/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with mpv. If not, see . * * You can alternatively redistribute this file and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include "gl_video.h" #include "misc/bstr.h" #include "gl_common.h" #include "gl_osd.h" #include "filter_kernels.h" #include "aspect.h" #include "video/memcpy_pic.h" #include "bitmap_packer.h" #include "dither.h" static const char vo_opengl_shaders[] = // Generated from gl_video_shaders.glsl #include "video/out/gl_video_shaders.h" ; // Pixel width of 1D lookup textures. #define LOOKUP_TEXTURE_SIZE 256 // Texture units 0-3 are used by the video, with unit 0 for free use. // Units 4-5 are used for scaler LUTs. #define TEXUNIT_SCALERS 4 #define TEXUNIT_3DLUT 6 #define TEXUNIT_DITHER 7 // lscale/cscale arguments that map directly to shader filter routines. // Note that the convolution filters are not included in this list. static const char *const fixed_scale_filters[] = { "bilinear", "bicubic_fast", "sharpen3", "sharpen5", NULL }; struct lut_tex_format { int pixels; GLint internal_format; GLenum format; }; // Indexed with filter_kernel->size. // This must match the weightsN functions in the shader. // Each entry uses (size+3)/4 pixels per LUT entry, and size/pixels components // per pixel. const struct lut_tex_format lut_tex_formats[] = { [2] = {1, GL_RG16F, GL_RG}, [4] = {1, GL_RGBA16F, GL_RGBA}, [6] = {2, GL_RGB16F, GL_RGB}, [8] = {2, GL_RGBA16F, GL_RGBA}, [12] = {3, GL_RGBA16F, GL_RGBA}, [16] = {4, GL_RGBA16F, GL_RGBA}, }; // must be sorted, and terminated with 0 static const int filter_sizes[] = {2, 4, 6, 8, 12, 16, 0}; struct vertex { float position[2]; uint8_t color[4]; float texcoord[2]; }; #define VERTEX_ATTRIB_POSITION 0 #define VERTEX_ATTRIB_COLOR 1 #define VERTEX_ATTRIB_TEXCOORD 2 // 2 triangles primitives per quad = 6 vertices per quad // (GL_QUAD is deprecated, strips can't be used with OSD image lists) #define VERTICES_PER_QUAD 6 struct texplane { int w, h; int tex_w, tex_h; GLint gl_internal_format; GLenum gl_format; GLenum gl_type; GLuint gl_texture; int gl_buffer; int buffer_size; void *buffer_ptr; }; struct video_image { struct texplane planes[4]; bool image_flipped; struct mp_image *hwimage; // if hw decoding is active }; struct scaler { int index; const char *name; float params[2]; struct filter_kernel *kernel; GLuint gl_lut; const char *lut_name; // kernel points here struct filter_kernel kernel_storage; }; struct fbotex { GLuint fbo; GLuint texture; int tex_w, tex_h; // size of .texture int vp_x, vp_y, vp_w, vp_h; // viewport of fbo / used part of the texture }; struct gl_video { GL *gl; struct mp_log *log; struct gl_video_opts opts; bool gl_debug; int depth_g; GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs GLuint vertex_buffer; GLuint vao; GLuint osd_programs[SUBBITMAP_COUNT]; GLuint indirect_program, scale_sep_program, final_program; struct osd_state *osd_state; struct mpgl_osd *osd; double osd_pts; GLuint lut_3d_texture; bool use_lut_3d; GLuint dither_texture; float dither_quantization; float dither_center; int dither_size; uint32_t image_w, image_h; uint32_t image_dw, image_dh; uint32_t image_format; int texture_w, texture_h; struct mp_imgfmt_desc image_desc; bool is_yuv, is_rgb, is_packed_yuv; bool is_linear_rgb; bool has_alpha; char color_swizzle[5]; float input_gamma, conv_gamma; // per pixel (full pixel when packed, each component when planar) int plane_bits; int plane_count; struct video_image image; bool have_image; struct fbotex indirect_fbo; // RGB target struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling // state for luma (0) and chroma (1) scalers struct scaler scalers[2]; struct mp_csp_equalizer video_eq; struct mp_image_params image_params; // Source and destination color spaces for the CMS matrix struct mp_csp_primaries csp_src, csp_dest; struct mp_rect src_rect; // displayed part of the source video struct mp_rect src_rect_rot;// compensated for optional rotation struct mp_rect dst_rect; // video rectangle on output window struct mp_osd_res osd_rect; // OSD size/margins int vp_x, vp_y, vp_w, vp_h; // GL viewport int frames_rendered; // Cached because computing it can take relatively long int last_dither_matrix_size; float *last_dither_matrix; struct gl_hwdec *hwdec; bool hwdec_active; void *scratch; }; struct fmt_entry { int mp_format; GLint internal_format; GLenum format; GLenum type; }; // Very special formats, for which OpenGL happens to have direct support static const struct fmt_entry mp_to_gl_formats[] = { {IMGFMT_BGR555, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_BGR565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV}, {IMGFMT_RGB555, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_RGB565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, {0}, }; static const struct fmt_entry gl_byte_formats[] = { {0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8 {0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8 {0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8 {0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8 {0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16 {0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16 {0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16 {0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16 }; static const struct fmt_entry gl_apple_formats[] = { {IMGFMT_UYVY, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_APPLE}, {IMGFMT_YUYV, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE}, {0} }; struct packed_fmt_entry { int fmt; int8_t component_size; int8_t components[4]; // source component - 0 means unmapped }; static const struct packed_fmt_entry mp_packed_formats[] = { // R G B A {IMGFMT_Y8, 1, {1, 0, 0, 0}}, {IMGFMT_Y16, 2, {1, 0, 0, 0}}, {IMGFMT_YA8, 1, {1, 0, 0, 2}}, {IMGFMT_ARGB, 1, {2, 3, 4, 1}}, {IMGFMT_0RGB, 1, {2, 3, 4, 0}}, {IMGFMT_BGRA, 1, {3, 2, 1, 4}}, {IMGFMT_BGR0, 1, {3, 2, 1, 0}}, {IMGFMT_ABGR, 1, {4, 3, 2, 1}}, {IMGFMT_0BGR, 1, {4, 3, 2, 0}}, {IMGFMT_RGBA, 1, {1, 2, 3, 4}}, {IMGFMT_RGB0, 1, {1, 2, 3, 0}}, {IMGFMT_BGR24, 1, {3, 2, 1, 0}}, {IMGFMT_RGB24, 1, {1, 2, 3, 0}}, {IMGFMT_RGB48, 2, {1, 2, 3, 0}}, {IMGFMT_RGBA64, 2, {1, 2, 3, 4}}, {IMGFMT_BGRA64, 2, {3, 2, 1, 4}}, {0}, }; static const char *const osd_shaders[SUBBITMAP_COUNT] = { [SUBBITMAP_LIBASS] = "frag_osd_libass", [SUBBITMAP_RGBA] = "frag_osd_rgba", }; static const struct gl_video_opts gl_video_opts_def = { .npot = 1, .dither_depth = -1, .dither_size = 6, .fbo_format = GL_RGB, .scale_sep = 1, .scalers = { "bilinear", "bilinear" }, .scaler_params = {{NAN, NAN}, {NAN, NAN}}, .scaler_radius = {NAN, NAN}, .alpha_mode = 2, }; const struct gl_video_opts gl_video_opts_hq_def = { .npot = 1, .dither_depth = 0, .dither_size = 6, .fbo_format = GL_RGBA16, .scale_sep = 1, .scalers = { "spline36", "bilinear" }, .scaler_params = {{NAN, NAN}, {NAN, NAN}}, .scaler_radius = {NAN, NAN}, .alpha_mode = 2, }; static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt, struct bstr name, struct bstr