ OPT_CHOICE("cache", enable_cache, 0, ({"no", 0}, {"auto", -1}, {"yes", 1})), OPT_FLAG("cache-on-disk", disk_cache, 0), OPT_DOUBLE("demuxer-readahead-secs", min_secs, M_OPT_MIN, .min = 0), // (The MAX_BYTES sizes may not be accurate because the max field is // of double type.) OPT_BYTE_SIZE("demuxer-max-bytes", max_bytes, 0, 0, MAX_BYTES), OPT_BYTE_SIZE("demuxer-max-back-bytes", max_bytes_bw, 0, 0, MAX_BYTES), OPT_FLAG("demuxer-donate-buffer", donate_fw, 0), OPT_FLAG("force-seekable", force_seekable, 0), OPT_DOUBLE("cache-secs", min_secs_cache, M_OPT_MIN, .min = 0, .deprecation_message = "will use unlimited time"), OPT_FLAG("access-references", access_references, 0), OPT_CHOICE("demuxer-seekable-cache", seekable_cache, 0, ({"auto", -1}, {"no", 0}, {"yes", 1})), OPT_FLAG("sub-create-cc-track", create_ccs, 0), OPT_STRING("stream-record", record_file, 0), OPT_CHOICE_OR_INT("video-backward-overlap", video_back_preroll, 0, 0, 1024, ({"auto", -1})), OPT_CHOICE_OR_INT("audio-backward-overlap", audio_back_preroll, 0, 0, 1024, ({"auto", -1})), OPT_INTRANGE("video-backward-batch", back_batch[STREAM_VIDEO], 0, 0, 1024), OPT_INTRANGE("audio-backward-batch", back_batch[STREAM_AUDIO], 0, 0, 1024), OPT_DOUBLE("demuxer-backward-playback-step", back_seek_size, M_OPT_MIN, .min = 0), OPT_STRING("metadata-codepage", meta_cp, 0), OPT_FLAG("demuxer-force-retry-on-eof", force_retry_eof, 0, .deprecation_message = "temporary debug option, no replacement"), {0} }, .size = sizeof(struct demux_opts), .defaults = &(const struct demux_opts){ .enable_cache = -1, // auto .max_bytes = 150 * 1024 * 1024, .max_bytes_bw = 50 * 1024 * 1024, .donate_fw = 1, .min_secs = 1.0, .min_secs_cache = 1000.0 * 60 * 60, .seekable_cache = -1, .access_references = 1, .video_back_preroll = -1, .audio_back_preroll = -1, .back_seek_size = 60, .back_batch = { [STREAM_VIDEO] = 1, [STREAM_AUDIO] = 10, }, .meta_cp = "utf-8", }, .get_sub_options = get_demux_sub_opts, }; struct demux_internal { struct mp_log *log; struct mpv_global *global; bool can_cache; // not a slave demuxer; caching makes sense bool can_record; // stream recording is allowed // The demuxer runs potentially in another thread, so we keep two demuxer // structs; the real demuxer can access the shadow struct only. struct demuxer *d_thread; // accessed by demuxer impl. (producer) struct demuxer *d_user; // accessed by player (consumer) // The lock protects the packet queues (struct demux_stream), // and the fields below. pthread_mutex_t lock; pthread_cond_t wakeup; pthread_t thread; // -- All the following fields are protected by lock. struct demux_opts *opts; struct m_config_cache *opts_cache; bool thread_terminate; bool threading; bool shutdown_async; void (*wakeup_cb)(void *ctx); void *wakeup_cb_ctx; struct sh_stream **streams; int num_streams; char *meta_charset; // If non-NULL, a stream which is used for global (timed) metadata. It will // be an arbitrary stream, which hopefully will happen to work. struct sh_stream *metadata_stream; int events; struct demux_cache *cache; bool warned_queue_overflow; bool eof; // whether we're in EOF state double min_secs; size_t max_bytes; size_t max_bytes_bw; bool seekable_cache; bool using_network_cache_opts; char *record_filename; // Whether the demuxer thread should prefetch packets. This is set to false // if EOF was reached or the demuxer cache is full. This is also important // in the initial state: the decoder thread needs to select streams before // the first packet is read, so this is set to true by packet reading only. // Reset to false again on EOF or if prefetching is done. bool reading; // Set if we just performed a seek, without reading packets yet. Used to // avoid a redundant initial seek after enabling streams. We could just // allow it, but to avoid buggy seeking affecting normal playback, we don't. bool after_seek; // Set in addition to after_seek if we think we seeked to the start of the // file (or if the demuxer was just opened). bool after_seek_to_start; // Demuxing backwards. Since demuxer implementations don't support this // directly, it is emulated by seeking backwards for every packet run. Also, // packets between keyframes are demuxed forwards (you can't decode that // stuff otherwise), which adds complexity on top of it. bool back_demuxing; // For backward demuxing: bool need_back_seek; // back-step seek needs to be triggered bool back_any_need_recheck; // at least 1 ds->back_need_recheck set bool tracks_switched; // thread needs to inform demuxer of this bool seeking; // there's a seek queued int seek_flags; // flags for next seek (if seeking==true) double seek_pts; // (fields for debugging) double seeking_in_progress; // low level seek state int low_level_seeks; // number of started low level seeks double demux_ts; // last demuxed DTS or PTS double ts_offset; // timestamp offset to apply to everything // (sorted by least recent use: index 0 is least recently used) struct demux_cached_range **ranges; int num_ranges; size_t total_bytes; // total sum of packet data buffered // Range from which decoder is reading, and to which demuxer is appending. // This is normally never NULL. This is always ranges[num_ranges - 1]. // This is can be NULL during initialization or deinitialization. struct demux_cached_range *current_range; double highest_av_pts; // highest non-subtitle PTS seen - for duration bool blocked; // Transient state. double duration; // Cached state. int64_t stream_size; int64_t last_speed_query; uint64_t bytes_per_second; int64_t next_cache_update; // demux user state (user thread, somewhat similar to reader/decoder state) double last_playback_pts; // last playback_pts from demux_update() bool force_metadata_update; int cached_metadata_index; // speed up repeated lookups struct mp_recorder *dumper; int dumper_status; bool owns_stream; // -- Access from demuxer thread only bool enable_recording; struct mp_recorder *recorder; int64_t slave_unbuffered_read_bytes; // value repoted from demuxer impl. int64_t hack_unbuffered_read_bytes; // for demux_get_bytes_read_hack() int64_t cache_unbuffered_read_bytes; // for demux_reader_state.bytes_per_second int64_t byte_level_seeks; // for demux_reader_state.byte_level_seeks }; struct timed_metadata { double pts; struct mp_tags *tags; bool from_stream; }; // A continuous range of cached packets for all enabled streams. // (One demux_queue for each known stream.) struct demux_cached_range { // streams[] is indexed by demux_stream->index struct demux_queue **streams; int num_streams; // Computed from the stream queue's values. These fields (unlike as with // demux_queue) are always either NOPTS, or fully valid. double seek_start, seek_end; bool is_bof; // set if the file begins with this range bool is_eof; // set if the file ends with this range struct timed_metadata **metadata; int num_metadata; }; #define QUEUE_INDEX_SIZE_MASK(queue) ((queue)->index_size - 1) // Access the idx-th entry in the given demux_queue. // Requirement: idx >= 0 && idx < queue->num_index #define QUEUE_INDEX_ENTRY(queue, idx) \ ((queue)->index[((queue)->index0 + (idx)) & QUEUE_INDEX_SIZE_MASK(queue)]) // Don't index packets whose timestamps that are within the last index entry by // this amount of time (it's better to seek them manually). #define INDEX_STEP_SIZE 1.0 struct index_entry { double pts; struct demux_packet *pkt; }; // A continuous list of cached packets for a single stream/range. There is one // for each stream and range. Also contains some state for use during demuxing // (keeping it across seeks makes it easier to resume demuxing). struct demux_queue { struct demux_stream *ds; struct demux_cached_range *range; struct demux_packet *head; struct demux_packet *tail; uint64_t tail_cum_pos; // cumulative size including tail packet bool correct_dts; // packet DTS is strictly monotonically increasing bool correct_pos; // packet pos is strictly monotonically increasing int64_t last_pos; // for determining correct_pos int64_t last_pos_fixup; // for filling in unset dp->pos values double last_dts; // for determining correct_dts double last_ts; // timestamp of the last packet added to queue // for incrementally determining seek PTS range struct demux_packet *keyframe_latest; struct demux_packet *keyframe_first; // cached value of first KF packet // incrementally maintained seek range, possibly invalid double seek_start, seek_end; double last_pruned; // timestamp of last pruned keyframe bool is_bof; // started demuxing at beginning of file bool is_eof; // received true EOF here // Complete index, though it may skip some entries to reduce density. struct index_entry *index; // ring buffer size_t index_size; // size of index[] (0 or a power of 2) size_t index0; // first index entry size_t num_index; // number of index entries (wraps on index_size) }; struct demux_stream { struct demux_internal *in; struct sh_stream *sh; // ds->sh->ds == ds enum stream_type type; // equals to sh->type int index; // equals to sh->index // --- all fields are protected by in->lock void (*wakeup_cb)(void *ctx); void *wakeup_cb_ctx; // demuxer state bool selected; // user wants packets from this stream bool eager; // try to keep at least 1 packet queued // if false, this stream is disabled, or passively // read (like subtitles) bool still_image; // stream has still video images bool refreshing; // finding old position after track switches bool eof; // end of demuxed stream? (true if no more packets) bool global_correct_dts;// all observed so far bool global_correct_pos; // current queue - used both for reading and demuxing (this is never NULL) struct demux_queue *queue; // reader (decoder) state (bitrate calculations are part of it because we // want to return the bitrate closest to the "current position") double base_ts; // timestamp of the last packet returned to decoder double last_br_ts; // timestamp of last packet bitrate was calculated size_t last_br_bytes; // summed packet sizes since last bitrate calculation double bitrate; struct demux_packet *reader_head; // points at current decoder position bool skip_to_keyframe; bool attached_picture_added; bool need_wakeup; // call wakeup_cb on next reader_head state change double force_read_until;// eager=false streams (subs): force read-ahead // For demux_internal.dumper. Currently, this is used only temporarily // during blocking dumping. struct demux_packet *dump_pos; // for refresh seeks: pos/dts of last packet returned to reader int64_t last_ret_pos; double last_ret_dts; // Backwards demuxing. bool back_need_recheck; // flag for incremental find_backward_restart_pos work // pos/dts of the previous keyframe packet returned; always valid if back- // demuxing is enabled, and back_restart_eof/back_restart_next are false. int64_t back_restart_pos; double back_restart_dts; bool back_restart_eof; // restart position is at EOF; overrides pos/dts bool back_restart_next; // restart before next keyframe; overrides above bool back_restarting; // searching keyframe before restart pos // Current PTS lower bound for back demuxing. double back_seek_pos; // pos/dts of the packet to resume demuxing from when another stream caused // a seek backward to get more packets. reader_head will be reset to this // packet as soon as it's encountered again. int64_t back_resume_pos; double back_resume_dts; bool back_resuming; // resuming mode (above fields are valid/used) // Set to true if the first packet (keyframe) of a range was returned. bool back_range_started; // Number of KF packets at start of range yet to return. -1 is used for BOF. int back_range_count; // Number of KF packets yet to return that are marked as preroll. int back_range_preroll; // Static packet preroll count. int back_preroll; // for closed captions (demuxer_feed_caption) struct sh_stream *cc; bool ignore_eof; // ignore stream in underrun detection }; static void switch_to_fresh_cache_range(struct demux_internal *in); static void demuxer_sort_chapters(demuxer_t *demuxer); static void *demux_thread(void *pctx); static void update_cache(struct demux_internal *in); static void add_packet_locked(struct sh_stream *stream, demux_packet_t *dp); static struct demux_packet *advance_reader_head(struct demux_stream *ds); static bool queue_seek(struct demux_internal *in, double seek_pts, int flags, bool clear_back_state); static struct demux_packet *compute_keyframe_times(struct demux_packet *pkt, double *out_kf_min, double *out_kf_max); static void find_backward_restart_pos(struct demux_stream *ds); static struct demux_packet *find_seek_target(struct demux_queue *queue, double pts, int flags); static void prune_old_packets(struct demux_internal *in); static void dumper_close(struct demux_internal *in); static void demux_convert_tags_charset(struct demuxer *demuxer); static uint64_t get_foward_buffered_bytes(struct demux_stream *ds) { if (!ds->reader_head) return 0; return ds->queue->tail_cum_pos - ds->reader_head->cum_pos; } #if 0 // very expensive check for redundant cached queue state static void check_queue_consistency(struct demux_internal *in) { uint64_t total_bytes = 0; assert(in->current_range && in->num_ranges > 0); assert(in->current_range == in->ranges[in->num_ranges - 1]); for (int n = 0; n < in->num_ranges; n++) { struct demux_cached_range *range = in->ranges[n]; int range_num_packets = 0; assert(range->num_streams == in->num_streams); for (int i = 0; i < range->num_streams; i++) { struct demux_queue *queue = range->streams[i]; assert(queue->range == range); size_t fw_bytes = 0; bool is_forward = false; bool kf_found = false; bool kf1_found = false; size_t next_index = 0; uint64_t queue_total_bytes = 0; for (struct demux_packet *dp = queue->head; dp; dp = dp->next) { is_forward |= dp == queue->ds->reader_head; kf_found |= dp == queue->keyframe_latest; kf1_found |= dp == queue->keyframe_first; size_t bytes = demux_packet_estimate_total_size(dp); total_bytes += bytes; queue_total_bytes += bytes; if (is_forward) { fw_bytes += bytes; assert(range == in->current_range); assert(queue->ds->queue == queue); } range_num_packets += 1; if (!dp->next) assert(queue->tail == dp); if (next_index < queue->num_index && QUEUE_INDEX_ENTRY(queue, next_index).pkt == dp) next_index += 1; } if (!queue->head) assert(!queue->tail); assert(next_index == queue->num_index); uint64_t queue_total_bytes2 = 0; if (queue->head) queue_total_bytes2 = queue->tail_cum_pos - queue->head->cum_pos; assert(queue_total_bytes == queue_total_bytes2); // If the queue is currently used... if (queue->ds->queue == queue) { // ...reader_head and others must be in the queue. assert(is_forward == !!queue->ds->reader_head); assert(kf_found == !!queue->keyframe_latest); uint64_t fw_bytes2 = get_foward_buffered_bytes(queue->ds); assert(fw_bytes == fw_bytes2); } assert(kf1_found == !!queue->keyframe_first); if (range != in->current_range) { assert(fw_bytes == 0); } if (queue->keyframe_latest) assert(queue->keyframe_latest->keyframe); total_bytes += queue->index_size * sizeof(struct index_entry); } // Invariant needed by pruning; violation has worse effects than just // e.g. broken seeking due to incorrect seek ranges. if (range->seek_start != MP_NOPTS_VALUE) assert(range_num_packets > 0); } assert(in->total_bytes == total_bytes); } #endif // (this doesn't do most required things for a switch, like updating ds->queue) static void set_current_range(struct demux_internal *in, struct demux_cached_range *range) { in->current_range = range; // Move to in->ranges[in->num_ranges-1] (for LRU sorting/invariant) for (int n = 0; n < in->num_ranges; n++) { if (in->ranges[n] == range) { MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n); break; } } MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range); } static void prune_metadata(struct demux_cached_range *range) { int first_needed = 0; if (range->seek_start == MP_NOPTS_VALUE) { first_needed = range->num_metadata; } else { for (int n = 0; n < range->num_metadata ; n++) { if (range->metadata[n]->pts > range->seek_start) break; first_needed = n; } } // Always preserve the last entry. first_needed = MPMIN(first_needed, range->num_metadata - 1); // (Could make this significantly more efficient for large first_needed, // however that might be very rare and even then it might not matter.) for (int n = 0; n < first_needed; n++) { talloc_free(range->metadata[0]); MP_TARRAY_REMOVE_AT(range->metadata, range->num_metadata, 0); } } // Refresh range->seek_start/end. Idempotent. static void update_seek_ranges(struct demux_cached_range *range) { range->seek_start = range->seek_end = MP_NOPTS_VALUE; range->is_bof = true; range->is_eof = true; double min_start_pts = MP_NOPTS_VALUE; double max_end_pts = MP_NOPTS_VALUE; for (int n = 0; n < range->num_streams; n++) { struct demux_queue *queue = range->streams[n]; if (queue->ds->selected && queue->ds->eager) { if (queue->is_bof) { min_start_pts = MP_PTS_MIN(min_start_pts, queue->seek_start); } else { range->seek_start = MP_PTS_MAX(range->seek_start, queue->seek_start); } if (queue->is_eof) { max_end_pts = MP_PTS_MAX(max_end_pts, queue->seek_end); } else { range->seek_end = MP_PTS_MIN(range->seek_end, queue->seek_end); } range->is_eof &= queue->is_eof; range->is_bof &= queue->is_bof; bool empty = queue->is_eof && !queue->head; if (queue->seek_start >= queue->seek_end && !empty && !