/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include "osdep/io.h"
#include "ao.h"
#include "internal.h"
#include "audio/format.h"
#include "common/msg.h"
#include "common/common.h"
#include "input/input.h"
#include "osdep/threads.h"
#include "osdep/timer.h"
#include "compat/atomics.h"
#include "audio/audio.h"
#include "audio/audio_buffer.h"
struct ao_push_state {
pthread_t thread;
pthread_mutex_t lock;
pthread_cond_t wakeup;
pthread_cond_t wakeup_drain;
// --- protected by lock
struct mp_audio_buffer *buffer;
bool terminate;
bool drain;
bool buffers_full;
bool avoid_ao_wait;
bool need_wakeup;
bool requested_data;
bool paused;
// Whether the current buffer contains the complete audio.
bool final_chunk;
double expected_end_time;
int wakeup_pipe[2];
};
// lock must be held
static void wakeup_playthread(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
if (ao->driver->wakeup)
ao->driver->wakeup(ao);
p->need_wakeup = true;
pthread_cond_signal(&p->wakeup);
}
static int control(struct ao *ao, enum aocontrol cmd, void *arg)
{
int r = CONTROL_UNKNOWN;
if (ao->driver->control) {
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
r = ao->driver->control(ao, cmd, arg);
pthread_mutex_unlock(&p->lock);
}
return r;
}
static float get_delay(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
double driver_delay = 0;
if (ao->driver->get_delay)
driver_delay = ao->driver->get_delay(ao);
double delay = driver_delay + mp_audio_buffer_seconds(p->buffer);
pthread_mutex_unlock(&p->lock);
if (delay >= AO_EOF_DELAY && p->expected_end_time) {
if (mp_time_sec() > p->expected_end_time) {
MP_ERR(ao, "Audio device EOF reporting is broken!\n");
MP_ERR(ao, "Please report this problem.\n");
delay = 0;
}
}
return delay;
}
static void reset(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
if (ao->driver->reset)
ao->driver->reset(ao);
mp_audio_buffer_clear(p->buffer);
p->paused = false;
wakeup_playthread(ao);
pthread_mutex_unlock(&p->lock);
}
static void audio_pause(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
if (ao->driver->pause)
ao->driver->pause(ao);
p->paused = true;
wakeup_playthread(ao);
pthread_mutex_unlock(&p->lock);
}
static void resume(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
if (ao->driver->resume)
ao->driver->resume(ao);
p->paused = false;
p->expected_end_time = 0;
wakeup_playthread(ao);
pthread_mutex_unlock(&p->lock);
}
static void drain(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
if (p->paused) {
pthread_mutex_unlock(&p->lock);
return;
}
p->final_chunk = true;
p->drain = true;
wakeup_playthread(ao);
while (p->drain)
pthread_cond_wait(&p->wakeup_drain, &p->lock);
pthread_mutex_unlock(&p->lock);
if (!ao->driver->drain)
mp_sleep_us(get_delay(ao) * 1000000);
reset(ao);
}
static int unlocked_get_space(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
int space = mp_audio_buffer_get_write_available(p->buffer);
if (ao->driver->get_space) {
// The following code attempts to keep the total buffered audio to
// MIN_BUFFER/2+device_buffer in order to improve latency.
int device_space = ao->driver->get_space(ao);
int device_buffered = ao->device_buffer - device_space;
int soft_buffered = mp_audio_buffer_samples(p->buffer);
int min_buffer = MIN_BUFFER / 2 * ao->samplerate + ao->device_buffer;
int total_buffer = device_buffered + soft_buffered;
int missing = min_buffer - total_buffer;
space = MPMIN(space, missing);
space = MPMAX(0, space);
}
return space;
}
static int get_space(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
int space = unlocked_get_space(ao);
pthread_mutex_unlock(&p->lock);
return space;
}
static int play(struct ao *ao, void **data, int samples, int flags)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
int write_samples = mp_audio_buffer_get_write_available(p->buffer);
write_samples = MPMIN(write_samples, samples);
if (write_samples < samples)
flags = flags & ~AOPLAY_FINAL_CHUNK;
bool is_final = flags & AOPLAY_FINAL_CHUNK;
struct mp_audio audio;
mp_audio_buffer_get_format(p->buffer, &audio);
for (int n = 0; n < ao->num_planes; n++)
audio.planes[n] = data[n];
audio.samples = write_samples;
mp_audio_buffer_append(p->buffer, &audio);
bool got_data = write_samples > 0 || p->paused || p->final_chunk != is_final;
p->expected_end_time = 0;
p->final_chunk = is_final;
p->paused = false;
// If we don't have new data, the decoder thread basically promises it
// will send new data as soon as it's available.