param); static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs); #define OPT_BASE_STRUCT struct gl_video_opts const struct m_sub_options gl_video_conf = { .opts = (const m_option_t[]) { OPT_FLOATRANGE("gamma", gamma, 0, 0.0, 10.0), OPT_FLAG("srgb", srgb, 0), OPT_FLAG("approx-gamma", approx_gamma, 0), OPT_FLAG("npot", npot, 0), OPT_FLAG("pbo", pbo, 0), OPT_CHOICE("stereo", stereo_mode, 0, ({"no", 0}, {"red-cyan", GL_3D_RED_CYAN}, {"green-magenta", GL_3D_GREEN_MAGENTA}, {"quadbuffer", GL_3D_QUADBUFFER})), OPT_STRING_VALIDATE("lscale", scalers[0], 0, validate_scaler_opt), OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt), OPT_FLOAT("lparam1", scaler_params[0][0], 0), OPT_FLOAT("lparam2", scaler_params[0][1], 0), OPT_FLOAT("cparam1", scaler_params[1][0], 0), OPT_FLOAT("cparam2", scaler_params[1][1], 0), OPT_FLOATRANGE("lradius", scaler_radius[0], 0, 1.0, 8.0), OPT_FLOATRANGE("cradius", scaler_radius[1], 0, 1.0, 8.0), OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0), OPT_FLAG("fancy-downscaling", fancy_downscaling, 0), OPT_FLAG("indirect", indirect, 0), OPT_FLAG("scale-sep", scale_sep, 0), OPT_CHOICE("fbo-format", fbo_format, 0, ({"rgb", GL_RGB}, {"rgba", GL_RGBA}, {"rgb8", GL_RGB8}, {"rgb10", GL_RGB10}, {"rgb10_a2", GL_RGB10_A2}, {"rgb16", GL_RGB16}, {"rgb16f", GL_RGB16F}, {"rgb32f", GL_RGB32F}, {"rgba12", GL_RGBA12}, {"rgba16", GL_RGBA16}, {"rgba16f", GL_RGBA16F}, {"rgba32f", GL_RGBA32F})), OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16, ({"no", -1}, {"auto", 0})), OPT_CHOICE("dither", dither_algo, 0, ({"fruit", 0}, {"ordered", 1}, {"no", -1})), OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8), OPT_FLAG("temporal-dither", temporal_dither, 0), OPT_CHOICE("chroma-location", chroma_location, 0, ({"auto", MP_CHROMA_AUTO}, {"center", MP_CHROMA_CENTER}, {"left", MP_CHROMA_LEFT})), OPT_CHOICE("alpha", alpha_mode, M_OPT_OPTIONAL_PARAM, ({"no", 0}, {"yes", 1}, {"", 1}, {"blend", 2})), OPT_FLAG("rectangle-textures", use_rectangle, 0), {0} }, .size = sizeof(struct gl_video_opts), .defaults = &gl_video_opts_def, }; static void uninit_rendering(struct gl_video *p); static void delete_shaders(struct gl_video *p); static void check_gl_features(struct gl_video *p); static bool init_format(int fmt, struct gl_video *init); static void default_tex_params(struct GL *gl, GLenum target, GLint filter) { gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } static void debug_check_gl(struct gl_video *p, const char *msg) { if (p->gl_debug) glCheckError(p->gl, p->log, msg); } void gl_video_set_debug(struct gl_video *p, bool enable) { p->gl_debug = enable; } static void texture_size(struct gl_video *p, int w, int h, int *texw, int *texh) { if (p->opts.npot) { *texw = w; *texh = h; } else { *texw = 32; while (*texw < w) *texw *= 2; *texh = 32; while (*texh < h) *texh *= 2; } } static void draw_triangles(struct gl_video *p, struct vertex *vb, int vert_count) { GL *gl = p->gl; assert(vert_count % 3 == 0); gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer); gl->BufferData(GL_ARRAY_BUFFER, vert_count * sizeof(struct vertex), vb, GL_DYNAMIC_DRAW); gl->BindBuffer(GL_ARRAY_BUFFER, 0); if (gl->BindVertexArray) gl->BindVertexArray(p->vao); gl->DrawArrays(GL_TRIANGLES, 0, vert_count); if (gl->BindVertexArray) gl->BindVertexArray(0); debug_check_gl(p, "after rendering"); } // Write a textured quad to a vertex array. // va = destination vertex array, VERTICES_PER_QUAD entries will be overwritten // x0, y0, x1, y1 = destination coordinates of the quad // tx0, ty0, tx1, ty1 = source texture coordinates (usually in pixels) // texture_w, texture_h = size of the texture, or an inverse factor // color = optional color for all vertices, NULL for opaque white // flags = bits 0-1: rotate, bits 2: flip vertically static void write_quad(struct vertex *va, float x0, float y0, float x1, float y1, float tx0, float ty0, float tx1, float ty1, float texture_w, float texture_h, const uint8_t color[4], GLenum target, int flags) { static const uint8_t white[4] = { 255, 255, 255, 255 }; if (!color) color = white; if (target == GL_TEXTURE_2D) { tx0 /= texture_w; ty0 /= texture_h; tx1 /= texture_w; ty1 /= texture_h; } if (flags & 4) { float tmp = ty0; ty0 = ty1; ty1 = tmp; } #define COLOR_INIT {color[0], color[1], color[2], color[3]} va[0] = (struct vertex) { {x0, y0}, COLOR_INIT, {tx0, ty0} }; va[1] = (struct vertex) { {x0, y1}, COLOR_INIT, {tx0, ty1} }; va[2] = (struct vertex) { {x1, y0}, COLOR_INIT, {tx1, ty0} }; va[3] = (struct vertex) { {x1, y1}, COLOR_INIT, {tx1, ty1} }; va[4] = va[2]; va[5] = va[1]; #undef COLOR_INIT int rot = flags & 3; while (rot--) { static const int perm[6] = {1, 3, 0, 2, 0, 3}; struct vertex vb[6]; memcpy(vb, va, sizeof(vb)); for (int n = 0; n < 6; n++) memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2])); } } static bool fbotex_init(struct gl_video *p, struct fbotex *fbo, int w, int h, GLenum iformat) { GL *gl = p->gl; bool res = true; assert(!fbo->fbo); assert(!fbo->texture); *fbo = (struct fbotex) { .vp_w = w, .vp_h = h, }; texture_size(p, w, h, &fbo->tex_w, &fbo->tex_h); MP_VERBOSE(p, "Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h); if (!(gl->mpgl_caps & MPGL_CAP_FB)) return false; gl->GenFramebuffers(1, &fbo->fbo); gl->GenTextures(1, &fbo->texture); gl->BindTexture(p->gl_target, fbo->texture); gl->TexImage2D(p->gl_target, 0, iformat, fbo->tex_w, fbo->tex_h, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); default_tex_params(gl, p->gl_target, GL_LINEAR); gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, p->gl_target, fbo->texture, 0); if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { MP_ERR(p, "Error: framebuffer completeness check failed!\n"); res = false; } gl->BindFramebuffer(GL_FRAMEBUFFER, 0); debug_check_gl(p, "after creating framebuffer & associated texture"); return res; } static void fbotex_uninit(struct gl_video *p, struct fbotex *fbo) { GL *gl = p->gl; if (gl->mpgl_caps & MPGL_CAP_FB) { gl->DeleteFramebuffers(1, &fbo->fbo); gl->DeleteTextures(1, &fbo->texture); *fbo = (struct fbotex) {0}; } } static void matrix_ortho2d(float m[3][3], float x0, float x1, float y0, float y1) { memset(m, 0, 9 * sizeof(float)); m[0][0] = 2.0f / (x1 - x0); m[1][1] = 2.0f / (y1 - y0); m[2][0] = -(x1 + x0) / (x1 - x0); m[2][1] = -(y1 + y0) / (y1 - y0); m[2][2] = 1.0f; } static void update_uniforms(struct gl_video *p, GLuint program) { GL *gl = p->gl; GLint loc; if (program == 0) return; gl->UseProgram(program); struct mp_csp_details csp = MP_CSP_DETAILS_DEFAULTS; csp.levels_in = p->image_params.colorlevels; csp.levels_out = p->image_params.outputlevels; csp.format = p->image_params.colorspace; struct mp_csp_params cparams = { .colorspace = csp, .input_bits = p->plane_bits, .texture_bits = (p->plane_bits + 7) & ~7, }; mp_csp_copy_equalizer_values(&cparams, &p->video_eq); if (p->image_desc.flags & MP_IMGFLAG_XYZ) { cparams.colorspace.format = MP_CSP_XYZ; cparams.input_bits = 8; cparams.texture_bits = 8; } loc = gl->GetUniformLocation(program, "transform"); if (loc >= 0 && p->vp_w > 0 && p->vp_h > 0) { float