(queue->seek_start == queue->seek_end && queue->seek_start != MP_NOPTS_VALUE)) goto broken; } } if (range->is_eof) range->seek_end = max_end_pts; if (range->is_bof) range->seek_start = min_start_pts; // Sparse (subtitle) stream behavior is not very clearly defined, but // usually we don't want it to restrict the range of other streams. For // example, if there are subtitle packets at position 5 and 10 seconds, and // the demuxer demuxed the other streams until position 7 seconds, the seek // range end position is 7. // Assume that reading a non-sparse (audio/video) packet gets all sparse // packets that are needed before that non-sparse packet. // This is incorrect in any of these cases: // - sparse streams only (it's unknown how to determine an accurate range) // - if sparse streams have non-keyframe packets (we set queue->last_pruned // to the start of the pruned keyframe range - we'd need the end or so) // We also assume that ds->eager equals to a stream not being sparse // (usually true, except if only sparse streams are selected). // We also rely on the fact that the demuxer position will always be ahead // of the seek_end for audio/video, because they need to prefetch at least // 1 packet to detect the end of a keyframe range. This means that there's // a relatively high guarantee to have all sparse (subtitle) packets within // the seekable range. // As a consequence, the code _never_ checks queue->seek_end for a sparse // queue, as the end of it is implied by the highest PTS of a non-sparse // stream (i.e. the latest demuxer position). // On the other hand, if a sparse packet was pruned, and that packet has // a higher PTS than seek_start for non-sparse queues, that packet is // missing. So the range's seek_start needs to be adjusted accordingly. for (int n = 0; n < range->num_streams; n++) { struct demux_queue *queue = range->streams[n]; if (queue->ds->selected && !queue->ds->eager && queue->last_pruned != MP_NOPTS_VALUE && range->seek_start != MP_NOPTS_VALUE) { // (last_pruned is _exclusive_ to the seekable range, so add a small // value to exclude it from the valid range.) range->seek_start = MP_PTS_MAX(range->seek_start, queue->last_pruned + 0.1); } } if (range->seek_start >= range->seek_end) goto broken; prune_metadata(range); return; broken: range->seek_start = range->seek_end = MP_NOPTS_VALUE; prune_metadata(range); } // Remove queue->head from the queue. static void remove_head_packet(struct demux_queue *queue) { struct demux_packet *dp = queue->head; assert(queue->ds->reader_head != dp); if (queue->keyframe_first == dp) queue->keyframe_first = NULL; if (queue->keyframe_latest == dp) queue->keyframe_latest = NULL; queue->is_bof = false; uint64_t end_pos = dp->next ? dp->next->cum_pos : queue->tail_cum_pos; queue->ds->in->total_bytes -= end_pos - dp->cum_pos; if (queue->num_index && queue->index[queue->index0].pkt == dp) { queue->index0 = (queue->index0 + 1) & QUEUE_INDEX_SIZE_MASK(queue); queue->num_index -= 1; } queue->head = dp->next; if (!queue->head) queue->tail = NULL; talloc_free(dp); } static void free_index(struct demux_queue *queue) { struct demux_stream *ds = queue->ds; struct demux_internal *in = ds->in; in->total_bytes -= queue->index_size * sizeof(queue->index[0]); queue->index_size = 0; queue->index0 = 0; queue->num_index = 0; TA_FREEP(&queue->index); } static void clear_queue(struct demux_queue *queue) { struct demux_stream *ds = queue->ds; struct demux_internal *in = ds->in; if (queue->head) in->total_bytes -= queue->tail_cum_pos - queue->head->cum_pos; free_index(queue); struct demux_packet *dp = queue->head; while (dp) { struct demux_packet *dn = dp->next; assert(ds->reader_head != dp); talloc_free(dp); dp = dn; } queue->head = queue->tail = NULL; queue->keyframe_first = NULL; queue->keyframe_latest = NULL; queue->seek_start = queue->seek_end = queue->last_pruned = MP_NOPTS_VALUE; queue->correct_dts = queue->correct_pos = true; queue->last_pos = -1; queue->last_ts = queue->last_dts = MP_NOPTS_VALUE; queue->last_pos_fixup = -1; queue->is_eof = false; queue->is_bof = false; } static void clear_cached_range(struct demux_internal *in, struct demux_cached_range *range) { for (int n = 0; n < range->num_streams; n++) clear_queue(range->streams[n]); for (int n = 0; n < range->num_metadata; n++) talloc_free(range->metadata[n]); range->num_metadata = 0; update_seek_ranges(range); } // Remove ranges with no data (except in->current_range). Also remove excessive // ranges. static void free_empty_cached_ranges(struct demux_internal *in) { while (1) { struct demux_cached_range *worst = NULL; int end = in->num_ranges - 1; // (Not set during early init or late destruction.) if (in->current_range) { assert(in->current_range && in->num_ranges > 0); assert(in->current_range == in->ranges[in->num_ranges - 1]); end -= 1; } for (int n = end; n >= 0; n--) { struct demux_cached_range *range = in->ranges[n]; if (range->seek_start == MP_NOPTS_VALUE || !in->seekable_cache) { clear_cached_range(in, range); MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n); for (int i = 0; i < range->num_streams; i++) talloc_free(range->streams[i]); talloc_free(range); } else { if (!worst || (range->seek_end - range->seek_start < worst->seek_end - worst->seek_start)) worst = range; } } if (in->num_ranges <= MAX_SEEK_RANGES || !worst) break; clear_cached_range(in, worst); } } static void ds_clear_reader_queue_state(struct demux_stream *ds) { ds->reader_head = NULL; ds->eof = false; ds->need_wakeup = true; } static void ds_clear_reader_state(struct demux_stream *ds, bool clear_back_state) { ds_clear_reader_queue_state(ds); ds->base_ts = ds->last_br_ts = MP_NOPTS_VALUE; ds->last_br_bytes = 0; ds->bitrate = -1; ds->skip_to_keyframe = false; ds->attached_picture_added = false; ds->last_ret_pos = -1; ds->last_ret_dts = MP_NOPTS_VALUE; ds->force_read_until = MP_NOPTS_VALUE; if (clear_back_state) { ds->back_restart_pos = -1; ds->back_restart_dts = MP_NOPTS_VALUE; ds->back_restart_eof = false; ds->back_restart_next = ds->in->back_demuxing; ds->back_restarting = ds->in->back_demuxing && ds->eager; ds->back_seek_pos = MP_NOPTS_VALUE; ds->back_resume_pos = -1; ds->back_resume_dts = MP_NOPTS_VALUE; ds->back_resuming = false; ds->back_range_started = false; ds->back_range_count = 0; ds->back_range_preroll = 0; } } // called locked, from user thread only static void clear_reader_state(struct demux_internal *in, bool clear_back_state) { for (int n = 0; n < in->num_streams; n++) ds_clear_reader_state(in->streams[n]->ds, clear_back_state); in->warned_queue_overflow = false; in->d_user->filepos = -1; // implicitly synchronized in->blocked = false; in->need_back_seek = false; } // Call if the observed reader state on this stream somehow changes. The wakeup // is skipped if the reader successfully read a packet, because that means we // expect it to come back and ask for more. static void wakeup_ds(struct demux_stream *ds) { if (ds->need_wakeup) { if (ds->wakeup_cb) { ds->wakeup_cb(ds->wakeup_cb_ctx); } else if (ds->in->wakeup_cb) { ds->in->wakeup_cb(ds->in->wakeup_cb_ctx); } ds->need_wakeup = false; pthread_cond_signal(&ds->in->wakeup); } } static void update_stream_selection_state(struct demux_internal *in, struct demux_stream *ds) { ds->eof = false; ds->refreshing = false; // We still have to go over the whole stream list to update ds->eager for // other streams too, because they depend on other stream's selections. bool any_av_streams = false; bool any_streams = false; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *s = in->streams[n]->ds; s->still_image = s->sh->still_image; s->eager = s->selected && !s->sh->attached_picture; if (s->eager && !s->still_image) any_av_streams |= s->type != STREAM_SUB; any_streams |= s->selected; } // Subtitles are only eagerly read if there are no other eagerly read // streams. if (any_av_streams) { for (int n = 0; n < in->num_streams; n++) { struct demux_stream *s = in->streams[n]->ds; if (s->type == STREAM_SUB) s->eager = false; } } if (!any_streams) in->blocked = false; ds_clear_reader_state(ds, true); // Make sure any stream reselection or addition is reflected in the seek // ranges, and also get rid of data that is not needed anymore (or // rather, which can't be kept consistent). This has to happen after we've // updated all the subtle state (like s->eager). for (int n = 0; n < in->num_ranges; n++) { struct demux_cached_range *range = in->ranges[n]; if (!ds->selected) clear_queue(range->streams[ds->index]); update_seek_ranges(range); } free_empty_cached_ranges(in); wakeup_ds(ds); } void demux_set_ts_offset(struct demuxer *demuxer, double offset) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); in->ts_offset = offset; pthread_mutex_unlock(&in->lock); } static void add_missing_streams(struct demux_internal *in, struct demux_cached_range *range) { for (int n = range->num_streams; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; struct demux_queue *queue = talloc_ptrtype(NULL, queue); *queue = (struct demux_queue){ .ds = ds, .range = range, }; clear_queue(queue); MP_TARRAY_APPEND(range, range->streams, range->num_streams, queue); assert(range->streams[ds->index] == queue); } } // Allocate a new sh_stream of the given type. It either has to be released // with talloc_free(), or added to a demuxer with demux_add_sh_stream(). You // cannot add or read packets from the stream before it has been added. // type may be changed later, but only before demux_add_sh_stream(). struct sh_stream *demux_alloc_sh_stream(enum stream_type type) { struct sh_stream *sh = talloc_ptrtype(NULL, sh); *sh = (struct sh_stream) { .type = type, .index = -1, .ff_index = -1, // may be overwritten by demuxer .demuxer_id = -1, // ... same .codec = talloc_zero(sh, struct mp_codec_params), .tags = talloc_zero(sh, struct mp_tags), }; sh->codec->type = type; return sh; } // Add a new sh_stream to the demuxer. Note that as soon as the stream has been // added, it must be immutable, and must not be released (this will happen when // the demuxer is destroyed). static void demux_add_sh_stream_locked(struct demux_internal *in, struct sh_stream *sh) { assert(!sh->ds); // must not be added yet sh->index = in->num_streams; sh->ds = talloc(sh, struct demux_stream); *sh->ds = (struct demux_stream) { .in = in, .sh = sh, .type = sh->type, .index = sh->index, .global_correct_dts = true, .global_correct_pos = true, }; struct demux_stream *ds = sh->ds; if (!sh->codec->codec) sh->codec->codec = ""; if (sh->ff_index < 0) sh->ff_index = sh->index; MP_TARRAY_APPEND(in, in->streams, in->num_streams, sh); assert(in->streams[sh->index] == sh); if (in->current_range) { for (int n = 0; n < in->num_ranges; n++) add_missing_streams(in, in->ranges[n]); sh->ds->queue = in->current_range->streams[sh->ds->index]; } update_stream_selection_state(in, sh->ds); switch (ds->type) { case STREAM_AUDIO: ds->back_preroll = in->opts->audio_back_preroll; if (ds->back_preroll < 0) { // auto ds->back_preroll = mp_codec_is_lossless(sh->codec->codec) ? 0 : 1; if (sh->codec->codec && (strcmp(sh->codec->codec, "opus") == 0 || strcmp(sh->codec->codec, "vorbis") == 0 || strcmp(sh->codec->codec, "mp3") == 0)) ds->back_preroll = 2; } break; case STREAM_VIDEO: ds->back_preroll = in->opts->video_back_preroll; if (ds->back_preroll < 0) ds->back_preroll = 0; // auto break; } if (!ds->sh->attached_picture) { // Typically this is used for webradio, so any stream will do. if (!in->metadata_stream) in->metadata_stream = sh; } in->events |= DEMUX_EVENT_STREAMS; if (in->wakeup_cb) in->wakeup_cb(in->wakeup_cb_ctx); } // For demuxer implementations only. void demux_add_sh_stream(struct demuxer *demuxer, struct sh_stream *sh) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_thread); pthread_mutex_lock(&in->lock); demux_add_sh_stream_locked(in, sh); pthread_mutex_unlock(&in->lock); } // Return a stream with the given index. Since streams can only be added during // the lifetime of the demuxer, it is guaranteed that an index within the valid // range [0, demux_get_num_stream()) always returns a valid sh_stream pointer, // which will be valid until the demuxer is destroyed. struct sh_stream *demux_get_stream(struct demuxer *demuxer, int index) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); assert(index >= 0 && index < in->num_streams); struct sh_stream *r = in->streams[index]; pthread_mutex_unlock(&in->lock); return r; } // See demux_get_stream(). int demux_get_num_stream(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); int r = in->num_streams; pthread_mutex_unlock(&in->lock); return r; } // It's UB to call anything but demux_dealloc() on the demuxer after this. static void demux_shutdown(struct demux_internal *in) { struct demuxer *demuxer = in->d_user; if (in->recorder) { mp_recorder_destroy(in->recorder); in->recorder = NULL; } dumper_close(in); if (demuxer->desc->close) demuxer->desc->close(in->d_thread); demuxer->priv = NULL; in->d_thread->priv = NULL; demux_flush(demuxer); assert(in->total_bytes == 0); in->current_range = NULL; free_empty_cached_ranges(in); talloc_free(in->cache); in->cache = NULL; if (in->owns_stream) free_stream(demuxer->stream); demuxer->stream = NULL; } static void demux_dealloc(struct demux_internal *in) { for (int n = 0; n < in->num_streams; n++) talloc_free(in->streams[n]); pthread_mutex_destroy(&in->lock); pthread_cond_destroy(&in->wakeup); talloc_free(in->d_user); } void demux_free(struct demuxer *demuxer) { if (!demuxer) return; struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); demux_stop_thread(demuxer); demux_shutdown(in); demux_dealloc(in); } // Start closing the demuxer and eventually freeing the demuxer asynchronously. // You must not access the demuxer once this has been started. Once the demuxer // is shutdown, the wakeup