if (got_data) {
p->requested_data = false;
wakeup_playthread(ao);
}
pthread_mutex_unlock(&p->lock);
return write_samples;
}
// called locked
static void ao_play_data(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
struct mp_audio data;
mp_audio_buffer_peek(p->buffer, &data);
int max = data.samples;
int space = ao->driver->get_space(ao);
space = MPMAX(space, 0);
if (data.samples > space)
data.samples = space;
int flags = 0;
if (p->final_chunk && data.samples == max)
flags |= AOPLAY_FINAL_CHUNK;
MP_STATS(ao, "start ao fill");
int r = 0;
if (data.samples)
r = ao->driver->play(ao, data.planes, data.samples, flags);
MP_STATS(ao, "end ao fill");
if (r > data.samples) {
MP_WARN(ao, "Audio device returned non-sense value.\n");
r = data.samples;
}
r = MPMAX(r, 0);
// Probably can't copy the rest of the buffer due to period alignment.
bool stuck = r <= 0 && space >= max && data.samples > 0;
if ((flags & AOPLAY_FINAL_CHUNK) && stuck) {
MP_ERR(ao, "Audio output driver seems to ignore AOPLAY_FINAL_CHUNK.\n");
r = max;
}
mp_audio_buffer_skip(p->buffer, r);
if (p->final_chunk && mp_audio_buffer_samples(p->buffer) == 0) {
p->expected_end_time = mp_time_sec() + AO_EOF_DELAY + 0.25; // + margin
if (ao->driver->get_delay)
p->expected_end_time += ao->driver->get_delay(ao);
}
// In both cases, we have to account for space!=0, but the AO not accepting
// any new data (due to rounding to period boundaries).
p->buffers_full = max >= space && r <= 0;
p->avoid_ao_wait = (max == 0 && space > 0) || p->paused || stuck;
MP_TRACE(ao, "in=%d, space=%d r=%d flags=%d aw=%d full=%d f=%d\n", max,
space, r, flags, p->avoid_ao_wait, p->buffers_full, p->final_chunk);
}
// Estimate when the AO needs data again.
static double ao_estimate_timeout(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
double timeout = 0;
if (p->buffers_full && ao->driver->get_delay) {
timeout = ao->driver->get_delay(ao) - 0.050;
// Keep extra safety margin if the buffers are large
if (timeout > 0.100)
timeout = MPMAX(timeout - 0.200, 0.100);
}
return MPMAX(timeout, ao->device_buffer * 0.75 / ao->samplerate);
}
static void *playthread(void *arg)
{
struct ao *ao = arg;
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
while (!p->terminate) {
if (!p->paused)
ao_play_data(ao);
// Request new data from decoder if buffer goes below "full".
// Allow a small margin of missing data for AOs that use timeouts.
double margin = ao->driver->wait ? 0 : ao->device_buffer / 8;
if (!p->buffers_full && unlocked_get_space(ao) > margin) {
if (!p->requested_data)
mp_input_wakeup(ao->input_ctx);
p->requested_data = true;
}
if (p->drain && (p->avoid_ao_wait || p->paused)) {
if (ao->driver->drain)
ao->driver->drain(ao);
p->drain = false;
pthread_cond_signal(&p->wakeup_drain);
}
if (!p->need_wakeup) {
MP_STATS(ao, "start audio wait");
if (p->avoid_ao_wait || p->paused) {
// Avoid busy waiting, because the audio API will still report
// that it needs new data, even if we're not ready yet, or if
// get_space() decides that the amount of audio buffered in the
// device is enough, and p->buffer can be empty.
// The most important part is that the decoder is woken up, so
// that the decoder will wake up us in turn.