matrix[3][3]; matrix_ortho2d(matrix, 0, p->vp_w, p->vp_h, 0); gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]); } loc = gl->GetUniformLocation(program, "colormatrix"); if (loc >= 0) { float m[3][4] = {{0}}; if (p->image_desc.flags & MP_IMGFLAG_XYZ) { // Hard-coded as relative colorimetric for now, since this transforms // from the source file's D55 material to whatever color space our // projector/display lives in, which should be D55 for a proper // home cinema setup either way. mp_get_xyz2rgb_coeffs(&cparams, p->csp_src, MP_INTENT_RELATIVE_COLORIMETRIC, m); } else { mp_get_yuv2rgb_coeffs(&cparams, m); } gl->UniformMatrix4x3fv(loc, 1, GL_TRUE, &m[0][0]); } gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"), p->input_gamma); gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"), p->conv_gamma); float gamma = p->opts.gamma ? p->opts.gamma : 1.0; gl->Uniform3f(gl->GetUniformLocation(program, "inv_gamma"), 1.0 / (cparams.rgamma * gamma), 1.0 / (cparams.ggamma * gamma), 1.0 / (cparams.bgamma * gamma)); for (int n = 0; n < p->plane_count; n++) { char textures_n[32]; char textures_size_n[32]; snprintf(textures_n, sizeof(textures_n), "texture%d", n); snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n); gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n); if (p->gl_target == GL_TEXTURE_2D) { gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), p->image.planes[n].tex_w, p->image.planes[n].tex_h); } else { // Makes the pixel size calculation code think they are 1x1 gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1); } } loc = gl->GetUniformLocation(program, "chroma_div"); if (loc >= 0) { int xs = p->image_desc.chroma_xs; int ys = p->image_desc.chroma_ys; gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys)); } loc = gl->GetUniformLocation(program, "chroma_center_offset"); if (loc >= 0) { int chr = p->opts.chroma_location; if (!chr) chr = p->image_params.chroma_location; int cx, cy; mp_get_chroma_location(chr, &cx, &cy); // By default texture coordinates are such that chroma is centered with // any chroma subsampling. If a specific direction is given, make it // so that the luma and chroma sample line up exactly. // For 4:4:4, setting chroma location should have no effect at all. // luma sample size (in chroma coord. space) float ls_w = 1.0 / (1 << p->image_desc.chroma_xs); float ls_h = 1.0 / (1 << p->image_desc.chroma_ys); // move chroma center to luma center (in chroma coord. space) float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0; float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0; int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0; gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1), o_y / FFMAX(p->image.planes[1].h * c, 1)); } gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"), p->dither_size, p->dither_size); gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT); loc = gl->GetUniformLocation(program, "cms_matrix"); if (loc >= 0) { float cms_matrix[3][3] = {{0}}; // Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect // the input to be actual BT.2020 and not something red- or blueshifted, // and for sRGB monitors we most likely want relative scaling either way. mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix); gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]); } for (int n = 0; n < 2; n++) { const char *lut = p->scalers[n].lut_name; if (lut) gl->Uniform1i(gl->GetUniformLocation(program, lut), TEXUNIT_SCALERS + n); } gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER); gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"), p->dither_quantization); gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"), p->dither_center); float sparam1_l = p->opts.scaler_params[0][0]; float sparam1_c = p->opts.scaler_params[1][0]; gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_l"), isnan(sparam1_l) ? 0.5f : sparam1_l); gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_c"), isnan(sparam1_c) ? 0.5f : sparam1_c); gl->UseProgram(0); debug_check_gl(p, "update_uniforms()"); } static void update_all_uniforms(struct gl_video *p) { for (int n = 0; n < SUBBITMAP_COUNT; n++) update_uniforms(p, p->osd_programs[n]); update_uniforms(p, p->indirect_program); update_uniforms(p, p->scale_sep_program); update_uniforms(p, p->final_program); } #define SECTION_HEADER "#!section " static char *get_section(void *talloc_ctx, struct bstr source, const char *section) { char *res = talloc_strdup(talloc_ctx, ""); bool copy = false; while (source.len) { struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source)); if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) { copy = bstrcmp0(line, section) == 0; } else if (copy) { res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line)); } } return res; } static char *t_concat(void *talloc_ctx, const char *s1, const char *s2) { return talloc_asprintf(talloc_ctx, "%s%s", s1, s2); } static GLuint create_shader(struct gl_video *p, GLenum type, const char *header, const char *source) { GL *gl = p->gl; void *tmp = talloc_new(NULL); const char *full_source = t_concat(tmp, header, source); GLuint shader = gl->CreateShader(type); gl->ShaderSource(shader, 1, &full_source, NULL); gl->CompileShader(shader); GLint status; gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status); GLint log_length; gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment"; if (mp_msg_test(p->log, pri)) { MP_MSG(p, pri, "%s shader source:\n", typestr); mp_log_source(p->log, pri, full_source); } if (log_length > 1) { GLchar *logstr = talloc_zero_size(tmp, log_length + 1); gl->GetShaderInfoLog(shader, log_length, NULL, logstr); MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n", typestr, status, logstr); } talloc_free(tmp); return shader; } static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type, const char *header, const char *source) { GL *gl = p->gl; GLuint shader = create_shader(p, type, header, source); gl->AttachShader(program, shader); gl->DeleteShader(shader); } static void link_shader(struct gl_video *p, GLuint program) { GL *gl = p->gl; gl->LinkProgram(program); GLint status; gl->GetProgramiv(program, GL_LINK_STATUS, &status); GLint log_length; gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; if (mp_msg_test(p->log, pri)) { GLchar *logstr = talloc_zero_size(NULL, log_length + 1); gl->GetProgramInfoLog(program, log_length, NULL, logstr); MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr); talloc_free(logstr); } } static void bind_attrib_locs(GL *gl, GLuint program) { gl->BindAttribLocation(program, VERTEX_ATTRIB_POSITION, "vertex_position"); gl->BindAttribLocation(program, VERTEX_ATTRIB_COLOR, "vertex_color"); gl->BindAttribLocation(program, VERTEX_ATTRIB_TEXCOORD, "vertex_texcoord"); } #define PRELUDE_END "// -- prelude end\n" static GLuint create_program(struct gl_video *p, const char *name, const char *header, const char *vertex, const char *frag) { GL *gl = p->gl; MP_VERBOSE(p, "compiling shader program '%s', header:\n", name); const char *real_header = strstr(header, PRELUDE_END); real_header = real_header ? real_header + strlen(PRELUDE_END) : header; mp_log_source(p->log, MSGL_V, real_header); GLuint prog = gl->CreateProgram(); prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex); prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag); bind_attrib_locs(gl, prog); link_shader(p, prog); return prog; } static void shader_def(char **shader, const char *name, const char *value) { *shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value); } static void shader_def_opt(char **shader, const char *name, bool b) { if (b) shader_def(shader, name, "1"); } static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass) { const char *target = scaler->index == 0 ? "SAMPLE_L" : "SAMPLE_C"; if (!scaler->kernel) { *shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) " "sample_%s(p0, p1, p2, filter_param1_%c)\n", target, scaler->name, "lc"[scaler->index]); } else { int size = scaler->kernel->size; if (pass != -1) { // The direction/pass assignment is rather arbitrary, but fixed in // other parts of the code (like FBO setup). const char *direction = pass == 0 ? "0, 1" : "1, 0"; *shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) " "sample_convolution_sep%d(vec2(%s), %s, p0, p1, p2)\n", target, size, direction, scaler->lut_name); } else { *shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) " "sample_convolution%d(%s, p0, p1, p2)\n", target, size, scaler->lut_name); } } } // return false if RGB or 4:4:4 YUV static bool input_is_subsampled(struct gl_video *p) { for (int i = 0; i < p->plane_count; i++) if (p->image_desc.xs[i] || p->image_desc.ys[i]) return true; return false; } static void compile_shaders(struct gl_video *p) { GL *gl = p->gl; delete_shaders(p); void *tmp = talloc_new(NULL); struct bstr src = bstr0(vo_opengl_shaders); char *vertex_shader = get_section(tmp, src, "vertex_all"); char *shader_prelude = get_section(tmp, src, "prelude"); char *s_video = get_section(tmp, src, "frag_video"); char *header = talloc_asprintf(tmp, "#version %d\n%s%s", gl->glsl_version, shader_prelude, PRELUDE_END); bool use_cms = p->opts.srgb || p->use_lut_3d; float input_gamma = 1.0; float conv_gamma = 1.0; if (p->image_desc.flags & MP_IMGFLAG_XYZ) { input_gamma *= 2.6; // If we're using cms, we can treat it as proper linear input, // otherwise we just scale back to 1.95 as a reasonable approximation. if (use_cms) { p->is_linear_rgb = true; } else { conv_gamma *= 1.0 / 1.95; } } p->input_gamma = input_gamma; p->conv_gamma = conv_gamma; bool use_input_gamma = p->input_gamma != 1.0; bool use_conv_gamma = p->conv_gamma != 1.0; bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C; // Linear light scaling is only enabled when either color correction // option (3dlut or srgb) is enabled, otherwise scaling is done in the // source space. We also need to linearize for constant luminance systems. bool convert_to_linear_gamma = !p->is_linear_rgb && use_cms || use_const_luma; // Figure out the right color spaces we need to convert, if any enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest; if (use_cms) { // sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is // always built against BT.2020. prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020; } else { // If no CMS is being done we just want to output stuff as-is, // in the native colorspace of the source. prim_dest = prim_src; } // XYZ input has no defined input color space, so we can directly convert // it to whatever output space we actually need. if (p->image_desc.flags & MP_IMGFLAG_XYZ) prim_src = prim_dest; // Set the colorspace primaries and figure out whether we need to perform // an extra conversion. p->csp_src = mp_get_csp_primaries(prim_src); p->csp_dest = mp_get_csp_primaries(prim_dest); bool use_cms_matrix = prim_src != prim_dest; if (p->gl_target == GL_TEXTURE_RECTANGLE) { shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect"); shader_def_opt(&header, "USE_RECTANGLE", true); } else { shader_def(&header, "VIDEO_SAMPLER", "sampler2D"); } // Need to pass alpha through the whole chain. (Not needed for OSD shaders.) if (p->opts.alpha_mode == 1) shader_def_opt(&header, "USE_ALPHA", p->has_alpha); char *header_osd = talloc_strdup(tmp, header); shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_APPROX", use_cms && p->opts.approx_gamma); shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT2020", use_cms && !p->opts.approx_gamma); shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix); shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d); // 3DLUT overrides SRGB shader_def_opt(&header_osd, "USE_OSD_SRGB", !p->use_lut_3d && p->opts.srgb); for (int n = 0; n < SUBBITMAP_COUNT; n++) { const char *name = osd_shaders[n]; if (name) { char *s_osd = get_section(tmp, src, name); p->osd_programs[n] = create_program(p, name, header_osd, vertex_shader, s_osd); } } char *header_conv = talloc_strdup(tmp, ""); char *header_final = talloc_strdup(tmp, ""); char *header_sep = NULL; if (p->image_format == IMGFMT_NV12 || p->image_format == IMGFMT_NV21) { shader_def(&header_conv, "USE_CONV", "CONV_NV12"); } else if (p->plane_count > 1) { shader_def(&header_conv, "USE_CONV", "CONV_PLANAR"); } if (p->color_swizzle[0]) shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle); shader_def_opt(&header_conv, "USE_SWAP_UV", p->image_format == IMGFMT_NV21); shader_def_opt(&header_conv, "USE_YGRAY", p->is_yuv && !p->is_packed_yuv && p->plane_count == 1); shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma); shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb); shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma); shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma); shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_APPROX", convert_to_linear_gamma && p->opts.approx_gamma); shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT2020", convert_to_linear_gamma && !p->opts.approx_gamma); if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3) shader_def(&header_conv, "USE_ALPHA_PLANE", "3"); if (p->opts.alpha_mode == 2 && p->has_alpha) shader_def(&header_conv, "USE_ALPHA_BLEND", "1"); shader_def_opt(&header_final, "USE_GAMMA_POW", p->opts.gamma > 0); shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix); shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d); // 3DLUT overrides SRGB shader_def_opt(&header_final, "USE_SRGB", p->opts.srgb && !p->use_lut_3d); shader_def_opt(&header_final, "USE_CONST_LUMA_INV_APPROX", use_const_luma && !use_cms && p->opts.approx_gamma); shader_def_opt(&header_final, "USE_CONST_LUMA_INV_BT2020", use_const_luma && !use_cms && !p->opts.approx_gamma); shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0); shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither); if (p->opts.scale_sep && p->scalers[0].kernel) { header_sep = talloc_strdup(tmp, ""); shader_def_opt(&header_sep, "FIXED_SCALE", true); shader_setup_scaler(&header_sep, &p->scalers[0], 0); shader_setup_scaler(&header_final, &p->scalers[0], 1); } else { shader_setup_scaler(&header_final, &p->scalers[0], -1); } // We