callback is invoked. Then you need to call // demux_free_async_finish() to end the operation (it must not be called from // the wakeup callback). // This can return NULL. Then the demuxer cannot be free'd asynchronously, and // you need to call demux_free() instead. struct demux_free_async_state *demux_free_async(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); if (!in->threading) return NULL; pthread_mutex_lock(&in->lock); in->thread_terminate = true; in->shutdown_async = true; pthread_cond_signal(&in->wakeup); pthread_mutex_unlock(&in->lock); return (struct demux_free_async_state *)demuxer->in; // lies } // As long as state is valid, you can call this to request immediate abort. // Roughly behaves as demux_cancel_and_free(), except you still need to wait // for the result. void demux_free_async_force(struct demux_free_async_state *state) { struct demux_internal *in = (struct demux_internal *)state; // reverse lies mp_cancel_trigger(in->d_user->cancel); } // Check whether the demuxer is shutdown yet. If not, return false, and you // need to call this again in the future (preferably after you were notified by // the wakeup callback). If yes, deallocate all state, and return true (in // particular, the state ptr becomes invalid, and the wakeup callback will never // be called again). bool demux_free_async_finish(struct demux_free_async_state *state) { struct demux_internal *in = (struct demux_internal *)state; // reverse lies pthread_mutex_lock(&in->lock); bool busy = in->shutdown_async; pthread_mutex_unlock(&in->lock); if (busy) return false; demux_stop_thread(in->d_user); demux_dealloc(in); return true; } // Like demux_free(), but trigger an abort, which will force the demuxer to // terminate immediately. If this wasn't opened with demux_open_url(), there is // some chance this will accidentally abort other things via demuxer->cancel. void demux_cancel_and_free(struct demuxer *demuxer) { if (!demuxer) return; mp_cancel_trigger(demuxer->cancel); demux_free(demuxer); } // Start the demuxer thread, which reads ahead packets on its own. void demux_start_thread(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); if (!in->threading) { in->threading = true; if (pthread_create(&in->thread, NULL, demux_thread, in)) in->threading = false; } } void demux_stop_thread(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); if (in->threading) { pthread_mutex_lock(&in->lock); in->thread_terminate = true; pthread_cond_signal(&in->wakeup); pthread_mutex_unlock(&in->lock); pthread_join(in->thread, NULL); in->threading = false; in->thread_terminate = false; } } // The demuxer thread will call cb(ctx) if there's a new packet, or EOF is reached. void demux_set_wakeup_cb(struct demuxer *demuxer, void (*cb)(void *ctx), void *ctx) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); in->wakeup_cb = cb; in->wakeup_cb_ctx = ctx; pthread_mutex_unlock(&in->lock); } void demux_start_prefetch(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&in->lock); in->reading = true; pthread_cond_signal(&in->wakeup); pthread_mutex_unlock(&in->lock); } const char *stream_type_name(enum stream_type type) { switch (type) { case STREAM_VIDEO: return "video"; case STREAM_AUDIO: return "audio"; case STREAM_SUB: return "sub"; default: return "unknown"; } } static struct sh_stream *demuxer_get_cc_track_locked(struct sh_stream *stream) { struct sh_stream *sh = stream->ds->cc; if (!sh) { sh = demux_alloc_sh_stream(STREAM_SUB); if (!sh) return NULL; sh->codec->codec = "eia_608"; sh->default_track = true; stream->ds->cc = sh; demux_add_sh_stream_locked(stream->ds->in, sh); sh->ds->ignore_eof = true; } return sh; } void demuxer_feed_caption(struct sh_stream *stream, demux_packet_t *dp) { struct demux_internal *in = stream->ds->in; pthread_mutex_lock(&in->lock); struct sh_stream *sh = demuxer_get_cc_track_locked(stream); if (!sh) { pthread_mutex_unlock(&in->lock); talloc_free(dp); return; } dp->keyframe = true; dp->pts = MP_ADD_PTS(dp->pts, -in->ts_offset); dp->dts = MP_ADD_PTS(dp->dts, -in->ts_offset); dp->stream = sh->index; add_packet_locked(sh, dp); pthread_mutex_unlock(&in->lock); } static void error_on_backward_demuxing(struct demux_internal *in) { if (!in->back_demuxing) return; MP_ERR(in, "Disabling backward demuxing.\n"); in->back_demuxing = false; clear_reader_state(in, true); } static void perform_backward_seek(struct demux_internal *in) { double target = MP_NOPTS_VALUE; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->reader_head && !ds->back_restarting && !ds->back_resuming && ds->eager) { ds->back_resuming = true; ds->back_resume_pos = ds->reader_head->pos; ds->back_resume_dts = ds->reader_head->dts; } target = MP_PTS_MIN(target, ds->back_seek_pos); } target = MP_PTS_OR_DEF(target, in->d_thread->start_time); MP_VERBOSE(in, "triggering backward seek to get more packets\n"); queue_seek(in, target, SEEK_SATAN | SEEK_HR, false); in->reading = true; // Don't starve other threads. pthread_mutex_unlock(&in->lock); pthread_mutex_lock(&in->lock); } // For incremental backward demuxing search work. static void check_backward_seek(struct demux_internal *in) { in->back_any_need_recheck = false; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->back_need_recheck) find_backward_restart_pos(ds); } } // Search for a packet to resume demuxing from. // The implementation of this function is quite awkward, because the packet // queue is a singly linked list without back links, while it needs to search // backwards. // This is the core of backward demuxing. static void find_backward_restart_pos(struct demux_stream *ds) { struct demux_internal *in = ds->in; ds->back_need_recheck = false; if (!ds->back_restarting) return; struct demux_packet *first = ds->reader_head; struct demux_packet *last = ds->queue->tail; if (first && !first->keyframe) MP_WARN(in, "Queue not starting on keyframe.\n"); // Packet at back_restart_pos. (Note: we don't actually need it, only the // packet immediately before it. But same effort.) // If this is NULL, look for EOF (resume from very last keyframe). struct demux_packet *back_restart = NULL; if (ds->back_restart_next) { // Initial state. Switch to one of the other modi. for (struct demux_packet *cur = first; cur; cur = cur->next) { // Restart for next keyframe after reader_head. if (cur != first && cur->keyframe) { ds->back_restart_dts = cur->dts; ds->back_restart_pos = cur->pos; ds->back_restart_eof = false; ds->back_restart_next = false; break; } } if (ds->back_restart_next && ds->eof) { // Restart from end if nothing was found. ds->back_restart_eof = true; ds->back_restart_next = false; } if (ds->back_restart_next) return; } if (ds->back_restart_eof) { // We're trying to find EOF (without discarding packets). Only continue // if we really reach EOF. if (!ds->eof) return; } else if (!first && ds->eof) { // Reached EOF during normal backward demuxing. We probably returned the // last keyframe range to user. Need to resume at an earlier position. // Fall through, hit the no-keyframe case (and possibly the BOF check // if there are no packets at all), and then resume_earlier. } else if (!first) { return; // no packets yet } else { assert(last); if ((ds->global_correct_dts && last->dts < ds->back_restart_dts) || (ds->global_correct_pos && last->pos < ds->back_restart_pos)) return; // restart pos not reached yet // The target we're searching for is apparently before the start of the // queue. if ((ds->global_correct_dts && first->dts > ds->back_restart_dts) || (ds->global_correct_pos && first->pos > ds->back_restart_pos)) goto resume_earlier; // current position is too late; seek back for (struct demux_packet *cur = first; cur; cur = cur->next) { if ((ds->global_correct_dts && cur->dts == ds->back_restart_dts) || (ds->global_correct_pos && cur->pos == ds->back_restart_pos)) { back_restart = cur; break; } } if (!back_restart) { // The packet should have been in the searched range; maybe dts/pos // determinism assumptions were broken. MP_ERR(in, "Demuxer not cooperating.\n"); error_on_backward_demuxing(in); return; } } // Find where to restart demuxing. It's usually the last keyframe packet // before restart_pos, but might be up to back_preroll + batch keyframe // packets earlier. // (Normally, we'd just iterate backwards, but no back links.) int num_kf = 0; struct demux_packet *pre_1 = NULL; // idiotic "optimization" for total=1 for (struct demux_packet *dp = first; dp != back_restart; dp = dp->next) { if (dp->keyframe) { num_kf++; pre_1 = dp; } } // Number of renderable keyframes to return to user. // (Excludes preroll, which is decoded by user, but then discarded.) int batch = MPMAX(in->opts->back_batch[ds->type], 1); // Number of keyframes to return to the user in total. int total = batch + ds->back_preroll; assert(total >= 1); bool is_bof = ds->queue->is_bof && (first == ds->queue->head || ds->back_seek_pos < ds->queue->seek_start); struct demux_packet *target = NULL; // resume pos // nr. of keyframes, incl. target, excl. restart_pos int got_total = num_kf < total && is_bof ? num_kf : total; int got_preroll = MPMAX(got_total - batch, 0); if (got_total == 1) { target = pre_1; } else if (got_total <= num_kf) { int cur_kf = 0; for (struct demux_packet *dp = first; dp != back_restart; dp = dp->next) { if (dp->keyframe) { if (num_kf - cur_kf == got_total) { target = dp; break; } cur_kf++; } } } if (!target) { if (is_bof) { MP_VERBOSE(in, "BOF for stream %d\n", ds->index); ds->back_restarting = false; ds->back_range_started = false; ds->back_range_count = -1; ds->back_range_preroll = 0; ds->need_wakeup = true; wakeup_ds(ds); return; } goto resume_earlier; } // Skip reader_head from previous keyframe to current one. // Or if preroll is involved, the first preroll packet. while (ds->reader_head != target) { if (!advance_reader_head(ds)) assert(0); // target must be in list } double seek_pts; compute_keyframe_times(target, &seek_pts, NULL); if (seek_pts != MP_NOPTS_VALUE) ds->back_seek_pos = seek_pts; // For next backward adjust action. struct demux_packet *restart_pkt = NULL; int kf_pos = 0; for (struct demux_packet *dp = target; dp; dp = dp->next) { if (dp->keyframe) { if (kf_pos == got_preroll) { restart_pkt = dp; break; } kf_pos++; } } assert(restart_pkt); ds->back_restart_dts = restart_pkt->dts; ds->back_restart_pos = restart_pkt->pos; ds->back_restarting = false; ds->back_range_started = false; ds->back_range_count = got_total; ds->back_range_preroll = got_preroll; ds->need_wakeup = true; wakeup_ds(ds); return; resume_earlier: // We want to seek back to get earlier packets. But before we do this, we // must be sure that other streams have initialized their state. The only // time when this state is not initialized is right after the seek that // started backward demuxing (not any subsequent backstep seek). If this // initialization is omitted, the stream would try to start demuxing from // the "current" position. If another stream backstepped before that, the // other stream will miss the original seek target, and start playback from // a position that is too early. for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds2 = in->streams[n]->ds; if (ds2 == ds || !ds2->eager) continue; if (ds2->back_restarting && ds2->back_restart_next) { MP_VERBOSE(in, "delaying stream %d for %d\n", ds->index, ds2->index); return; } } if (ds->back_seek_pos != MP_NOPTS_VALUE) { struct demux_packet *t = find_seek_target(ds->queue, ds->back_seek_pos - 0.001, 0); if (t && t != ds->reader_head) { double pts; compute_keyframe_times(t, &pts, NULL); ds->back_seek_pos = MP_PTS_MIN(ds->back_seek_pos, pts); ds_clear_reader_state(ds, false); ds->reader_head = t; ds->back_need_recheck = true; in->back_any_need_recheck = true; pthread_cond_signal(&in->wakeup); } else { ds->back_seek_pos -= in->opts->back_seek_size; in->need_back_seek = true; } } } // Process that one or multiple packets were added. static void back_demux_see_packets(struct demux_stream *ds) { struct demux_internal *in = ds->in; if (!ds->selected || !in->back_demuxing || !ds->eager) return; assert(!(ds->back_resuming && ds->back_restarting)); if (!ds->global_correct_dts && !ds->global_correct_pos) { MP_ERR(in, "Can't demux backward due to demuxer problems.\n"); error_on_backward_demuxing(in); return; } while (ds->back_resuming && ds->reader_head) { struct demux_packet *head = ds->reader_head; if ((ds->global_correct_dts && head->dts == ds->back_resume_dts) || (ds->global_correct_pos && head->pos == ds->back_resume_pos)) { ds->back_resuming = false; ds->need_wakeup = true; wakeup_ds(ds); // probably break; } advance_reader_head(ds); } if (ds->back_restarting) find_backward_restart_pos(ds); } // Add the keyframe to the end of the index. Not all packets are actually added. static void add_index_entry(struct demux_queue *queue, struct demux_packet *dp, double pts) { struct demux_internal *in = queue->ds->in; assert(dp->keyframe && pts != MP_NOPTS_VALUE); if (queue->num_index > 0) { struct index_entry *last = &QUEUE_INDEX_ENTRY(queue, queue->num_index - 1); if (pts - last->pts < INDEX_STEP_SIZE) return; } if (queue->num_index == queue->index_size) { // Needs to honor power-of-2 requirement. size_t new_size = MPMAX(128, queue->index_size * 2); assert(!