MP_TRACE(ao, "buffer inactive.\n");
mp_input_wakeup(ao->input_ctx);
pthread_cond_wait(&p->wakeup, &p->lock);
} else {
if (!ao->driver->wait || ao->driver->wait(ao, &p->lock) < 0) {
// Fallback to guessing.
double timeout = ao_estimate_timeout(ao);
mpthread_cond_timedwait_rel(&p->wakeup, &p->lock, timeout);
}
}
MP_STATS(ao, "end audio wait");
}
p->need_wakeup = false;
}
pthread_mutex_unlock(&p->lock);
return NULL;
}
static void uninit(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_lock(&p->lock);
p->terminate = true;
wakeup_playthread(ao);
pthread_mutex_unlock(&p->lock);
pthread_join(p->thread, NULL);
ao->driver->uninit(ao);
for (int n = 0; n < 2; n++)
close(p->wakeup_pipe[n]);
pthread_cond_destroy(&p->wakeup);
pthread_cond_destroy(&p->wakeup_drain);
pthread_mutex_destroy(&p->lock);
}
static int init(struct ao *ao)
{
struct ao_push_state *p = ao->api_priv;
pthread_mutex_init(&p->lock, NULL);
pthread_cond_init(&p->wakeup, NULL);
pthread_cond_init(&p->wakeup_drain, NULL);
mp_make_wakeup_pipe(p->wakeup_pipe);
p->buffer = mp_audio_buffer_create(ao);
mp_audio_buffer_reinit_fmt(p->buffer, ao->format,
&ao->channels, ao->samplerate);
mp_audio_buffer_preallocate_min(p->buffer, ao->buffer);
if (pthread_create(&p->thread, NULL, playthread, ao))
goto err;
return 0;
err:
ao->driver->uninit(ao);
return -1;
}
const struct ao_driver ao_api_push = {
.init = init,
.control = control,
.uninit = uninit,
.reset = reset,
.get_space = get_space,
.play = play,
.get_delay = get_delay,
.pause = audio_pause,
.resume = resume,
.drain = drain,
.priv_size = sizeof(struct ao_push_state),
};
// Must be called locked.
int ao_play_silence(struct ao *ao, int samples)
{
assert(ao->api == &ao_api_push);
if (samples <= 0 || AF_FORMAT_IS_SPECIAL(ao->format) || !ao->driver->play)
return 0;
char *p = talloc_size(NULL, samples * ao->sstride);
af_fill_silence(p, samples * ao->sstride, ao->format);
void *tmp[MP_NUM_CHANNELS];
for (int n = 0; n < MP_NUM_CHANNELS; n++)
tmp[n] = p;
int r = ao->driver->play(ao, tmp, samples, 0);
talloc_free(p);
return r;
}
#ifndef __MINGW32__
#include
#define MAX_POLL_FDS 20
// Call poll() for the given fds. This will extend the given fds with the
// wakeup pipe, so ao_wakeup_poll() will basically interrupt this function.
// Unlocks the lock temporarily.
// Returns <0 on error, 0 on success, 1 if the caller should return immediately.
int ao_wait_poll(struct ao *ao, struct pollfd *fds, int num_fds,
pthread_mutex_t *lock)
{
struct ao_push_state *p = ao->api_priv;
assert(ao->api == &ao_api_push);
assert(&p->lock == lock);
if (num_fds > MAX_POLL_FDS || p->wakeup_pipe[0] < 0)
return -1;
struct pollfd p_fds[MAX_POLL_FDS];
memcpy(p_fds, fds, num_fds * sizeof(p_fds[0]));
p_fds[num_fds] = (struct pollfd){
.fd = p->wakeup_pipe[0],
.events = POLLIN,
};
pthread_mutex_unlock(&p->lock);
int r = poll(p_fds, num_fds + 1, -1);
r = r < 0 ? -errno : 0;
pthread_mutex_lock(&p->lock);
memcpy(fds, p_fds, num_fds * sizeof(fds[0]));
bool wakeup = false;
if (p_fds[num_fds].revents & POLLIN) {
wakeup = true;
// flush the wakeup pipe contents - might "drown" some wakeups, but
// that's ok for our use-case
char buf[100];
read(p->wakeup_pipe[0], buf, sizeof(buf));
}
return (r >= 0 || r == -EINTR) ? wakeup : -1;
}
void ao_wakeup_poll(struct ao *ao)
{
assert(ao->api == &ao_api_push);
struct ao_push_state *p = ao->api_priv;
write(p->wakeup_pipe[1], &(char){0}, 1);
}
#endif