want to do scaling in linear light. Scaling is closely connected to // texture sampling due to how the shader is structured (or if GL bilinear // scaling is used). The purpose of the "indirect" pass is to convert the // input video to linear RGB. // Another purpose is reducing input to a single texture for scaling. bool use_indirect = p->opts.indirect; // Don't sample from input video textures before converting the input to // linear light. if (use_input_gamma || use_conv_gamma) use_indirect = true; // It doesn't make sense to scale the chroma with cscale in the 1. scale // step and with lscale in the 2. step. If the chroma is subsampled, a // convolution filter wouldn't even work entirely correctly, because the // luma scaler would sample two texels instead of one per tap for chroma. // Also, even with 4:4:4 YUV or planar RGB, the indirection might be faster, // because the shader can't use one scaler for sampling from 3 textures. It // has to fetch the coefficients for each texture separately, even though // they're the same (this is not an inherent restriction, but would require // to restructure the shader). if (header_sep && p->plane_count > 1) use_indirect = true; if (input_is_subsampled(p)) { shader_setup_scaler(&header_conv, &p->scalers[1], -1); } else { // Force using the luma scaler on chroma. If the "indirect" stage is // used, the actual scaling will happen in the next stage. shader_def(&header_conv, "SAMPLE_C", use_indirect ? "SAMPLE_BILINEAR" : "SAMPLE_L"); } if (use_indirect) { // We don't use filtering for the Y-plane (luma), because it's never // scaled in this scenario. shader_def(&header_conv, "SAMPLE_L", "SAMPLE_BILINEAR"); shader_def_opt(&header_conv, "FIXED_SCALE", true); header_conv = t_concat(tmp, header, header_conv); p->indirect_program = create_program(p, "indirect", header_conv, vertex_shader, s_video); } else if (header_sep) { header_sep = t_concat(tmp, header_sep, header_conv); } else { header_final = t_concat(tmp, header_final, header_conv); } if (header_sep) { header_sep = t_concat(tmp, header, header_sep); p->scale_sep_program = create_program(p, "scale_sep", header_sep, vertex_shader, s_video); } header_final = t_concat(tmp, header, header_final); p->final_program = create_program(p, "final", header_final, vertex_shader, s_video); debug_check_gl(p, "shader compilation"); talloc_free(tmp); } static void delete_program(GL *gl, GLuint *prog) { gl->DeleteProgram(*prog); *prog = 0; } static void delete_shaders(struct gl_video *p) { GL *gl = p->gl; for (int n = 0; n < SUBBITMAP_COUNT; n++) delete_program(gl, &p->osd_programs[n]); delete_program(gl, &p->indirect_program); delete_program(gl, &p->scale_sep_program); delete_program(gl, &p->final_program); } static double get_scale_factor(struct gl_video *p) { double sx = (p->dst_rect.x1 - p->dst_rect.x0) / (double)(p->src_rect.x1 - p->src_rect.x0); double sy = (p->dst_rect.y1 - p->dst_rect.y0) / (double)(p->src_rect.y1 - p->src_rect.y0); // xxx: actually we should use different scalers in X/Y directions if the // scale factors are different due to anamorphic content return FFMIN(sx, sy); } static bool update_scale_factor(struct gl_video *p, struct filter_kernel *kernel) { double scale = get_scale_factor(p); if (!p->opts.fancy_downscaling && scale < 1.0) scale = 1.0; return mp_init_filter(kernel, filter_sizes, FFMAX(1.0, 1.0 / scale)); } static void init_scaler(struct gl_video *p, struct scaler *scaler) { GL *gl = p->gl; assert(scaler->name); scaler->kernel = NULL; const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name); if (!t_kernel) return; scaler->kernel_storage = *t_kernel; scaler->kernel = &scaler->kernel_storage; for (int n = 0; n < 2; n++) { if (!isnan(p->opts.scaler_params[scaler->index][n])) scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n]; } if (scaler->kernel->radius < 0) { float radius = p->opts.scaler_radius[scaler->index]; if (!isnan(radius)) scaler->kernel->radius = radius; } update_scale_factor(p, scaler->kernel); int size = scaler->kernel->size; assert(size < FF_ARRAY_ELEMS(lut_tex_formats)); const struct lut_tex_format *fmt = &lut_tex_formats[size]; bool use_2d = fmt->pixels > 1; bool is_luma = scaler->index == 0; scaler->lut_name = use_2d ? (is_luma ? "lut_l_2d" : "lut_c_2d") : (is_luma ? "lut_l_1d" : "lut_c_1d"); gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index); GLenum target = use_2d ? GL_TEXTURE_2D : GL_TEXTURE_1D; if (!scaler->gl_lut) gl->GenTextures(1, &scaler->gl_lut); gl->BindTexture(target, scaler->gl_lut); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size); mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights); if (use_2d) { gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, fmt->pixels, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } else { gl->TexImage1D(GL_TEXTURE_1D, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } talloc_free(weights); gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "after initializing scaler"); } static void init_dither(struct gl_video *p) { GL *gl = p->gl; // Assume 8 bits per component if unknown. int dst_depth = p->depth_g ? p->depth_g : 8; if (p->opts.dither_depth > 0) dst_depth = p->opts.dither_depth; if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0) return; MP_VERBOSE(p, "Dither to %d.\n", dst_depth); int tex_size; void *tex_data; GLint tex_iformat; GLenum tex_type; unsigned char temp[256]; if (p->opts.dither_algo == 0) { int sizeb = p->opts.dither_size; int size = 1 << sizeb; if (p->last_dither_matrix_size != size) { p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix, float, size * size); mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb); p->last_dither_matrix_size = size; } tex_size = size; tex_iformat = GL_R16; tex_type = GL_FLOAT; tex_data = p->last_dither_matrix; } else { assert(sizeof(temp) >= 8 * 8); mp_make_ordered_dither_matrix(temp, 8); tex_size = 8; tex_iformat = GL_RED; tex_type = GL_UNSIGNED_BYTE; tex_data = temp; } // This defines how many bits are considered significant for output on // screen. The superfluous bits will be used for rounding according to the // dither matrix. The precision of the source implicitly decides how many // dither patterns can be visible. p->dither_quantization = (1 << dst_depth) - 1; p->dither_center = 0.5 / (tex_size * tex_size); p->dither_size = tex_size; gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER); gl->GenTextures(1, &p->dither_texture); gl->BindTexture(GL_TEXTURE_2D, p->dither_texture); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, GL_RED, tex_type, tex_data); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); gl->ActiveTexture(GL_TEXTURE0); } static void recreate_osd(struct gl_video *p) { if (p->osd) mpgl_osd_destroy(p->osd); p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state); p->osd->use_pbo = p->opts.pbo; } static bool does_resize(struct mp_rect src, struct mp_rect dst) { return src.x1 - src.x0 != dst.x1 - dst.x0 || src.y1 - src.y0 != dst.y1 - dst.y0; } static const char *expected_scaler(struct gl_video *p, int unit) { if (p->opts.scaler_resizes_only && unit == 0 && !does_resize(p->src_rect, p->dst_rect)) { return "bilinear"; } return p->opts.scalers[unit]; } static void reinit_rendering(struct gl_video *p) { MP_VERBOSE(p, "Reinit rendering.