(new_size & (new_size - 1))); MP_DBG(in, "stream %d: resize index to %zu\n", queue->ds->index, new_size); // Note: we could tolerate allocation failure, and just discard the // entire index (and prevent the index from being recreated). MP_RESIZE_ARRAY(NULL, queue->index, new_size); size_t highest_index = queue->index0 + queue->num_index; for (size_t n = queue->index_size; n < highest_index; n++) queue->index[n] = queue->index[n - queue->index_size]; in->total_bytes += (new_size - queue->index_size) * sizeof(queue->index[0]); queue->index_size = new_size; } assert(queue->num_index < queue->index_size); queue->num_index += 1; QUEUE_INDEX_ENTRY(queue, queue->num_index - 1) = (struct index_entry){ .pts = pts, .pkt = dp, }; } // Check whether the next range in the list is, and if it appears to overlap, // try joining it into a single range. static void attempt_range_joining(struct demux_internal *in) { struct demux_cached_range *current = in->current_range; struct demux_cached_range *next = NULL; double next_dist = INFINITY; assert(current && in->num_ranges > 0); assert(current == in->ranges[in->num_ranges - 1]); for (int n = 0; n < in->num_ranges - 1; n++) { struct demux_cached_range *range = in->ranges[n]; if (current->seek_start <= range->seek_start) { // This uses ">" to get some non-0 overlap. double dist = current->seek_end - range->seek_start; if (dist > 0 && dist < next_dist) { next = range; next_dist = dist; } } } if (!next) return; MP_VERBOSE(in, "going to join ranges %f-%f + %f-%f\n", current->seek_start, current->seek_end, next->seek_start, next->seek_end); // Try to find a join point, where packets obviously overlap. (It would be // better and faster to do this incrementally, but probably too complex.) // The current range can overlap arbitrarily with the next one, not only by // by the seek overlap, but for arbitrary packet readahead as well. // We also drop the overlapping packets (if joining fails, we discard the // entire next range anyway, so this does no harm). for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; struct demux_queue *q1 = current->streams[n]; struct demux_queue *q2 = next->streams[n]; if (!ds->global_correct_pos && !ds->global_correct_dts) { MP_WARN(in, "stream %d: ranges unjoinable\n", n); goto failed; } struct demux_packet *end = q1->tail; bool join_point_found = !end; // no packets yet -> joining will work if (end) { while (q2->head) { struct demux_packet *dp = q2->head; // Some weird corner-case. We'd have to search the equivalent // packet in q1 to update it correctly. Better just give up. if (dp == q2->keyframe_latest) { MP_VERBOSE(in, "stream %d: not enough keyframes for join\n", n); goto failed; } if ((ds->global_correct_dts && dp->dts == end->dts) || (ds->global_correct_pos && dp->pos == end->pos)) { // Do some additional checks as a (imperfect) sanity check // in case pos/dts are not "correct" across the ranges (we // never actually check that). if (dp->dts != end->dts || dp->pos != end->pos || dp->pts != end->pts) { MP_WARN(in, "stream %d: non-repeatable demuxer behavior\n", n); goto failed; } remove_head_packet(q2); join_point_found = true; break; } // This happens if the next range misses the end packet. For // normal streams (ds->eager==true), this is a failure to find // an overlap. For subtitles, this can mean the current_range // has a subtitle somewhere before the end of its range, and // next has another subtitle somewhere after the start of its // range. if ((ds->global_correct_dts && dp->dts > end->dts) || (ds->global_correct_pos && dp->pos > end->pos)) break; remove_head_packet(q2); } } // For enabled non-sparse streams, always require an overlap packet. if (ds->eager && !join_point_found) { MP_WARN(in, "stream %d: no join point found\n", n); goto failed; } } // Actually join the ranges. Now that we think it will work, mutate the // data associated with the current range. for (int n = 0; n < in->num_streams; n++) { struct demux_queue *q1 = current->streams[n]; struct demux_queue *q2 = next->streams[n]; struct demux_stream *ds = in->streams[n]->ds; assert(ds->queue == q1); // First new packet that is appended to the current range. struct demux_packet *join_point = q2->head; if (q2->head) { if (q1->head) { q1->tail->next = q2->head; } else { q1->head = q2->head; } q1->tail = q2->tail; } q1->seek_end = q2->seek_end; q1->correct_dts &= q2->correct_dts; q1->correct_pos &= q2->correct_pos; q1->last_pos = q2->last_pos; q1->last_dts = q2->last_dts; q1->last_ts = q2->last_ts; q1->keyframe_latest = q2->keyframe_latest; q1->is_eof = q2->is_eof; q1->last_pos_fixup = -1; q2->head = q2->tail = NULL; q2->keyframe_first = NULL; q2->keyframe_latest = NULL; if (ds->selected && !ds->reader_head) ds->reader_head = join_point; ds->skip_to_keyframe = false; // Make the cum_pos values in all q2 packets continuous. for (struct demux_packet *dp = join_point; dp; dp = dp->next) { uint64_t next_pos = dp->next ? dp->next->cum_pos : q2->tail_cum_pos; uint64_t size = next_pos - dp->cum_pos; dp->cum_pos = q1->tail_cum_pos; q1->tail_cum_pos += size; } // And update the index with packets from q2. for (size_t i = 0; i < q2->num_index; i++) { struct index_entry *e = &QUEUE_INDEX_ENTRY(q2, i); add_index_entry(q1, e->pkt, e->pts); } free_index(q2); // For moving demuxer position. ds->refreshing = ds->selected; } for (int n = 0; n < next->num_metadata; n++) { MP_TARRAY_APPEND(current, current->metadata, current->num_metadata, next->metadata[n]); } next->num_metadata = 0; update_seek_ranges(current); // Move demuxing position to after the current range. in->seeking = true; in->seek_flags = SEEK_HR; in->seek_pts = next->seek_end - 1.0; MP_VERBOSE(in, "ranges joined!\n"); for (int n = 0; n < in->num_streams; n++) back_demux_see_packets(in->streams[n]->ds); failed: clear_cached_range(in, next); free_empty_cached_ranges(in); } // Compute the assumed first and last frame timestamp for keyframe range // starting at pkt. To get valid results, pkt->keyframe must be true, otherwise // nonsense will be returned. // Always sets *out_kf_min and *out_kf_max without reading them. Both are set // to NOPTS if there are no timestamps at all in the stream. *kf_max will not // be set to the actual end time of the decoded output, just the last frame // (audio will typically end up with kf_min==kf_max). // Either of out_kf_min and out_kf_max can be NULL, which discards the result. // Return the next keyframe packet after pkt, or NULL if there's none. static struct demux_packet *compute_keyframe_times(struct demux_packet *pkt, double *out_kf_min, double *out_kf_max) { struct demux_packet *start = pkt; double min = MP_NOPTS_VALUE; double max = MP_NOPTS_VALUE; while (pkt) { if (pkt->keyframe && pkt != start) break; double ts = MP_PTS_OR_DEF(pkt->pts, pkt->dts); if (pkt->segmented && ((pkt->start != MP_NOPTS_VALUE && ts < pkt->start) || (pkt->end != MP_NOPTS_VALUE && ts > pkt->end))) ts = MP_NOPTS_VALUE; min = MP_PTS_MIN(min, ts); max = MP_PTS_MAX(max, ts); pkt = pkt->next; } if (out_kf_min) *out_kf_min = min; if (out_kf_max) *out_kf_max = max; return pkt; } // Determine seekable range when a packet is added. If dp==NULL, treat it as // EOF (i.e. closes the current block). // This has to deal with a number of corner cases, such as demuxers potentially // starting output at non-keyframes. // Can join seek ranges, which messes with in->current_range and all. static void adjust_seek_range_on_packet(struct demux_stream *ds, struct demux_packet *dp) { struct demux_queue *queue = ds->queue; if (!ds->in->seekable_cache) return; bool new_eof = !dp; bool update_ranges = queue->is_eof != new_eof; queue->is_eof = new_eof; if (!dp || dp->keyframe) { if (queue->keyframe_latest) { double kf_min, kf_max; compute_keyframe_times(queue->keyframe_latest, &kf_min, &kf_max); if (kf_min != MP_NOPTS_VALUE) { add_index_entry(queue, queue->keyframe_latest, kf_min); // Initialize the queue's start if it's unset. if (queue->seek_start == MP_NOPTS_VALUE) { update_ranges = true; queue->seek_start = kf_min + ds->sh->seek_preroll; } } if (kf_max != MP_NOPTS_VALUE && (queue->seek_end == MP_NOPTS_VALUE || kf_max > queue->seek_end)) { // If the queue was past the current range's end even before // this update, it means _other_ streams are not there yet, // and the seek range doesn't need to be updated. This means // if the _old_ queue->seek_end was already after the range end, // then the new seek_end won't extend the range either. if (queue->range->seek_end == MP_NOPTS_VALUE || queue->seek_end <= queue->range->seek_end) { update_ranges = true; } queue->seek_end = kf_max; } } queue->keyframe_latest = dp; } // Adding a sparse packet never changes the seek range. if (update_ranges && ds->eager) { update_seek_ranges(queue->range); attempt_range_joining(ds->in); } } static struct mp_recorder *recorder_create(struct demux_internal *in, const char *dst) { struct sh_stream **streams = NULL; int num_streams = 0; for (int n = 0; n < in->num_streams; n++) { struct sh_stream *stream = in->streams[n]; if (stream->ds->selected) MP_TARRAY_APPEND(NULL, streams, num_streams, stream); } struct mp_recorder *res = mp_recorder_create(in->d_thread->global, dst, streams, num_streams); talloc_free(streams); return res; } static void write_dump_packet(struct demux_internal *in, struct demux_packet *dp) { assert(in->dumper); assert(in->dumper_status == CONTROL_TRUE); struct mp_recorder_sink *sink = mp_recorder_get_sink(in->dumper, in->streams[dp->stream]); if (sink) { mp_recorder_feed_packet(sink, dp); } else { MP_ERR(in, "New stream appeared; stopping recording.\n"); in->dumper_status = CONTROL_ERROR; } } static void record_packet(struct demux_internal *in, struct demux_packet *dp) { // (should preferably be outside of the lock) if (in->enable_recording && !in->recorder && in->opts->record_file && in->opts->record_file[0]) { // Later failures shouldn't make it retry and overwrite the previously // recorded file. in->enable_recording = false; in->recorder = recorder_create(in, in->opts->record_file); if (!in->recorder) MP_ERR(in, "Disabling recording.\n"); } if (in->recorder) { struct mp_recorder_sink *sink = mp_recorder_get_sink(in->recorder, in->streams[dp->stream]); if (sink) { mp_recorder_feed_packet(sink, dp); } else { MP_ERR(in, "New stream appeared; stopping recording.\n"); mp_recorder_destroy(in->recorder); in->recorder = NULL; } } if (in->dumper_status == CONTROL_OK) write_dump_packet(in, dp); } static void add_packet_locked(struct sh_stream *stream, demux_packet_t *dp) { struct demux_stream *ds = stream ? stream->ds : NULL; if (!dp->len || demux_cancel_test(ds->in->d_thread)) { talloc_free(dp); return; } assert(dp->stream == stream->index); assert(!dp->next); struct demux_internal *in = ds->in; in->after_seek = false; in->after_seek_to_start = false; double ts = dp->dts == MP_NOPTS_VALUE ? dp->pts : dp->dts; if (dp->segmented) ts = MP_PTS_MIN(ts, dp->end); if (ts != MP_NOPTS_VALUE) in->demux_ts = ts; struct demux_queue *queue = ds->queue; bool drop = !ds->selected || in->seeking || ds->sh->attached_picture; if (!drop) { // If libavformat splits packets, some packets will have pos unset, so // make up one based on the first packet => makes refresh seeks work. if ((dp->pos < 0 || dp->pos == queue->last_pos_fixup) && !dp->keyframe && queue->last_pos_fixup >= 0) dp->pos = queue->last_pos_fixup + 1; queue->last_pos_fixup = dp->pos; } if (!drop && ds->refreshing) { // Resume reading once the old position was reached (i.e. we start // returning packets where we left off before the refresh). // If it's the same position, drop, but continue normally next time. if (queue->correct_dts) { ds->refreshing = dp->dts < queue->last_dts; } else if (queue->correct_pos) { ds->refreshing = dp->pos < queue->last_pos; } else { ds->refreshing = false; // should not happen MP_WARN(in, "stream %d: demux refreshing failed\n", ds->index); } drop = true; } if (drop) { talloc_free(dp); return; } record_packet(in, dp); if (in->cache && in->opts->disk_cache) { int64_t pos = demux_cache_write(in->cache, dp); if (pos >= 0) { demux_packet_unref_contents(dp); dp->is_cached = true; dp->cached_data.pos = pos; } } queue->correct_pos &= dp->pos >= 0 && dp->pos > queue->last_pos; queue->correct_dts &= dp->dts != MP_NOPTS_VALUE && dp->dts > queue->last_dts; queue->last_pos = dp->pos; queue->last_dts = dp->dts; ds->global_correct_pos &= queue->correct_pos; ds->global_correct_dts &= queue->correct_dts; // (keep in mind that even if the reader went out of data, the queue is not // necessarily empty due to the backbuffer) if (!ds->reader_head && (!ds->skip_to_keyframe || dp->keyframe)) { ds->reader_head = dp; ds->skip_to_keyframe = false; } size_t bytes = demux_packet_estimate_total_size(dp); in->total_bytes += bytes; dp->cum_pos = queue->tail_cum_pos; queue->tail_cum_pos += bytes; if (queue->tail) { // next packet in stream queue->tail->next = dp; queue->tail = dp; } else { // first packet in stream queue->head = queue->tail = dp; } if (!ds->ignore_eof) { // obviously not true anymore ds->eof = false; in->eof = false; } // For video, PTS determination is not trivial, but for other media types // distinguishing PTS and DTS is not useful. if (stream->type != STREAM_VIDEO && dp->pts == MP_NOPTS_VALUE) dp->pts = dp->dts; if (ts != MP_NOPTS_VALUE && (ts > queue->last_ts || ts + 10 < queue->last_ts)) queue->last_ts = ts; if (ds->base_ts == MP_NOPTS_VALUE) ds->base_ts = queue->last_ts; const char *num_pkts = queue->head == queue->tail ? "1" : ">1"; uint64_t fw_bytes = get_foward_buffered_bytes(ds); MP_TRACE(in, "append packet to %s: size=%zu pts=%f dts=%f pos=%"PRIi64" " "[num=%s size=%zd]\n", stream_type_name(stream->type), dp->len, dp->pts, dp->dts, dp->pos, num_pkts, (size_t)fw_bytes); adjust_seek_range_on_packet(ds, dp); // May need to reduce backward cache. prune_old_packets(in); // Possibly update duration based on highest TS demuxed (but ignore subs). if (stream->type != STREAM_SUB) { if (dp->segmented) ts = MP_PTS_MIN(ts, dp->end); if (ts > in->highest_av_pts) { in->highest_av_pts = ts; double duration = in->highest_av_pts - in->d_thread->start_time; if (duration > in->d_thread->duration) { in->d_thread->duration = duration; // (Don't wakeup user thread, would be too noisy.) in->events |= DEMUX_EVENT_DURATION; in->duration = duration; } } } // Don't process the packet further if it's skipped by the previous seek // (see reader_head check/assignment above). if (!ds->reader_head) return; back_demux_see_packets(ds); wakeup_ds(ds); } static void mark_stream_eof(struct demux_stream *ds) { if (!ds->eof) { ds->eof = true; adjust_seek_range_on_packet(ds, NULL); back_demux_see_packets(ds); wakeup_ds(ds); } } static bool lazy_stream_needs_wait(struct demux_stream *ds) { struct demux_internal *in = ds->in; // Attempt to read until force_read_until was reached, or reading has // stopped for some reason (true EOF, queue overflow). return !ds->eager && !ds->reader_head && !in->back_demuxing && !in->eof && ds->force_read_until != MP_NOPTS_VALUE && (in->demux_ts == MP_NOPTS_VALUE || in->demux_ts <= ds->force_read_until); } // Returns true if there was "progress" (lock was released temporarily). static bool read_packet(struct demux_internal *in) { bool was_reading = in->reading; in->reading = false; if (!was_reading || in->blocked || demux_cancel_test(in->d_thread)) return false; // Check if we need to read a new packet. We do this if all queues are below // the minimum, or if a stream explicitly needs new packets. Also includes // safe-guards against packet queue overflow. bool read_more = false, prefetch_more = false, refresh_more = false; uint64_t total_fw_bytes = 0; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->eager) { read_more |= !ds->reader_head; if (in->back_demuxing) read_more |= ds->back_restarting || ds->back_resuming; } else { if (lazy_stream_needs_wait(ds)) { read_more = true; } else { mark_stream_eof(ds); // let playback continue } } refresh_more |= ds->refreshing; if (ds->eager && ds->queue->last_ts != MP_NOPTS_VALUE && in->min_secs > 0 && ds->base_ts != MP_NOPTS_VALUE && ds->queue->last_ts >= ds->base_ts && !in->back_demuxing) prefetch_more |= ds->queue->last_ts - ds->base_ts < in->min_secs; total_fw_bytes += get_foward_buffered_bytes(ds); } MP_TRACE(in, "bytes=%zd, read_more=%d prefetch_more=%d, refresh_more=%d\n", (size_t)total_fw_bytes, read_more, prefetch_more, refresh_more); if (total_fw_bytes >= in->max_bytes) { // if we hit the limit just by prefetching, simply stop prefetching if (!read_more) return false; if (!in->warned_queue_overflow) { in->warned_queue_overflow = true; MP_WARN(in, "Too many packets in the demuxer packet queues:\n"); for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->selected) { size_t num_pkts = 0; for (struct demux_packet *dp = ds->reader_head; dp; dp = dp->next) num_pkts++; uint64_t fw_bytes = get_foward_buffered_bytes(ds); MP_WARN(in, " %s/%d: %zd packets, %zd bytes%s%s\n", stream_type_name(ds->type), n, num_pkts, (size_t)fw_bytes, ds->eager ? "" : " (lazy)", ds->refreshing ? " (refreshing)" : ""); } } if (in->back_demuxing) MP_ERR(in, "Backward playback is likely stuck/broken now.\n"); } for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (!ds->reader_head) mark_stream_eof(ds); } return false; } if (!read_more && !prefetch_more && !refresh_more) return false; if (in->after_seek_to_start) { for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; in->current_range->streams[n]->is_bof = ds->selected && !ds->refreshing; } } // Actually read a packet. Drop the lock while doing so, because waiting // for disk or network I/O can take time. in->reading = true; in->after_seek = false; in->after_seek_to_start = false; pthread_mutex_unlock(&in->lock); struct demuxer *demux = in->d_thread; struct demux_packet *pkt = NULL; bool eof = true; if (demux->desc->read_packet && !demux_cancel_test(demux)) eof = !demux->desc->read_packet(demux, &pkt); pthread_mutex_lock(&in->lock); update_cache(in); if (pkt) { assert(pkt->stream >= 0 && pkt->stream < in->num_streams); add_packet_locked(in->streams[pkt->stream], pkt); } if (!in->seeking) { if (eof) { for (int n = 0; n < in->num_streams; n++) mark_stream_eof(in->streams[n]->ds); // If we had EOF previously, then don't wakeup (avoids wakeup loop) if (!in->eof) { if (in->wakeup_cb) in->wakeup_cb(in->wakeup_cb_ctx); pthread_cond_signal(&in->wakeup); MP_VERBOSE(in, "EOF reached.