\n"); debug_check_gl(p, "before scaler initialization"); uninit_rendering(p); if (!p->image_format) return; for (int n = 0; n < 2; n++) p->scalers[n].name = expected_scaler(p, n); init_dither(p); init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); compile_shaders(p); update_all_uniforms(p); int w = p->image_w; int h = p->image_h; if (p->indirect_program && !p->indirect_fbo.fbo) fbotex_init(p, &p->indirect_fbo, w, h, p->opts.fbo_format); recreate_osd(p); } static void uninit_rendering(struct gl_video *p) { GL *gl = p->gl; delete_shaders(p); for (int n = 0; n < 2; n++) { gl->DeleteTextures(1, &p->scalers[n].gl_lut); p->scalers[n].gl_lut = 0; p->scalers[n].lut_name = NULL; p->scalers[n].kernel = NULL; } gl->DeleteTextures(1, &p->dither_texture); p->dither_texture = 0; } void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d) { GL *gl = p->gl; if (!lut3d) { if (p->use_lut_3d) { p->use_lut_3d = false; reinit_rendering(p); } return; } if (!p->lut_3d_texture) gl->GenTextures(1, &p->lut_3d_texture); gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT); gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1], lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); p->use_lut_3d = true; check_gl_features(p); debug_check_gl(p, "after 3d lut creation"); reinit_rendering(p); } static void set_image_textures(struct gl_video *p, struct video_image *vimg, GLuint imgtex[4]) { GL *gl = p->gl; GLuint dummy[4] = {0}; if (!imgtex) imgtex = dummy; if (p->hwdec_active) { assert(vimg->hwimage); p->hwdec->driver->map_image(p->hwdec, vimg->hwimage, imgtex); } else { for (int n = 0; n < p->plane_count; n++) imgtex[n] = vimg->planes[n].gl_texture; } for (int n = 0; n < 4; n++) { gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, imgtex[n]); } gl->ActiveTexture(GL_TEXTURE0); } static void unset_image_textures(struct gl_video *p) { GL *gl = p->gl; for (int n = 0; n < 4; n++) { gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, 0); } gl->ActiveTexture(GL_TEXTURE0); if (p->hwdec_active) p->hwdec->driver->unmap_image(p->hwdec); } static void init_video(struct gl_video *p, const struct mp_image_params *params) { GL *gl = p->gl; init_format(params->imgfmt, p); p->gl_target = p->opts.use_rectangle ? GL_TEXTURE_RECTANGLE : GL_TEXTURE_2D; if (p->hwdec_active) p->gl_target = p->hwdec->gl_texture_target; check_gl_features(p); p->image_w = params->w; p->image_h = params->h; p->image_dw = params->d_w; p->image_dh = params->d_h; p->image_params = *params; if (p->is_rgb && (p->opts.srgb || p->use_lut_3d)) { // If we're opening an RGB source like a png file or similar, // we just sample it using GL_SRGB which treats it as an sRGB source // and pretend it's linear as far as CMS is concerned p->is_linear_rgb = true; p->image.planes[0].gl_internal_format = GL_SRGB; } int eq_caps = MP_CSP_EQ_CAPS_GAMMA; if (p->is_yuv && p->image_params.colorspace != MP_CSP_BT_2020_C) eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX; if (p->image_desc.flags & MP_IMGFLAG_XYZ) eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS; p->video_eq.capabilities = eq_caps; debug_check_gl(p, "before video texture creation"); // For video with odd sizes: enlarge the luma texture so that it covers all // chroma pixels - then we can render these correctly by cropping the final // image (conceptually). // Image allocations are always such that the "additional" luma border // exists and can be accessed. int full_w = MP_ALIGN_UP(p->image_w, 1 << p->image_desc.chroma_xs); int full_h = MP_ALIGN_UP(p->image_h, 1 << p->image_desc.chroma_ys); struct video_image *vimg = &p->image; for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; plane->w = full_w >> p->image_desc.xs[n]; plane->h = full_h >> p->image_desc.ys[n]; if (p->hwdec_active) { // We expect hwdec backends to allocate exact size plane->tex_w = plane->w; plane->tex_h = plane->h; } else { texture_size(p, plane->w, plane->h, &plane->tex_w, &plane->tex_h); gl->ActiveTexture(GL_TEXTURE0 + n); gl->GenTextures(1, &plane->gl_texture); gl->BindTexture(p->gl_target, plane->gl_texture); gl->TexImage2D(p->gl_target, 0, plane->gl_internal_format, plane->tex_w, plane->tex_h, 0, plane->gl_format, plane->gl_type, NULL); default_tex_params(gl, p->gl_target, GL_LINEAR); } MP_VERBOSE(p, "Texture for plane %d: %dx%d\n", n, plane->tex_w, plane->tex_h); } gl->ActiveTexture(GL_TEXTURE0); p->texture_w = p->image.planes[0].tex_w; p->texture_h = p->image.planes[0].tex_h; debug_check_gl(p, "after video texture creation"); if (p->hwdec_active) { if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0) MP_ERR(p, "Initializing texture for hardware decoding failed.\n"); } reinit_rendering(p); } static void uninit_video(struct gl_video *p) { GL *gl = p->gl; uninit_rendering(p); struct video_image *vimg = &p->image; for (int n = 0; n < 3; n++) { struct texplane *plane = &vimg->planes[n]; gl->DeleteTextures(1, &plane->gl_texture); plane->gl_texture = 0; gl->DeleteBuffers(1, &plane->gl_buffer); plane->gl_buffer = 0; plane->buffer_ptr = NULL; plane->buffer_size = 0; } mp_image_unrefp(&vimg->hwimage); fbotex_uninit(p, &p->indirect_fbo); fbotex_uninit(p, &p->scale_sep_fbo); } static void change_dither_trafo(struct gl_video *p) { GL *gl = p->gl; int program = p->final_program; int phase = p->frames_rendered % 8u; float r = phase * (M_PI / 2); // rotate float m = phase < 4 ? 1 : -1; // mirror gl->UseProgram(program); float matrix[2][2] = {{cos(r), -sin(r) }, {sin(r) * m, cos(r) * m}}; gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"), 1, GL_TRUE, &matrix[0][0]); gl->UseProgram(0); } struct pass { int num; // Not necessarily a FBO; we just abuse this struct because it's convenient. // It specifies the source texture/sub-rectangle for the next pass. struct fbotex f; // If true, render source (f) to dst, instead of the full dest. fbo viewport bool use_dst; struct mp_rect dst; int flags; // for write_quad bool render_stereo; }; // *chain contains the source, and is overwritten with a copy of the result // fbo is used as destination texture/render target. static void handle_pass(struct gl_video *p, struct pass *chain, struct fbotex *fbo, GLuint program) { struct vertex vb[VERTICES_PER_QUAD]; GL *gl = p->gl; if (!program) return; gl->BindTexture(p->gl_target, chain->f.texture); gl->UseProgram(program); gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h); gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); int tex_w = chain->f.tex_w; int tex_h = chain->f.tex_h; struct mp_rect src = { .x0 = chain->f.vp_x, .y0 = chain->f.vp_y, .x1 = chain->f.vp_x + chain->f.vp_w, .y1 = chain->f.vp_y + chain->f.vp_h, }; struct mp_rect dst = {-1, -1, 1, 1}; if (chain->use_dst) dst = chain->dst; MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n", chain->num, src.x0, src.y0, src.x1, src.y1, dst.x0, dst.y0, dst.x1, dst.y1, fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h, fbo->tex_w, fbo->tex_h, chain->flags); if (chain->render_stereo && p->opts.stereo_mode) { int w = src.x1 - src.x0; int imgw = p->image_w; glEnable3DLeft(gl, p->opts.stereo_mode); write_quad(vb, dst.x0, dst.y0, dst.x1, dst.y1, src.x0 / 2, src.y0, src.x0 / 2 + w / 2, src.y1, tex_w, tex_h, NULL, p->gl_target, chain->flags); draw_triangles(p, vb, VERTICES_PER_QUAD); glEnable3DRight(gl, p->opts.stereo_mode); write_quad(vb, dst.x0, dst.y0, dst.x1, dst.y1, src.x0 / 2 + imgw / 2, src.y0, src.x0 / 2 + imgw / 2 + w / 2, src.y1, tex_w, tex_h, NULL, p->gl_target, chain->flags); draw_triangles(p, vb, VERTICES_PER_QUAD); glDisable3D(gl, p->opts.stereo_mode); } else { write_quad(vb, dst.x0, dst.y0, dst.x1, dst.y1, src.x0, src.y0, src.x1, src.y1, tex_w, tex_h, NULL, p->gl_target, chain->flags); draw_triangles(p, vb, VERTICES_PER_QUAD); } *chain = (struct pass){ .num = chain->num + 1, .f = *fbo, }; } void gl_video_render_frame(struct gl_video *p) { GL *gl = p->gl; struct video_image *vimg = &p->image; if (p->opts.temporal_dither) change_dither_trafo(p); if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y || p->dst_rect.x1 < p->vp_x + p->vp_w || p->dst_rect.y1 < p->vp_y + p->vp_h) { gl->Clear(GL_COLOR_BUFFER_BIT); } if (!p->have_image) { gl->Clear(GL_COLOR_BUFFER_BIT); goto draw_osd; } // Order of processing: // [indirect -> [scale_sep ->]] final GLuint imgtex[4] = {0}; set_image_textures(p, vimg, imgtex); struct pass chain = { .f = { .vp_w = p->image_w, .vp_h = p->image_h, .tex_w = p->texture_w, .tex_h = p->texture_h, .texture = imgtex[0], }, }; handle_pass(p, &chain, &p->indirect_fbo, p->indirect_program); // Clip to visible height so that separate scaling scales the visible part // only (and the target FBO texture can have a bounded size). // Don't clamp width; too hard to get correct final scaling on l/r borders. chain.f.vp_y = p->src_rect_rot.y0; chain.f.vp_h = p->src_rect_rot.y1 - p->src_rect_rot.y0; handle_pass(p, &chain, &p->scale_sep_fbo, p->scale_sep_program); struct fbotex screen = { .vp_x = p->vp_x, .vp_y = p->vp_y, .vp_w = p->vp_w, .vp_h = p->vp_h, .texture = 0, //makes BindFramebuffer select the screen backbuffer }; // For Y direction, use the whole source viewport; it has been fit to the // correct origin/height before. // For X direction, assume the texture wasn't scaled yet, so we can // select the correct portion, which will be scaled to screen. chain.f.vp_x = p->src_rect_rot.x0; chain.f.vp_w = p->src_rect_rot.x1 - p->src_rect_rot.x0; chain.use_dst = true; chain.dst = p->dst_rect; chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90) | (vimg->image_flipped ? 4 : 0); chain.render_stereo = true; handle_pass(p, &chain, &screen, p->final_program); gl->UseProgram(0); gl->BindFramebuffer(GL_FRAMEBUFFER, 0); gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h); unset_image_textures(p); p->frames_rendered++; debug_check_gl(p, "after video rendering"); draw_osd: assert(p->osd); osd_draw(p->osd_state, p->osd_rect, p->osd_pts, 0, p->osd->formats, draw_osd_cb, p); } static void update_window_sized_objects(struct gl_video *p) { if (p->scale_sep_program) { int w = p->dst_rect.x1 - p->dst_rect.x0; int h = p->dst_rect.y1 - p->dst_rect.y0; if ((p->image_params.rotate % 180) == 90) MPSWAP(int, w, h); if (h > p->scale_sep_fbo.tex_h) { fbotex_uninit(p, &p->scale_sep_fbo); // Round up to an arbitrary alignment to make window resizing or // panscan controls smoother (less texture reallocations). int height = FFALIGN(h, 256); fbotex_init(p, &p->scale_sep_fbo, p->image_w, height, p->opts.fbo_format); } p->scale_sep_fbo.vp_w = p->image_w; p->scale_sep_fbo.vp_h = h; } } static void check_resize(struct gl_video *p) { bool need_scaler_reinit = false; // filter size change needed bool need_scaler_update = false; // filter LUT change needed bool too_small = false; for (int n = 0; n < 2; n++) { if (p->scalers[n].kernel) { struct filter_kernel tkernel = *p->scalers[n].kernel; struct filter_kernel old = tkernel; bool ok = update_scale_factor(p, &tkernel); too_small |= !ok; need_scaler_reinit |= (tkernel.size != old.size); need_scaler_update |= (tkernel.inv_scale != old.inv_scale); } } for (int n = 0; n < 2; n++) { if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0) need_scaler_reinit = true; } if (need_scaler_reinit) { reinit_rendering(p); } else if (need_scaler_update) { init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); } if (too_small) { MP_WARN(p, "Can't downscale that much, window " "output may look suboptimal.\n"); } update_window_sized_objects(p); update_all_uniforms(p); } void gl_video_resize(struct gl_video *p, struct mp_rect *window, struct mp_rect *src, struct mp_rect *dst, struct mp_osd_res *osd) { p->src_rect = *src; p->src_rect_rot = *src; p->dst_rect = *dst; p->osd_rect = *osd; if ((p->image_params.rotate % 180) == 90) { MPSWAP(int, p->src_rect_rot.x0, p->src_rect_rot.y0); MPSWAP(int, p->src_rect_rot.x1, p->src_rect_rot.y1); } p->vp_x = window->x0; p->vp_y = window->y0; p->vp_w = window->x1 - window->x0; p->vp_h = window->y1 - window->y0; p->gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h); check_resize(p); } static bool get_image(struct gl_video *p, struct mp_image *mpi) { GL *gl = p->gl; if (!p->opts.pbo) return false; struct video_image *vimg = &p->image; // See comments in init_video() about odd video sizes. // The normal upload path does this too, but less explicit. mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h); for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n]; int needed_size = mpi->plane_h[n] * mpi->stride[n]; if (!plane->gl_buffer) gl->GenBuffers(1, &plane->gl_buffer); gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (needed_size > plane->buffer_size) { plane->buffer_size = needed_size; gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size, NULL, GL_DYNAMIC_DRAW); } if (!plane->buffer_ptr) plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); mpi->planes[n] = plane->buffer_ptr; gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); } return true; } void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi) { GL *gl = p->gl; struct video_image *vimg = &p->image; p->osd_pts = mpi->pts; if (p->hwdec_active) { talloc_free(vimg->hwimage); vimg->hwimage = mpi; p->have_image = true; return; } assert(mpi->num_planes == p->plane_count); mp_image_t mpi2 = *mpi; bool pbo = false; if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) { for (int n = 0; n < p->plane_count; n++) { int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n]; memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n], mpi2.stride[n], mpi->stride[n]); } pbo = true; } vimg->image_flipped = mpi2.stride[0] < 0; for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; void *plane_ptr = mpi2.planes[n]; if (pbo) { gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER)) MP_FATAL(p, "Video PBO upload failed. " "Remove the 'pbo' suboption.