\n"); } } in->eof = eof; in->reading = !eof; } return true; } static void prune_old_packets(struct demux_internal *in) { assert(in->current_range == in->ranges[in->num_ranges - 1]); // It's not clear what the ideal way to prune old packets is. For now, we // prune the oldest packet runs, as long as the total cache amount is too // big. while (1) { uint64_t fw_bytes = 0; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; fw_bytes += get_foward_buffered_bytes(ds); } uint64_t max_avail = in->max_bytes_bw; // Backward cache (if enabled at all) can use unused forward cache. // Still leave 1 byte free, so the read_packet logic doesn't get stuck. if (max_avail && in->max_bytes > (fw_bytes + 1) && in->opts->donate_fw) max_avail += in->max_bytes - (fw_bytes + 1); if (in->total_bytes - fw_bytes <= max_avail) break; // (Start from least recently used range.) struct demux_cached_range *range = in->ranges[0]; double earliest_ts = MP_NOPTS_VALUE; struct demux_stream *earliest_stream = NULL; for (int n = 0; n < range->num_streams; n++) { struct demux_queue *queue = range->streams[n]; struct demux_stream *ds = queue->ds; if (queue->head && queue->head != ds->reader_head) { struct demux_packet *dp = queue->head; double ts = queue->seek_start; // If the ts is NOPTS, the queue has no retainable packets, so // delete them all. This code is not run when there's enough // free space, so normally the queue gets the chance to build up. bool prune_always = !in->seekable_cache || ts == MP_NOPTS_VALUE || !dp->keyframe; if (prune_always || !earliest_stream || ts < earliest_ts) { earliest_ts = ts; earliest_stream = ds; if (prune_always) break; } } } // In some cases (like when the seek index became huge), there aren't // any backwards packets, even if the total cache size is exceeded. if (!earliest_stream) break; struct demux_stream *ds = earliest_stream; struct demux_queue *queue = range->streams[ds->index]; bool non_kf_prune = queue->head && !queue->head->keyframe; bool kf_was_pruned = false; while (queue->head && queue->head != ds->reader_head) { if (queue->head->keyframe) { // If the cache is seekable, only delete until up the next // keyframe. This is not always efficient, but ensures we // prune all streams fairly. // Also, if the first packet was _not_ a keyframe, we want it // to remove all preceding non-keyframe packets first, before // re-evaluating what to prune next. if ((kf_was_pruned || non_kf_prune) && in->seekable_cache) break; kf_was_pruned = true; } remove_head_packet(queue); } // Need to update the seekable time range. if (kf_was_pruned) { assert(!queue->keyframe_first); // it was just deleted, supposedly queue->keyframe_first = queue->head; // (May happen if reader_head stopped pruning the range, and there's // no next range.) while (queue->keyframe_first && !queue->keyframe_first->keyframe) queue->keyframe_first = queue->keyframe_first->next; if (queue->seek_start != MP_NOPTS_VALUE) queue->last_pruned = queue->seek_start; double kf_min; compute_keyframe_times(queue->keyframe_first, &kf_min, NULL); bool update_range = true; queue->seek_start = kf_min; if (queue->seek_start != MP_NOPTS_VALUE) { queue->seek_start += ds->sh->seek_preroll; // Don't need to update if the new start is still before the // range's start (or if the range was undefined anyway). if (range->seek_start == MP_NOPTS_VALUE || queue->seek_start <= range->seek_start) { update_range = false; } } if (update_range) update_seek_ranges(range); } if (range != in->current_range && range->seek_start == MP_NOPTS_VALUE) free_empty_cached_ranges(in); } } static void execute_trackswitch(struct demux_internal *in) { in->tracks_switched = false; bool any_selected = false; for (int n = 0; n < in->num_streams; n++) any_selected |= in->streams[n]->ds->selected; pthread_mutex_unlock(&in->lock); if (in->d_thread->desc->switched_tracks) in->d_thread->desc->switched_tracks(in->d_thread); pthread_mutex_lock(&in->lock); } static void execute_seek(struct demux_internal *in) { int flags = in->seek_flags; double pts = in->seek_pts; in->eof = false; in->seeking = false; in->seeking_in_progress = pts; in->demux_ts = MP_NOPTS_VALUE; in->low_level_seeks += 1; in->after_seek = true; in->after_seek_to_start = !(flags & (SEEK_FORWARD | SEEK_FACTOR)) && pts <= in->d_thread->start_time; for (int n = 0; n < in->num_streams; n++) in->streams[n]->ds->queue->last_pos_fixup = -1; if (in->recorder) mp_recorder_mark_discontinuity(in->recorder); pthread_mutex_unlock(&in->lock); MP_VERBOSE(in, "execute seek (to %f flags %d)\n", pts, flags); if (in->d_thread->desc->seek) in->d_thread->desc->seek(in->d_thread, pts, flags); MP_VERBOSE(in, "seek done\n"); pthread_mutex_lock(&in->lock); in->seeking_in_progress = MP_NOPTS_VALUE; } static void update_opts(struct demux_internal *in) { struct demux_opts *opts = in->opts; in->min_secs = opts->min_secs; in->max_bytes = opts->max_bytes; in->max_bytes_bw = opts->max_bytes_bw; int seekable = opts->seekable_cache; bool is_streaming = in->d_thread->is_streaming; bool use_cache = is_streaming; if (opts->enable_cache >= 0) use_cache = opts->enable_cache == 1; if (use_cache) { in->min_secs = MPMAX(in->min_secs, opts->min_secs_cache); if (seekable < 0) seekable = 1; } in->seekable_cache = seekable == 1; in->using_network_cache_opts = is_streaming && use_cache; if (!in->seekable_cache) in->max_bytes_bw = 0; if (!in->can_cache) { in->seekable_cache = false; in->min_secs = 0; in->max_bytes = 1; in->max_bytes_bw = 0; in->using_network_cache_opts = false; } if (in->seekable_cache && opts->disk_cache && !in->cache) { in->cache = demux_cache_create(in->global, in->log); if (!in->cache) MP_ERR(in, "Failed to create file cache.\n"); } // The filename option really decides whether recording should be active. // So if the filename changes, act upon it. char *old = in->record_filename ? in->record_filename : ""; char *new = opts->record_file ? opts->record_file : ""; if (strcmp(old, new) != 0) { if (in->recorder) { MP_WARN(in, "Stopping recording.\n"); mp_recorder_destroy(in->recorder); in->recorder = NULL; } talloc_free(in->record_filename); in->record_filename = talloc_strdup(in, opts->record_file); // Note: actual recording only starts once packets are read. It may be // important to delay creating in->recorder to that point, because the // demuxer might detect more streams until finding the first packet. in->enable_recording = in->can_record; } // In case the cache was reduced in size. prune_old_packets(in); // In case the seekable cache was disabled. free_empty_cached_ranges(in); } // Make demuxing progress. Return whether progress was made. static bool thread_work(struct demux_internal *in) { if (m_config_cache_update(in->opts_cache)) update_opts(in); if (in->tracks_switched) { execute_trackswitch(in); return true; } if (in->need_back_seek) { perform_backward_seek(in); return true; } if (in->back_any_need_recheck) { check_backward_seek(in); return true; } if (in->seeking) { execute_seek(in); return true; } if (read_packet(in)) return true; // read_packet unlocked, so recheck conditions if (mp_time_us() >= in->next_cache_update) { update_cache(in); return true; } return false; } static void *demux_thread(void *pctx) { struct demux_internal *in = pctx; mpthread_set_name("demux"); pthread_mutex_lock(&in->lock); while (!in->thread_terminate) { if (thread_work(in)) continue; pthread_cond_signal(&in->wakeup); struct timespec until = mp_time_us_to_timespec(in->next_cache_update); pthread_cond_timedwait(&in->wakeup, &in->lock, &until); } if (in->shutdown_async) { pthread_mutex_unlock(&in->lock); demux_shutdown(in); pthread_mutex_lock(&in->lock); in->shutdown_async = false; if (in->wakeup_cb) in->wakeup_cb(in->wakeup_cb_ctx); } pthread_mutex_unlock(&in->lock); return NULL; } // Low-level part of dequeueing a packet. static struct demux_packet *advance_reader_head(struct demux_stream *ds) { struct demux_packet *pkt = ds->reader_head; if (!pkt) return NULL; ds->reader_head = pkt->next; ds->last_ret_pos = pkt->pos; ds->last_ret_dts = pkt->dts; return pkt; } // Return a newly allocated new packet. The pkt parameter may be either a // in-memory packet (then a new reference is made), or a reference to // packet in the disk cache (then the packet is read from disk). static struct demux_packet *read_packet_from_cache(struct demux_internal *in, struct demux_packet *pkt) { if (!pkt) return NULL; if (pkt->is_cached) { assert(in->cache); struct demux_packet *meta = pkt; pkt = demux_cache_read(in->cache, pkt->cached_data.pos); if (pkt) { demux_packet_copy_attribs(pkt, meta); } else { MP_ERR(in, "Failed to retrieve packet from cache.\n"); } } else { // The returned packet is mutated etc. and will be owned by the user. pkt = demux_copy_packet(pkt); } return pkt; } // Returns: // < 0: EOF was reached, *res is not set // == 0: no new packet yet, wait, *res is not set // > 0: new packet is moved to *res static int dequeue_packet(struct demux_stream *ds, double min_pts, struct demux_packet **res) { struct demux_internal *in = ds->in; if (!ds->selected) return -1; if (in->blocked) return 0; if (ds->sh->attached_picture) { ds->eof = true; if (ds->attached_picture_added) return -1; ds->attached_picture_added = true; struct demux_packet *pkt = demux_copy_packet(ds->sh->attached_picture); if (!pkt) abort(); pkt->stream = ds->sh->index; *res = pkt; return 1; } if (!in->reading && (!in->eof || in->opts->force_retry_eof)) { in->reading = true; // enable demuxer thread prefetching pthread_cond_signal(&in->wakeup); } ds->force_read_until = min_pts; if (ds->back_resuming || ds->back_restarting) { assert(in->back_demuxing); return 0; } bool eof = !ds->reader_head && ds->eof; if (in->back_demuxing) { // Subtitles not supported => EOF. if (!ds->eager) return -1; // Next keyframe (or EOF) was reached => step back. if (ds->back_range_started && !ds->back_range_count && ((ds->reader_head && ds->reader_head->keyframe) || eof)) { ds->back_restarting = true; ds->back_restart_eof = false; ds->back_restart_next = false; find_backward_restart_pos(ds); if (ds->back_restarting) return 0; } eof = ds->back_range_count < 0; } ds->need_wakeup = !ds->reader_head; if (!ds->reader_head || eof) { if (!ds->eager) { // Non-eager streams temporarily return EOF. If they returned 0, // the reader would have to wait for new packets, which does not // make sense due to the sparseness and passiveness of non-eager // streams. // Unless the min_pts feature is used: then EOF is only signaled // if read-ahead went above min_pts. if (!lazy_stream_needs_wait(ds)) ds->eof = eof = true; } return eof ? -1 : 0; } struct demux_packet *pkt = advance_reader_head(ds); assert(pkt); pkt = read_packet_from_cache(in, pkt); if (!pkt) return 0; if (in->back_demuxing) { if (pkt->keyframe) { assert(ds->back_range_count > 0); ds->back_range_count -= 1; if (ds->back_range_preroll >= 0) ds->back_range_preroll -= 1; } if (ds->back_range_preroll >= 0) pkt->back_preroll = true; if (!ds->back_range_started) { pkt->back_restart = true; ds->back_range_started = true; } } double ts = MP_PTS_OR_DEF(pkt->dts, pkt->pts); if (ts != MP_NOPTS_VALUE) ds->base_ts = ts; if (pkt->keyframe && ts != MP_NOPTS_VALUE) { // Update bitrate - only at keyframe points, because we use the // (possibly) reordered packet timestamps instead of realtime. double d = ts - ds->last_br_ts; if (ds->last_br_ts == MP_NOPTS_VALUE || d < 0) { ds->bitrate = -1; ds->last_br_ts = ts; ds->last_br_bytes = 0; } else if (d >= 0.5) { // a window of least 500ms for UI purposes ds->bitrate = ds->last_br_bytes / d; ds->last_br_ts = ts; ds->last_br_bytes = 0; } } ds->last_br_bytes += pkt->len; // This implies this function is actually called from "the" user thread. if (pkt->pos >= in->d_user->filepos) in->d_user->filepos = pkt->pos; in->d_user->filesize = in->stream_size; pkt->pts = MP_ADD_PTS(pkt->pts, in->ts_offset); pkt->dts = MP_ADD_PTS(pkt->dts, in->ts_offset); if (pkt->segmented) { pkt->start = MP_ADD_PTS(pkt->start, in->ts_offset); pkt->end = MP_ADD_PTS(pkt->end, in->ts_offset); } prune_old_packets(in); *res = pkt; return 1; } // Poll the demuxer queue, and if there's a packet, return it. Otherwise, just // make the demuxer thread read packets for this stream, and if there's at // least one packet, call the wakeup callback. // This enables readahead if it wasn't yet (except for interleaved subtitles). // Returns: // < 0: EOF was reached, *out_pkt=NULL // == 0: no new packet yet, but maybe later, *out_pkt=NULL // > 0: new packet read, *out_pkt is set // Note: when reading interleaved subtitles, the demuxer won't try to forcibly // read ahead to get the next subtitle packet (as the next packet could be // minutes away). In this situation, this function will just return -1. int demux_read_packet_async(struct sh_stream *sh, struct demux_packet **out_pkt) { return demux_read_packet_async_until(sh, MP_NOPTS_VALUE, out_pkt); } // Like demux_read_packet_async(). They are the same for min_pts==MP_NOPTS_VALUE. // If min_pts is set, and the stream is lazily read (eager=false, interleaved // subtitles), then return 0 until demuxing has reached min_pts, or the queue // overflowed, or EOF was reached, or a packet was read for this stream. int demux_read_packet_async_until(struct sh_stream *sh, double min_pts, struct demux_packet **out_pkt) { struct demux_stream *ds = sh ? sh->ds : NULL; *out_pkt = NULL; if (!ds) return -1; struct demux_internal *in = ds->in; pthread_mutex_lock(&in->lock); int r = -1; while (1) { r = dequeue_packet(ds, min_pts, out_pkt); if (in->threading || in->blocked || r != 0) break; // Needs to actually read packets until we got a packet or EOF. thread_work(in); } pthread_mutex_unlock(&in->lock); return r; } // Read and return any packet we find. NULL means EOF. // Does not work with threading (don't call demux_start_thread()). struct demux_packet *demux_read_any_packet(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); assert(!in->threading); // doesn't work with threading struct demux_packet *out_pkt = NULL; bool read_more = true; while (read_more && !in->blocked) { bool all_eof = true; for (int n = 0; n < in->num_streams; n++) { int r = dequeue_packet(in->streams[n]->ds, MP_NOPTS_VALUE, &out_pkt); if (r > 0) goto done; if (r == 0) all_eof = false; } // retry after calling this read_more = thread_work(in); read_more &= !all_eof; } done: pthread_mutex_unlock(&in->lock); return out_pkt; } void demuxer_help(struct mp_log *log) { int i; mp_info(log, "Available demuxers:\n"); mp_info(log, " demuxer: info:\n"); for (i = 0; demuxer_list[i]; i++) { mp_info(log, "%10s %s\n", demuxer_list[i]->name, demuxer_list[i]->desc); } } static const char *d_level(enum demux_check level) { switch (level) { case DEMUX_CHECK_FORCE: return "force"; case DEMUX_CHECK_UNSAFE: return "unsafe"; case DEMUX_CHECK_REQUEST:return "request"; case DEMUX_CHECK_NORMAL: return "normal"; } abort(); } static int decode_float(char *str, float *out) { char *rest; float dec_val; dec_val = strtod(str, &rest); if (!rest || (rest == str) || !isfinite(dec_val)) return -1; *out = dec_val; return 0; } static int decode_gain(struct mp_log *log, struct mp_tags *tags, const char *tag, float *out) { char *tag_val = NULL; float dec_val; tag_val = mp_tags_get_str(tags, tag); if (!tag_val) return -1; if (decode_float(tag_val, &dec_val) < 0) { mp_msg(log, MSGL_ERR, "Invalid replaygain value\n"); return -1; } *out = dec_val; return 0; } static int decode_peak(struct mp_log *log, struct mp_tags *tags, const char *tag, float *out) { char *tag_val = NULL; float dec_val; *out = 1.0; tag_val = mp_tags_get_str(tags, tag); if (!tag_val) return 0; if (decode_float(tag_val, &dec_val) < 0 || dec_val <= 0.0) return -1; *out = dec_val; return 0; } static struct replaygain_data *decode_rgain(struct mp_log *log, struct mp_tags *tags) { struct replaygain_data rg = {0}; // Set values in *rg, using track gain as a fallback for album gain if the // latter is not present. This behavior matches that in demux/demux_lavf.c's // export_replaygain; if you change this, please make equivalent changes // there too. if (decode_gain(log, tags, "REPLAYGAIN_TRACK_GAIN", &rg.track_gain) >= 0 && decode_peak(log, tags, "REPLAYGAIN_TRACK_PEAK", &rg.track_peak) >= 0) { if (decode_gain(log, tags, "REPLAYGAIN_ALBUM_GAIN", &rg.album_gain) < 0 || decode_peak(log, tags, "REPLAYGAIN_ALBUM_PEAK", &rg.album_peak) < 0) { // Album gain is undefined; fall back to track gain. rg.album_gain = rg.track_gain; rg.album_peak = rg.track_peak; } return talloc_dup(NULL, &rg); } if (decode_gain(log, tags, "REPLAYGAIN_GAIN", &rg.track_gain) >= 0 && decode_peak(log, tags, "REPLAYGAIN_PEAK", &rg.track_peak) >= 0) { rg.album_gain = rg.track_gain; rg.album_peak = rg.track_peak; return talloc_dup(NULL, &rg); } return NULL; } static void demux_update_replaygain(demuxer_t *demuxer) { struct demux_internal *in = demuxer->in; for (int n = 0; n < in->num_streams; n++) { struct sh_stream *sh = in->streams[n]; if (sh->type == STREAM_AUDIO && !sh->codec->replaygain_data) { struct replaygain_data *rg = decode_rgain(demuxer->log, sh->tags); if (!rg) rg = decode_rgain(demuxer->log, demuxer->metadata); if (rg) sh->codec->replaygain_data = talloc_steal(in, rg); } } } // Copy some fields from src to dst (for initialization). static void demux_copy(struct demuxer *dst, struct demuxer *src) { // Note that we do as shallow copies as possible. We expect the data // that is not-copied (only referenced) to be immutable. // This implies e.g. that no chapters are added after initialization. dst->chapters = src->chapters; dst->num_chapters = src->num_chapters; dst->editions = src->editions; dst->num_editions = src->num_editions; dst->edition = src->edition; dst->attachments = src->attachments; dst->num_attachments = src->num_attachments; dst->matroska_data = src->matroska_data; dst->playlist = src->playlist; dst->seekable = src->seekable; dst->partially_seekable = src->partially_seekable; dst->filetype = src->filetype; dst->ts_resets_possible = src->ts_resets_possible; dst->fully_read = src->fully_read; dst->start_time = src->start_time; dst->duration = src->duration; dst->is_network = src->is_network; dst->is_streaming = src->is_streaming; dst->stream_origin = src->stream_origin; dst->priv = src->priv; dst->metadata = mp_tags_dup(dst, src->metadata); } // Update metadata after initialization. If sh==NULL, it's global metadata, // otherwise it's bound to the stream. If pts==NOPTS, use the highest known pts // in the stream. Caller retains ownership of tags ptr. Called locked. static void add_timed_metadata(struct demux_internal *in, struct mp_tags *tags, struct sh_stream *sh, double pts) { struct demux_cached_range *r = in->current_range; if (!r) return; // We don't expect this, nor do we find it useful. if (sh && sh != in->metadata_stream) return; if (pts == MP_NOPTS_VALUE) { for (int n = 0; n < r->num_streams; n++) pts = MP_PTS_MAX(pts, r->streams[n]->last_ts); // Tends to happen when doing the initial icy update. if (pts == MP_NOPTS_VALUE) pts = in->d_thread->start_time; } struct timed_metadata *tm = talloc_zero(NULL, struct timed_metadata); *tm = (struct timed_metadata){ .pts = pts, .tags = mp_tags_dup(tm, tags), .from_stream = !!sh, }; MP_TARRAY_APPEND(r, r->metadata, r->num_metadata, tm); } // This is called by demuxer implementations if sh->tags changed. Note that // sh->tags itself is never actually changed (it's immutable, because sh->tags // can be accessed by the playback thread, and there is no synchronization). // pts is the time at/after which the metadata becomes effective. You're // supposed to call this ordered by time, and only while a packet is being // read. // Ownership of tags goes to the function. void demux_stream_tags_changed(struct demuxer *demuxer, struct sh_stream *sh, struct mp_tags *tags, double pts) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_thread); struct demux_stream *ds = sh ? sh->ds : NULL; assert(!sh || ds); // stream must have been added pthread_mutex_lock(&in->lock); if (pts == MP_NOPTS_VALUE) { MP_WARN(in, "Discarding timed metadata without timestamp.\n"); } else { add_timed_metadata(in, tags, sh, pts); } talloc_free(tags); pthread_mutex_unlock(&in->lock); } // This is called by demuxer implementations if demuxer->metadata changed. // (It will be propagated to the user as timed metadata.) void demux_metadata_changed(demuxer_t *demuxer) { assert(demuxer == demuxer->in->d_thread); // call from demuxer impl. only struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); add_timed_metadata(in, demuxer->metadata, NULL, MP_NOPTS_VALUE); pthread_mutex_unlock(&in->lock); } // Called locked, with user demuxer. static void update_final_metadata(demuxer_t *demuxer, struct timed_metadata *tm) { assert(demuxer == demuxer->in->d_user); struct demux_internal *in = demuxer->in; struct mp_tags *dyn_tags = NULL; // Often useful for audio-only files, which have metadata in the audio track // metadata instead of the main metadata, but can also have cover art // metadata (which libavformat likes to treat as video streams). int astreams = 0; int astream_id = -1; int vstreams = 0; for (int n = 0; n < in->num_streams; n++) { struct sh_stream *sh = in->streams[n]; if (sh->type == STREAM_VIDEO && !sh->attached_picture) vstreams += 1; if (sh->type == STREAM_AUDIO) { astreams += 1; astream_id = n; } } // Use the metadata_stream tags only if this really seems to be an audio- // only stream. Otherwise it will happen too often that "uninteresting" // stream metadata will trash the actual file tags. if (vstreams == 0 && astreams == 1 && in->streams[astream_id] == in->metadata_stream) { dyn_tags = in->metadata_stream->tags; if (tm && tm->from_stream) dyn_tags = tm->tags; } // Global metadata updates. if (tm && !tm->from_stream) dyn_tags = tm->tags; if (dyn_tags) mp_tags_merge(demuxer->metadata, dyn_tags); } static struct timed_metadata *lookup_timed_metadata(struct demux_internal *in, double pts) { struct demux_cached_range *r = in->current_range; if (!r || !r->num_metadata || pts == MP_NOPTS_VALUE) return NULL; int start = 1; int i = in->cached_metadata_index; if (i >= 0 && i < r->num_metadata && r->metadata[i]->pts <= pts) start = i + 1; in->cached_metadata_index = r->num_metadata - 1; for (int n = start; n < r->num_metadata; n++) { if (r->metadata[n]->pts >= pts) { in->cached_metadata_index = n - 1; break; } } return r->metadata[in->cached_metadata_index]; } // Called by the user thread (i.e. player) to update metadata and other things // from the demuxer thread. // The pts parameter is the current playback position. void demux_update(demuxer_t *demuxer, double pts) { assert(demuxer == demuxer->in->d_user); struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); if (!in->threading) update_cache(in); // This implies this function is actually called from "the" user thread. in->d_user->filesize = in->stream_size; pts = MP_ADD_PTS(pts, -in->ts_offset); struct timed_metadata *prev = lookup_timed_metadata(in, in->last_playback_pts); struct timed_metadata *cur = lookup_timed_metadata(in, pts); if (prev != cur || in->force_metadata_update) { in->force_metadata_update = false; update_final_metadata(demuxer, cur); demuxer->events |= DEMUX_EVENT_METADATA; } in->last_playback_pts = pts; demuxer->events |= in->events; in->events = 0; if (demuxer->events & (DEMUX_EVENT_METADATA | DEMUX_EVENT_STREAMS)) demux_update_replaygain(demuxer); if (demuxer->events & DEMUX_EVENT_DURATION) demuxer->duration = in->duration; pthread_mutex_unlock(&in->lock); } static void demux_init_cuesheet(struct demuxer *demuxer) { char *cue = mp_tags_get_str(demuxer->metadata, "cuesheet"); if (cue && !demuxer->num_chapters) { struct cue_file *f = mp_parse_cue(bstr0(cue)); if (f) { if (mp_check_embedded_cue(f) < 0) { MP_WARN(demuxer, "Embedded cue sheet references more than one file. " "Ignoring it.\n"); } else { for (int n = 0; n < f->num_tracks; n++) { struct cue_track *t = &f->tracks[n]; int idx = demuxer_add_chapter(demuxer, "", t->start, -1); mp_tags_merge(demuxer->chapters[idx].metadata, t->tags); } } } talloc_free(f); } } // A demuxer can use this during opening if all data was read from the stream. // Calling this after opening was completed is not allowed. Also, if opening // failed, this must not be called (or trying another demuxer would fail). // Useful so that e.g. subtitles don't keep the file or socket open. // If there's ever the situation where we can't allow the demuxer to close // the stream, this function could ignore the request. void demux_close_stream(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; assert(!in->threading && demuxer == in->d_thread); if (!demuxer->stream || !in->owns_stream) return; MP_VERBOSE(demuxer, "demuxer read all data; closing stream\n"); free_stream(demuxer->stream); demuxer->stream = NULL; in->d_user->stream = NULL; } static void demux_init_ccs(struct demuxer *demuxer, struct demux_opts *opts) { struct demux_internal *in = demuxer->in; if (!opts->create_ccs) return; pthread_mutex_lock(&in->lock); for (int n = 0; n < in->num_streams; n++) { struct sh_stream *sh = in->streams[n]; if (sh->type == STREAM_VIDEO) demuxer_get_cc_track_locked(sh); } pthread_mutex_unlock(&in->lock); } // Return whether "heavy" caching on this stream is enabled. By default, this // corresponds to whether the source stream is considered in the network. The // only effect should be adjusting display behavior (of cache stats etc.), and // possibly switching between which set of options influence cache settings. bool demux_is_network_cached(demuxer_t *demuxer) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); bool r = in->using_network_cache_opts; pthread_mutex_unlock(&in->lock); return r; } struct parent_stream_info { bool seekable; bool is_network; bool is_streaming; int stream_origin; struct mp_cancel *cancel; char *filename; }; static struct demuxer *open_given_type(struct mpv_global *global, struct mp_log *log, const struct demuxer_desc *desc, struct stream *stream, struct parent_stream_info *sinfo, struct demuxer_params *params, enum demux_check check) { if (mp_cancel_test(sinfo->cancel)) return NULL; struct demuxer *demuxer = talloc_ptrtype(NULL, demuxer); struct m_config_cache *opts_cache = m_config_cache_alloc(demuxer, global, &demux_conf); struct demux_opts *opts = opts_cache->opts; *demuxer = (struct demuxer) { .desc = desc, .stream = stream, .cancel = sinfo->cancel, .seekable = sinfo->seekable, .filepos = -1, .global = global, .log = mp_log_new(demuxer, log, desc->name), .glog = log, .filename = talloc_strdup(demuxer, sinfo->filename), .is_network = sinfo->is_network, .is_streaming = sinfo->is_streaming, .stream_origin = sinfo->stream_origin, .access_references = opts->access_references, .events = DEMUX_EVENT_ALL, .duration = -1, }; struct demux_internal *in = demuxer->in = talloc_ptrtype(demuxer, in); *in = (struct demux_internal){ .global = global, .log = demuxer->log, .can_cache = params && params->is_top_level, .can_record = params && params->stream_record, .opts = opts, .opts_cache = opts_cache, .d_thread = talloc(demuxer, struct demuxer), .d_user = demuxer, .after_seek = true, // (assumed identical to initial demuxer state) .after_seek_to_start = true, .highest_av_pts = MP_NOPTS_VALUE, .seeking_in_progress = MP_NOPTS_VALUE, .demux_ts = MP_NOPTS_VALUE, .owns_stream = !params->external_stream, }; pthread_mutex_init(&in->lock, NULL); pthread_cond_init(&in->wakeup, NULL); *in->d_thread = *demuxer; in->d_thread->metadata = talloc_zero(in->d_thread, struct mp_tags); mp_dbg(log, "Trying demuxer: %s (force-level: %s)\n", desc->name, d_level(check)); if (stream) stream_seek(stream, 0); in->d_thread->params = params; // temporary during open() int ret = demuxer->desc->open(in->d_thread, check); if (ret >= 0) { in->d_thread->params = NULL; if (in->d_thread->filetype) mp_verbose(log, "Detected file format: %s (%s)\n", in->d_thread->filetype, desc->desc); else mp_verbose(log, "Detected file format: %s\n", desc->desc); if (!in->d_thread->seekable) mp_verbose(log, "Stream is not seekable.\n"); if (!in->d_thread->seekable && opts->force_seekable) { mp_warn(log, "Not seekable, but enabling seeking on user request.\n"); in->d_thread->seekable = true; in->d_thread->partially_seekable = true; } demux_init_cuesheet(in->d_thread); demux_init_ccs(demuxer, opts); demux_convert_tags_charset(in->d_thread); demux_copy(in->d_user, in->d_thread); in->duration = in->d_thread->duration; demuxer_sort_chapters(demuxer); in->events = DEMUX_EVENT_ALL; struct demuxer *sub = NULL; if (!(params && params->disable_timeline)) { struct timeline *tl = timeline_load(global, log, demuxer); if (tl) { struct demuxer_params params2 = {0}; params2.timeline = tl; params2.is_top_level = params && params->is_top_level; params2.stream_record = params && params->stream_record; sub = open_given_type(global, log, &demuxer_desc_timeline, NULL, sinfo, ¶ms2, DEMUX_CHECK_FORCE); if (sub) { in->can_cache = false; in->can_record = false; } else { timeline_destroy(tl); } } } switch_to_fresh_cache_range(in); update_opts(in); demux_update(demuxer, MP_NOPTS_VALUE); demuxer = sub ? sub : demuxer; return demuxer; } demuxer->stream = NULL; demux_free(demuxer); return NULL; } static const int d_normal[] = {DEMUX_CHECK_NORMAL, DEMUX_CHECK_UNSAFE, -1}; static const int d_request[] = {DEMUX_CHECK_REQUEST, -1}; static const int d_force[] = {DEMUX_CHECK_FORCE, -1}; // params can be NULL // This may free the stream parameter on success. static struct demuxer *demux_open(struct stream *stream, struct mp_cancel *cancel, struct demuxer_params *params, struct mpv_global *global) { const int *check_levels = d_normal; const struct demuxer_desc *check_desc = NULL; struct mp_log *log = mp_log_new(NULL, global->log, "!demux"); struct demuxer *demuxer = NULL; char *force_format = params ? params->force_format : NULL; if (!force_format) force_format = stream->demuxer; if (force_format && force_format[0] && !stream->is_directory) { check_levels = d_request; if (force_format[0] == '+') { force_format += 1; check_levels = d_force; } for (int n = 0; demuxer_list[n]; n++) { if (strcmp(demuxer_list[n]->name, force_format) == 0) check_desc = demuxer_list[n]; } if (!check_desc) { mp_err(log, "Demuxer %s does not exist.\n", force_format); goto done; } } struct parent_stream_info sinfo = { .seekable = stream->seekable, .is_network = stream->is_network, .is_streaming = stream->streaming, .stream_origin = stream->stream_origin, .cancel = cancel, .filename = talloc_strdup(NULL, stream->url), }; // Test demuxers from first to last, one pass for each check_levels[] entry for (int pass = 0; check_levels[pass] != -1; pass++) { enum demux_check level = check_levels[pass]; mp_verbose(log, "Trying demuxers for level=%s.\n", d_level(level)); for (int n = 0; demuxer_list[n]; n++) { const struct demuxer_desc *desc = demuxer_list[n]; if (!check_desc || desc == check_desc) { demuxer = open_given_type(global, log, desc, stream, &sinfo, params, level); if (demuxer) { talloc_steal(demuxer, log); log = NULL; goto done; } } } } done: talloc_free(sinfo.filename); talloc_free(log); return demuxer; } static struct stream *create_webshit_concat_stream(struct mpv_global *global, struct mp_cancel *c, bstr init, struct stream *real) { struct stream *mem = stream_memory_open(global, init.start, init.len); assert(mem); struct stream *streams[2] = {mem, real}; struct stream *concat = stream_concat_open(global, c, streams, 2); if (!concat) { free_stream(mem); free_stream(real); } return concat; } // Convenience function: open the stream, enable the cache (according to params // and global opts.), open the demuxer. // Also for some reason may close the opened stream if it's not needed. // demuxer->cancel is not the cancel parameter, but is its own object that will // be a slave (mp_cancel_set_parent()) to provided cancel object. // demuxer->cancel is automatically freed. struct demuxer *demux_open_url(const char *url, struct demuxer_params *params, struct mp_cancel *cancel, struct mpv_global *global) { if (!params) return NULL; struct mp_cancel *priv_cancel = mp_cancel_new(NULL); if (cancel) mp_cancel_set_parent(priv_cancel, cancel); struct stream *s = params->external_stream; if (!s) { s = stream_create(url, STREAM_READ | params->stream_flags, priv_cancel, global); if (s && params->init_fragment.len) { s = create_webshit_concat_stream(global, priv_cancel, params->init_fragment, s); } } if (!s) { talloc_free(priv_cancel); return NULL; } struct demuxer *d = demux_open(s, priv_cancel, params, global); if (d) { talloc_steal(d->in, priv_cancel); assert(d->cancel); } else { params->demuxer_failed = true; if (!params->external_stream) free_stream(s); talloc_free(priv_cancel); } return d; } // clear the packet queues void demux_flush(demuxer_t *demuxer) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&demuxer->in->lock); clear_reader_state(in, true); for (int n = 0; n < in->num_ranges; n++) clear_cached_range(in, in->ranges[n]); free_empty_cached_ranges(in); pthread_mutex_unlock(&demuxer->in->lock); } // Does some (but not all) things for switching to another range. static void switch_current_range(struct demux_internal *in, struct demux_cached_range *range) { struct demux_cached_range *old = in->current_range; assert(old != range); set_current_range(in, range); if (old) { // Remove packets which can't be used when seeking back to the range. for (int n = 0; n < in->num_streams; n++) { struct demux_queue *queue = old->streams[n]; // Remove all packets which cannot be involved in seeking. while (queue->head && !queue->head->keyframe) remove_head_packet(queue); } // Exclude weird corner cases that break resuming. for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; // This is needed to resume or join the range at all. if (ds->selected && !(ds->global_correct_dts || ds->global_correct_pos)) { MP_VERBOSE(in, "discarding unseekable range due to stream %d\n", n); clear_cached_range(in, old); break; } } } // Set up reading from new range (as well as writing to it). for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; ds->queue = range->streams[n]; ds->refreshing = false; ds->eof = false; } // No point in keeping any junk (especially if old current_range is empty). free_empty_cached_ranges(in); // The change detection doesn't work across ranges. in->force_metadata_update = true; } // Search for the entry with the highest index with entry.pts <= pts true. static struct demux_packet *search_index(struct demux_queue *queue, double pts) { size_t a = 0; size_t b = queue->num_index; while (a < b) { size_t m = a + (b - a) / 2; struct index_entry *e = &QUEUE_INDEX_ENTRY(queue, m); bool m_ok = e->pts <= pts; if (a + 1 == b) return m_ok ? e->pkt : NULL; if (m_ok) { a = m; } else { b = m; } } return NULL; } static struct demux_packet *find_seek_target(struct demux_queue *queue, double pts, int flags) { pts -= queue->ds->sh->seek_preroll; struct demux_packet *start = search_index(queue, pts); if (!start) start = queue->head; struct demux_packet *target = NULL; struct demux_packet *next = NULL; for (struct demux_packet *dp = start; dp; dp = next) { next = dp->next; if (!dp->keyframe) continue; double range_pts; next = compute_keyframe_times(dp, &range_pts, NULL); if (range_pts == MP_NOPTS_VALUE) continue; if (flags & SEEK_FORWARD) { // Stop on the first packet that is >= pts. if (target) break; if (range_pts < pts) continue; } else { // Stop before the first packet that is > pts. // This still returns a packet with > pts if there's no better one. if (target && range_pts > pts) break; } target = dp; } return target; } // Return a cache range for the given pts/flags, or NULL if none available. // must be called locked static struct demux_cached_range *find_cache_seek_range(struct demux_internal *in, double pts, int flags) { // Note about queued low level seeks: in->seeking can be true here, and it // might come from a previous resume seek to the current range. If we end // up seeking into the current range (i.e. just changing time offset), the // seek needs to continue. Otherwise, we override the queued seek anyway. if ((flags & SEEK_FACTOR) || !in->seekable_cache) return NULL; struct demux_cached_range *res = NULL; for (int n = 0; n < in->num_ranges; n++) { struct demux_cached_range *r = in->ranges[n]; if (r->seek_start != MP_NOPTS_VALUE) { MP_VERBOSE(in, "cached range %d: %f <-> %f (bof=%d, eof=%d)\n", n, r->seek_start, r->seek_end, r->is_bof, r->is_eof); if ((pts >= r->seek_start || r->is_bof) && (pts <= r->seek_end || r->is_eof)) { MP_VERBOSE(in, "...using this range for in-cache seek.\n"); res = r; break; } } } return res; } // Adjust the seek target to the found video key frames. Otherwise the // video will undershoot the seek target, while audio will be closer to it. // The player frontend will play the additional video without audio, so // you get silent audio for the amount of "undershoot". Adjusting the seek // target will make the audio seek to the video target or before. // (If hr-seeks are used, it's better to skip this, as it would only mean // that more audio data than necessary would have to be decoded.) static void adjust_cache_seek_target(struct demux_internal *in, struct demux_cached_range *range, double *pts, int *flags) { if (*flags & SEEK_HR) return; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; struct demux_queue *queue = range->streams[n]; if (ds->selected && ds->type == STREAM_VIDEO) { struct demux_packet *target = find_seek_target(queue, *pts, *flags); if (target) { double target_pts; compute_keyframe_times(target, &target_pts, NULL); if (target_pts != MP_NOPTS_VALUE) { MP_VERBOSE(in, "adjust seek target %f -> %f\n", *pts, target_pts); // (We assume the find_seek_target() call will return // the same target for the video stream.) *pts = target_pts; *flags &= ~SEEK_FORWARD; } } break; } } } // must be called locked // range must be non-NULL and from find_cache_seek_range() using the same pts // and flags, before any other changes to the cached state static void execute_cache_seek(struct demux_internal *in, struct demux_cached_range *range, double pts, int flags) { adjust_cache_seek_target(in, range, &pts, &flags); for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; struct demux_queue *queue = range->streams[n]; struct demux_packet *target = find_seek_target(queue, pts, flags); ds->reader_head = target; ds->skip_to_keyframe = !target; if (ds->reader_head) ds->base_ts = MP_PTS_OR_DEF(ds->reader_head->pts, ds->reader_head->dts); MP_VERBOSE(in, "seeking stream %d (%s) to ", n, stream_type_name(ds->type)); if (target) { MP_VERBOSE(in, "packet %f/%f\n", target->pts, target->dts); } else { MP_VERBOSE(in, "nothing\n"); } } // If we seek to another range, we want to seek the low level demuxer to // there as well, because reader and demuxer queue must be the same. if (in->current_range != range) { switch_current_range(in, range); in->seeking = true; in->seek_flags = SEEK_HR; in->seek_pts = range->seek_end - 1.0; // When new packets are being appended, they could overlap with the old // range due to demuxer seek imprecisions, or because the queue contains // packets past the seek target but before the next seek target. Don't // append them twice, instead skip them until new packets are found. for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; ds->refreshing = ds->selected; } MP_VERBOSE(in, "resuming demuxer to end of cached range\n"); } } // Create a new blank cache range, and backup the old one. If the seekable // demuxer cache is disabled, merely reset the current range to a blank state. static void switch_to_fresh_cache_range(struct demux_internal *in) { if (!in->seekable_cache && in->current_range) { clear_cached_range(in, in->current_range); return; } struct demux_cached_range *range = talloc_ptrtype(NULL, range); *range = (struct demux_cached_range){ .seek_start = MP_NOPTS_VALUE, .seek_end = MP_NOPTS_VALUE, }; MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range); add_missing_streams(in, range); switch_current_range(in, range); } int demux_seek(demuxer_t *demuxer, double seek_pts, int flags) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&in->lock); if (!(flags & SEEK_FACTOR)) seek_pts = MP_ADD_PTS(seek_pts, -in->ts_offset); int res = queue_seek(in, seek_pts, flags, true); pthread_cond_signal(&in->wakeup); pthread_mutex_unlock(&in->lock); return res; } static bool queue_seek(struct demux_internal *in, double seek_pts, int flags, bool clear_back_state) { if (seek_pts == MP_NOPTS_VALUE) return false; MP_VERBOSE(in, "queuing seek to %f%s\n", seek_pts, in->seeking ? " (cascade)" : ""); bool require_cache = flags & SEEK_CACHED; flags &= ~(unsigned)SEEK_CACHED; bool set_backwards = flags & SEEK_SATAN; flags &= ~(unsigned)SEEK_SATAN; bool force_seek = flags & SEEK_FORCE; flags &= ~(unsigned)SEEK_FORCE; bool block = flags & SEEK_BLOCK; flags &= ~(unsigned)SEEK_BLOCK; struct demux_cached_range *cache_target = find_cache_seek_range(in, seek_pts, flags); if (!cache_target) { if (require_cache) { MP_VERBOSE(in, "Cached seek not possible.\n"); return false; } if (!in->d_thread->seekable && !force_seek) { MP_WARN(in, "Cannot seek in this file.\n"); return false; } } in->eof = false; in->reading = false; in->back_demuxing = set_backwards; clear_reader_state(in, clear_back_state); in->blocked = block; if (cache_target) { execute_cache_seek(in, cache_target, seek_pts, flags); } else { switch_to_fresh_cache_range(in); in->seeking = true; in->seek_flags = flags; in->seek_pts = seek_pts; } for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (in->back_demuxing) { if (ds->back_seek_pos == MP_NOPTS_VALUE) ds->back_seek_pos = seek_pts; // Process possibly cached packets. back_demux_see_packets(in->streams[n]->ds); } wakeup_ds(ds); } if (!in->threading && in->seeking) execute_seek(in); return true; } struct sh_stream *demuxer_stream_by_demuxer_id(struct demuxer *d, enum stream_type t, int id) { if (id < 0) return NULL; int num = demux_get_num_stream(d); for (int n = 0; n < num; n++) { struct sh_stream *s = demux_get_stream(d, n); if (s->type == t && s->demuxer_id == id) return s; } return NULL; } // An obscure mechanism to get stream switching to be executed "faster" (as // perceived by the user), by making the stream return packets from the // current position // On a switch, it seeks back, and then grabs all packets that were // "missing" from the packet queue of the newly selected stream. static void initiate_refresh_seek(struct demux_internal *in, struct demux_stream *stream, double start_ts) { struct demuxer *demux = in->d_thread; bool seekable = demux->desc->seek && demux->seekable && !demux->partially_seekable; bool normal_seek = true; bool refresh_possible = true; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (!ds->selected) continue; if (ds->type == STREAM_VIDEO || ds->type == STREAM_AUDIO) start_ts = MP_PTS_MIN(start_ts, ds->base_ts); // If there were no other streams selected, we can use a normal seek. normal_seek &= stream == ds; refresh_possible &= ds->queue->correct_dts || ds->queue->correct_pos; } if (start_ts == MP_NOPTS_VALUE || !seekable) return; if (!normal_seek) { if (!refresh_possible) { MP_VERBOSE(in, "can't issue refresh seek\n"); return; } for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; bool correct_pos = ds->queue->correct_pos; bool correct_dts = ds->queue->correct_dts; // We need to re-read all packets anyway, so discard the buffered // data. (In theory, we could keep the packets, and be able to use // it for seeking if partially read streams are deselected again, // but this causes other problems like queue overflows when // selecting a new stream.) ds_clear_reader_queue_state(ds); clear_queue(ds->queue); // Streams which didn't have any packets yet will return all packets, // other streams return packets only starting from the last position. if (ds->selected && (ds->last_ret_pos != -1 || ds->last_ret_dts != MP_NOPTS_VALUE)) { ds->refreshing = true; ds->queue->correct_dts = correct_dts; ds->queue->correct_pos = correct_pos; ds->queue->last_pos = ds->last_ret_pos; ds->queue->last_dts = ds->last_ret_dts; } update_seek_ranges(in->current_range); } start_ts -= 1.0; // small offset to get correct overlap } MP_VERBOSE(in, "refresh seek to %f\n", start_ts); in->seeking = true; in->seek_flags = SEEK_HR; in->seek_pts = start_ts; } // Set whether the given stream should return packets. // ref_pts is used only if the stream is enabled. Then it serves as approximate // start pts for this stream (in the worst case it is ignored). void demuxer_select_track(struct demuxer *demuxer, struct sh_stream *stream, double ref_pts, bool selected) { struct demux_internal *in = demuxer->in; struct demux_stream *ds = stream->ds; pthread_mutex_lock(&in->lock); ref_pts = MP_ADD_PTS(ref_pts, -in->ts_offset); // don't flush buffers if stream is already selected / unselected if (ds->selected != selected) { MP_VERBOSE(in, "%sselect track %d\n", selected ? "" : "de", stream->index); ds->selected = selected; update_stream_selection_state(in, ds); in->tracks_switched = true; if (ds->selected) { if (in->back_demuxing) ds->back_seek_pos = ref_pts; if (!in->after_seek) initiate_refresh_seek(in, ds, ref_pts); } if (in->threading) { pthread_cond_signal(&in->wakeup); } else { execute_trackswitch(in); } } pthread_mutex_unlock(&in->lock); } // This is for demuxer implementations only. demuxer_select_track() sets the // logical state, while this function returns the actual state (in case the // demuxer attempts to cache even unselected packets for track switching - this // will potentially be done in the future). bool demux_stream_is_selected(struct sh_stream *stream) { if (!stream) return false; bool r = false; pthread_mutex_lock(&stream->ds->in->lock); r = stream->ds->selected; pthread_mutex_unlock(&stream->ds->in->lock); return r; } void demux_set_stream_wakeup_cb(struct sh_stream *sh, void (*cb)(void *ctx), void *ctx) { pthread_mutex_lock(&sh->ds->in->lock); sh->ds->wakeup_cb = cb; sh->ds->wakeup_cb_ctx = ctx; sh->ds->need_wakeup = true; pthread_mutex_unlock(&sh->ds->in->lock); } int demuxer_add_attachment(demuxer_t *demuxer, char *name, char *type, void *data, size_t data_size) { if (!(demuxer->num_attachments % 32)) demuxer->attachments = talloc_realloc(demuxer, demuxer->attachments, struct demux_attachment, demuxer->num_attachments + 32); struct demux_attachment *att = &demuxer->attachments[demuxer->num_attachments]; att->name = talloc_strdup(demuxer->attachments, name); att->type = talloc_strdup(demuxer->attachments, type); att->data = talloc_memdup(demuxer->attachments, data, data_size); att->data_size = data_size; return demuxer->num_attachments++; } static int chapter_compare(const void *p1, const void *p2) { struct demux_chapter *c1 = (void *)p1; struct demux_chapter *c2 = (void *)p2; if (c1->pts > c2->pts) return 1; else if (c1->pts < c2->pts) return -1; return c1->original_index > c2->original_index ? 1 :-1; // never equal } static void demuxer_sort_chapters(demuxer_t *demuxer) { if (demuxer->num_chapters) { qsort(demuxer->chapters, demuxer->num_chapters, sizeof(struct demux_chapter), chapter_compare); } } int demuxer_add_chapter(demuxer_t *demuxer, char *name, double pts, uint64_t demuxer_id) { struct demux_chapter new = { .original_index = demuxer->num_chapters, .pts = pts, .metadata = talloc_zero(demuxer, struct mp_tags), .demuxer_id = demuxer_id, }; mp_tags_set_str(new.metadata, "TITLE", name); MP_TARRAY_APPEND(demuxer, demuxer->chapters, demuxer->num_chapters, new); return demuxer->num_chapters - 1; } // Disallow reading any packets and make readers think there is no new data // yet, until a seek is issued. void demux_block_reading(struct demuxer *demuxer, bool block) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&in->lock); in->blocked = block; for (int n = 0; n < in->num_streams; n++) { in->streams[n]->ds->need_wakeup = true; wakeup_ds(in->streams[n]->ds); } pthread_cond_signal(&in->wakeup); pthread_mutex_unlock(&in->lock); } static void update_bytes_read(struct demux_internal *in) { struct demuxer *demuxer = in->d_thread; int64_t new = in->slave_unbuffered_read_bytes; in->slave_unbuffered_read_bytes = 0; int64_t new_seeks = 0; struct stream *stream = demuxer->stream; if (stream) { new += stream->total_unbuffered_read_bytes; stream->total_unbuffered_read_bytes = 0; new_seeks += stream->total_stream_seeks; stream->total_stream_seeks = 0; } in->cache_unbuffered_read_bytes += new; in->hack_unbuffered_read_bytes += new; in->byte_level_seeks += new_seeks; } // must be called locked, temporarily unlocks static void update_cache(struct demux_internal *in) { struct demuxer *demuxer = in->d_thread; struct stream *stream = demuxer->stream; int64_t now = mp_time_us(); int64_t diff = now - in->last_speed_query; bool do_update = diff >= MP_SECOND_US; // Don't lock while querying the stream. pthread_mutex_unlock(&in->lock); int64_t stream_size = -1; struct mp_tags *stream_metadata = NULL; if (stream) { if (do_update) stream_size = stream_get_size(stream); stream_control(stream, STREAM_CTRL_GET_METADATA, &stream_metadata); } update_bytes_read(in); pthread_mutex_lock(&in->lock); if (do_update) in->stream_size = stream_size; if (stream_metadata) { add_timed_metadata(in, stream_metadata, NULL, MP_NOPTS_VALUE); talloc_free(stream_metadata); } in->next_cache_update = INT64_MAX; if (do_update) { uint64_t bytes = in->cache_unbuffered_read_bytes; in->cache_unbuffered_read_bytes = 0; in->last_speed_query = now; in->bytes_per_second = bytes / (diff / (double)MP_SECOND_US); } // The idea is to update as long as there is "activity". if (in->bytes_per_second) in->next_cache_update = now + MP_SECOND_US + 1; } static void dumper_close(struct demux_internal *in) { if (in->dumper) mp_recorder_destroy(in->dumper); in->dumper = NULL; if (in->dumper_status == CONTROL_TRUE) in->dumper_status = CONTROL_FALSE; // make abort equal to success } static int range_time_compare(const void *p1, const void *p2) { struct demux_cached_range *r1 = (void *)p1; struct demux_cached_range *r2 = (void *)p2; if (r1->seek_start == r2->seek_start) return 0; return r1->seek_start < r2->seek_start ? -1 : 1; } static void dump_cache(struct demux_internal *in, double start, double end) { in->dumper_status = in->dumper ? CONTROL_TRUE : CONTROL_ERROR; if (!in->dumper) return; // (only in pathological cases there might be more ranges than allowed) struct demux_cached_range *ranges[MAX_SEEK_RANGES]; int num_ranges = 0; for (int n = 0; n < MPMIN(MP_ARRAY_SIZE(ranges), in->num_ranges); n++) ranges[num_ranges++] = in->ranges[n]; qsort(ranges, num_ranges, sizeof(ranges[0]), range_time_compare); for (int n = 0; n < num_ranges; n++) { struct demux_cached_range *r = ranges[n]; if (r->seek_start == MP_NOPTS_VALUE) continue; if (r->seek_end <= start) continue; if (end != MP_NOPTS_VALUE && r->seek_start >= end) continue; mp_recorder_mark_discontinuity(in->dumper); double pts = start; int flags = 0; adjust_cache_seek_target(in, r, &pts, &flags); for (int i = 0; i < r->num_streams; i++) { struct demux_queue *q = r->streams[i]; struct demux_stream *ds = q->ds; ds->dump_pos = find_seek_target(q, pts, flags); } // We need to reinterleave the separate streams somehow, which makes // everything more complex. while (1) { struct demux_packet *next = NULL; double next_dts = MP_NOPTS_VALUE; for (int i = 0; i < r->num_streams; i++) { struct demux_stream *ds = r->streams[i]->ds; struct demux_packet *dp = ds->dump_pos; if (!dp) continue; assert(dp->stream == ds->index); double pdts = MP_PTS_OR_DEF(dp->dts, dp->pts); // Check for stream EOF. Note that we don't try to EOF // streams at the same point (e.g. video can take longer // to finish than audio, so the output file will have no // audio for the last part of the video). Too much effort. if (pdts != MP_NOPTS_VALUE && end != MP_NOPTS_VALUE && pdts >= end && dp->keyframe) { ds->dump_pos = NULL; continue; } if (pdts == MP_NOPTS_VALUE || next_dts == MP_NOPTS_VALUE || pdts < next_dts) { next_dts = pdts; next = dp; } } if (!next) break; struct demux_stream *ds = in->streams[next->stream]->ds; ds->dump_pos = next->next; struct demux_packet *dp = read_packet_from_cache(in, next); if (!dp) { in->dumper_status = CONTROL_ERROR; break; } write_dump_packet(in, dp); talloc_free(dp); } if (in->dumper_status != CONTROL_OK) break; } // (strictly speaking unnecessary; for clarity) for (int n = 0; n < in->num_streams; n++) in->streams[n]->ds->dump_pos = NULL; // If dumping (in end==NOPTS mode) doesn't continue at the range that // was written last, we have a discontinuity. if (num_ranges && ranges[num_ranges - 1] != in->current_range) mp_recorder_mark_discontinuity(in->dumper); // end=NOPTS means the demuxer output continues to be written to the // dump file. if (end != MP_NOPTS_VALUE || in->dumper_status != CONTROL_OK) dumper_close(in); } // Set the current cache dumping mode. There is only at most 1 dump process // active, so calling this aborts the previous dumping. Passing file==NULL // stops dumping. // This is synchronous with demux_cache_dump_get_status() (i.e. starting or // aborting is not asynchronous). On status change, the demuxer wakeup callback // is invoked (except for this call). // Returns whether dumping was logically started. bool demux_cache_dump_set(struct demuxer *demuxer, double start, double end, char *file) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); bool res = false; pthread_mutex_lock(&in->lock); start = MP_ADD_PTS(start, -in->ts_offset); end = MP_ADD_PTS(end, -in->ts_offset); dumper_close(in); if (file && file[0] && start != MP_NOPTS_VALUE) { res = true; in->dumper = recorder_create(in, file); // This is not asynchronous and will freeze the shit for a while if the // user is unlucky. It could be moved to a thread with some effort. // General idea: iterate over all cache ranges, dump what intersects. // After that, and if the user requested it, make it dump all newly // received packets, even if it's awkward (consider the case if the // current range is not the last range). dump_cache(in, start, end); } pthread_mutex_unlock(&in->lock); return res; } // Returns one of CONTROL_*. CONTROL_TRUE means dumping is in progress. int demux_cache_dump_get_status(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; pthread_mutex_lock(&in->lock); int status = in->dumper_status; pthread_mutex_unlock(&in->lock); return status; } // Return what range demux_cache_dump_set() would (probably) yield. This is a // conservative amount (in addition to internal consistency of this code, it // depends on what a player will do with the resulting file). // Use for_end==true to get the end of dumping, other the start. // Returns NOPTS if nothing was found. double demux_probe_cache_dump_target(struct demuxer *demuxer, double pts, bool for_end) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); double res = MP_NOPTS_VALUE; if (pts == MP_NOPTS_VALUE) return pts; pthread_mutex_lock(&in->lock); pts = MP_ADD_PTS(pts, -in->ts_offset); // (When determining the end, look before the keyframe at pts, so subtract // an arbitrary amount to round down.) double seek_pts = for_end ? pts - 0.001 : pts; int flags = 0; struct demux_cached_range *r = find_cache_seek_range(in, seek_pts, flags); if (r) { if (!for_end) adjust_cache_seek_target(in, r, &pts, &flags); double t[STREAM_TYPE_COUNT]; for (int n = 0; n < STREAM_TYPE_COUNT; n++) t[n] = MP_NOPTS_VALUE; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; struct demux_queue *q = r->streams[n]; struct demux_packet *dp = find_seek_target(q, pts, flags); if (dp) { if (for_end) { while (dp) { double pdts = MP_PTS_OR_DEF(dp->dts, dp->pts); if (pdts != MP_NOPTS_VALUE && pdts >= pts && dp->keyframe) break; t[ds->type] = MP_PTS_MAX(t[ds->type], pdts); dp = dp->next; } } else { double start; compute_keyframe_times(dp, &start, NULL); start = MP_PTS_MAX(start, r->seek_start); t[ds->type] = MP_PTS_MAX(t[ds->type], start); } } } res = t[STREAM_VIDEO]; if (res == MP_NOPTS_VALUE) res = t[STREAM_AUDIO]; if (res == MP_NOPTS_VALUE) { for (int n = 0; n < STREAM_TYPE_COUNT; n++) { res = t[n]; if (res != MP_NOPTS_VALUE) break; } } } res = MP_ADD_PTS(res, in->ts_offset); pthread_mutex_unlock(&in->lock); return res; } // Used by demuxers to report the amount of transferred bytes. This is for // streams which circumvent demuxer->stream (stream statistics are handled by // demux.c itself). void demux_report_unbuffered_read_bytes(struct demuxer *demuxer, int64_t new) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_thread); in->slave_unbuffered_read_bytes += new; } // Return bytes read since last query. It's a hack because it works only if // the demuxer thread is disabled. int64_t demux_get_bytes_read_hack(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; // Required because demuxer==in->d_user, and we access in->d_thread. // Locking won't solve this, because we also need to access struct stream. assert(!in->threading); update_bytes_read(in); int64_t res = in->hack_unbuffered_read_bytes; in->hack_unbuffered_read_bytes = 0; return res; } void demux_get_bitrate_stats(struct demuxer *demuxer, double *rates) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&in->lock); for (int n = 0; n < STREAM_TYPE_COUNT; n++) rates[n] = -1; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->selected && ds->bitrate >= 0) rates[ds->type] = MPMAX(0, rates[ds->type]) + ds->bitrate; } pthread_mutex_unlock(&in->lock); } void demux_get_reader_state(struct demuxer *demuxer, struct demux_reader_state *r) { struct demux_internal *in = demuxer->in; assert(demuxer == in->d_user); pthread_mutex_lock(&in->lock); *r = (struct demux_reader_state){ .eof = in->eof, .ts_reader = MP_NOPTS_VALUE, .ts_end = MP_NOPTS_VALUE, .ts_duration = -1, .total_bytes = in->total_bytes, .seeking = in->seeking_in_progress, .low_level_seeks = in->low_level_seeks, .ts_last = in->demux_ts, .bytes_per_second = in->bytes_per_second, .byte_level_seeks = in->byte_level_seeks, .file_cache_bytes = in->cache ? demux_cache_get_size(in->cache) : -1, }; bool any_packets = false; for (int n = 0; n < in->num_streams; n++) { struct demux_stream *ds = in->streams[n]->ds; if (ds->eager && !(!ds->queue->head && ds->eof) && !ds->ignore_eof) { r->underrun |= !ds->reader_head && !ds->eof && !ds->still_image; r->ts_reader = MP_PTS_MAX(r->ts_reader, ds->base_ts); r->ts_end = MP_PTS_MAX(r->ts_end, ds->queue->last_ts); any_packets |= !!ds->reader_head; } r->fw_bytes += get_foward_buffered_bytes(ds); } r->idle = (!in->reading && !r->underrun) || r->eof; r->underrun &= !r->idle && in->threading; r->ts_reader = MP_ADD_PTS(r->ts_reader, in->ts_offset); r->ts_end = MP_ADD_PTS(r->ts_end, in->ts_offset); if (r->ts_reader != MP_NOPTS_VALUE && r->ts_reader <= r->ts_end) r->ts_duration = r->ts_end - r->ts_reader; if (in->seeking || !any_packets) r->ts_duration = 0; for (int n = 0; n < MPMIN(in->num_ranges, MAX_SEEK_RANGES); n++) { struct demux_cached_range *range = in->ranges[n]; if (range->seek_start != MP_NOPTS_VALUE) { r->seek_ranges[r->num_seek_ranges++] = (struct demux_seek_range){ .start = MP_ADD_PTS(range->seek_start, in->ts_offset), .end = MP_ADD_PTS(range->seek_end, in->ts_offset), }; r->bof_cached |= range->is_bof; r->eof_cached |= range->is_eof; } } pthread_mutex_unlock(&in->lock); } bool demux_cancel_test(struct demuxer *demuxer) { return mp_cancel_test(demuxer->cancel); } struct demux_chapter *demux_copy_chapter_data(struct demux_chapter *c, int num) { struct demux_chapter *new = talloc_array(NULL, struct demux_chapter, num); for (int n = 0; n < num; n++) { new[n] = c[n]; new[n].metadata = mp_tags_dup(new, new[n].metadata); } return new; } static void visit_tags(void *ctx, void (*visit)(void *ctx, void *ta, char **s), struct mp_tags *tags) { for (int n = 0; n < (tags ? tags->num_keys : 0); n++) visit(ctx, tags, &tags->values[n]); } static void visit_meta(struct demuxer *demuxer, void *ctx, void (*visit)(void *ctx, void *ta, char **s)) { struct demux_internal *in = demuxer->in; for (int n = 0; n < in->num_streams; n++) { struct sh_stream *sh = in->streams[n]; visit(ctx, sh, &sh->title); visit_tags(ctx, visit, sh->tags); } for (int n = 0; n < demuxer->num_chapters; n++) visit_tags(ctx, visit, demuxer->chapters[n].metadata); visit_tags(ctx, visit, demuxer->metadata); } static void visit_detect(void *ctx, void *ta, char **s) { char **all = ctx; if (*s) *all = talloc_asprintf_append_buffer(*all, "%s\n", *s); } static void visit_convert(void *ctx, void *ta, char **s) { struct demuxer *demuxer = ctx; struct demux_internal *in = demuxer->in; if (!*s) return; bstr data = bstr0(*s); bstr conv = mp_iconv_to_utf8(in->log, data, in->meta_charset, MP_ICONV_VERBOSE); if (conv.start && conv.start != data.start) { char *ns = conv.start; // 0-termination is guaranteed // (The old string might not be an alloc, but if it is, it's a talloc // child, and will not leak, even if it stays allocated uselessly.) *s = ns; talloc_steal(ta, *s); } } static void demux_convert_tags_charset(struct demuxer *demuxer) { struct demux_internal *in = demuxer->in; char *cp = in->opts->meta_cp; if (!cp || mp_charset_is_utf8(cp)) return; char *data = talloc_strdup(NULL, ""); visit_meta(demuxer, &data, visit_detect); in->meta_charset = (char *)mp_charset_guess(in, in->log, bstr0(data), cp, 0); if (in->meta_charset && !mp_charset_is_utf8(in->meta_charset)) { MP_INFO(demuxer, "Using tag charset: %s\n", in->meta_charset); visit_meta(demuxer, demuxer, visit_convert); } talloc_free(data); } static bool get_demux_sub_opts(int index, const struct m_sub_options **sub) { if (!demuxer_list[index]) return false; *sub = demuxer_list[index]->options; return true; }