\n"); plane->buffer_ptr = NULL; plane_ptr = NULL; // PBO offset 0 } gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, plane->gl_texture); glUploadTex(gl, p->gl_target, plane->gl_format, plane->gl_type, plane_ptr, mpi2.stride[n], 0, 0, plane->w, plane->h, 0); } gl->ActiveTexture(GL_TEXTURE0); gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); p->have_image = true; talloc_free(mpi); } struct mp_image *gl_video_download_image(struct gl_video *p) { GL *gl = p->gl; struct video_image *vimg = &p->image; if (!p->have_image) return NULL; if (p->hwdec_active && p->hwdec->driver->download_image) { struct mp_image *dlimage = p->hwdec->driver->download_image(p->hwdec, vimg->hwimage); if (dlimage) mp_image_set_attributes(dlimage, &p->image_params); return dlimage; } set_image_textures(p, vimg, NULL); assert(p->texture_w >= p->image_params.w); assert(p->texture_h >= p->image_params.h); mp_image_t *image = mp_image_alloc(p->image_format, p->texture_w, p->texture_h); if (image) { for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; gl->ActiveTexture(GL_TEXTURE0 + n); glDownloadTex(gl, p->gl_target, plane->gl_format, plane->gl_type, image->planes[n], image->stride[n]); } mp_image_set_attributes(image, &p->image_params); } unset_image_textures(p); return image; } static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs) { struct gl_video *p = ctx; GL *gl = p->gl; struct mpgl_osd_part *osd = mpgl_osd_generate(p->osd, imgs); if (!osd) return; assert(osd->format != SUBBITMAP_EMPTY); if (!osd->num_vertices) { osd->vertices = talloc_realloc(osd, osd->vertices, struct vertex, osd->packer->count * VERTICES_PER_QUAD); struct vertex *va = osd->vertices; for (int n = 0; n < osd->packer->count; n++) { struct sub_bitmap *b = &imgs->parts[n]; struct pos pos = osd->packer->result[n]; // NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it // doesn't matter that we upload garbage for the other formats uint32_t c = b->libass.color; uint8_t color[4] = { c >> 24, (c >> 16) & 0xff, (c >> 8) & 0xff, 255 - (c & 0xff) }; write_quad(&va[osd->num_vertices], b->x, b->y, b->x + b->dw, b->y + b->dh, pos.x, pos.y, pos.x + b->w, pos.y + b->h, osd->w, osd->h, color, GL_TEXTURE_2D, 0); osd->num_vertices += VERTICES_PER_QUAD; } } debug_check_gl(p, "before drawing osd"); gl->UseProgram(p->osd_programs[osd->format]); mpgl_osd_set_gl_state(p->osd, osd); draw_triangles(p, osd->vertices, osd->num_vertices); mpgl_osd_unset_gl_state(p->osd, osd); gl->UseProgram(0); debug_check_gl(p, "after drawing osd"); } static bool test_fbo(struct gl_video *p, GLenum format) { static const float vals[] = { 127 / 255.0f, // full 8 bit integer 32767 / 65535.0f, // full 16 bit integer 0xFFFFFF / (float)(1 << 25), // float mantissa 2, // out of range value }; static const char *const val_names[] = { "8-bit precision", "16-bit precision", "full float", "out of range value (2)", }; GL *gl = p->gl; bool success = false; struct fbotex fbo = {0}; gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); gl->PixelStorei(GL_PACK_ALIGNMENT, 1); gl->PixelStorei(GL_PACK_ROW_LENGTH, 0); if (fbotex_init(p, &fbo, 16, 16, format)) { gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo); gl->ReadBuffer(GL_COLOR_ATTACHMENT0); for (int i = 0; i < 4; i++) { float pixel = -1; float val = vals[i]; gl->ClearColor(val, 0.0f, 0.0f, 1.0f); gl->Clear(GL_COLOR_BUFFER_BIT); gl->ReadPixels(0, 0, 1, 1, GL_RED, GL_FLOAT, &pixel); MP_VERBOSE(p, " %s: %a\n", val_names[i], val - pixel); } gl->BindFramebuffer(GL_FRAMEBUFFER, 0); glCheckError(gl, p->log, "after FBO read"); success = true; } fbotex_uninit(p, &fbo); glCheckError(gl, p->log, "FBO test"); gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f); return success; } // Disable features that are not supported with the current OpenGL version. static void check_gl_features(struct gl_video *p) { GL *gl = p->gl; bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX; bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB; bool have_srgb = gl->mpgl_caps & MPGL_CAP_SRGB_TEX; bool have_mix = gl->glsl_version >= 130; char *disabled[10]; int n_disabled = 0; if (have_fbo) { MP_VERBOSE(p, "Testing user-set FBO format\n"); have_fbo = test_fbo(p, p->opts.fbo_format); } // fruit dithering mode and the 3D lut use this texture format if (have_fbo && ((p->opts.dither_depth >= 0 && p->opts.dither_algo == 0) || p->use_lut_3d)) { // doesn't disable anything; it's just for the log MP_VERBOSE(p, "Testing GL_R16 FBO (dithering/LUT)\n"); test_fbo(p, GL_R16); } // Disable these only if the user didn't disable scale-sep on the command // line, so convolution filter can still be forced to be run. // Normally, we want to disable them by default if FBOs are unavailable, // because they will be slow (not critically slow, but still slower). // Without FP textures, we must always disable them. if (!have_float_tex || (!have_fbo && p->opts.scale_sep)) { for (int n = 0; n < 2; n++) { struct scaler *scaler = &p->scalers[n]; if (mp_find_filter_kernel(scaler->name)) { scaler->name = "bilinear"; disabled[n_disabled++] = have_float_tex ? "scaler (FBO)" : "scaler (float tex.)"; } } } int use_cms = p->opts.srgb || p->use_lut_3d; // srgb_compand() not available if (!have_mix && p->opts.srgb) { p->opts.srgb = false; disabled[n_disabled++] = "sRGB output (GLSL version)"; } if (!have_fbo && use_cms) { p->opts.srgb = false; p->use_lut_3d = false; disabled[n_disabled++] = "color management (FBO)"; } if (p->is_rgb) { // When opening RGB files we use SRGB to expand if (!have_srgb && use_cms) { p->opts.srgb = false; p->use_lut_3d = false; disabled[n_disabled++] = "color management (SRGB textures)"; } } else { // when opening non-RGB files we use bt709_expand() if (!have_mix && p->use_lut_3d) { p->use_lut_3d = false; disabled[n_disabled++] = "color management (GLSL version)"; } } if (!have_fbo) { p->opts.scale_sep = false; p->opts.indirect = false; } if (n_disabled) { MP_ERR(p, "Some OpenGL extensions not detected, " "disabling: "); for (int n = 0; n < n_disabled; n++) { if (n) MP_ERR(p, ", "); MP_ERR(p, "%s", disabled[n]); } MP_ERR(p, ".\n"); } } static void setup_vertex_array(GL *gl) { size_t stride = sizeof(struct vertex); gl->EnableVertexAttribArray(VERTEX_ATTRIB_POSITION); gl->VertexAttribPointer(VERTEX_ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE, stride, (void*)offsetof(struct vertex, position)); gl->EnableVertexAttribArray(VERTEX_ATTRIB_COLOR); gl->VertexAttribPointer(VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, (void*)offsetof(struct vertex, color)); gl->EnableVertexAttribArray(VERTEX_ATTRIB_TEXCOORD); gl->VertexAttribPointer(VERTEX_ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE, stride, (void*)offsetof(struct vertex, texcoord)); } static int init_gl(struct gl_video *p) { GL *gl = p->gl; debug_check_gl(p, "before init_gl"); check_gl_features(p); gl->Disable(GL_DITHER); gl->Disable(GL_BLEND); gl->Disable(GL_DEPTH_TEST); gl->DepthMask(GL_FALSE); gl->Disable(GL_CULL_FACE); gl->GenBuffers(1, &p->vertex_buffer); gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer); if (gl->BindVertexArray) { gl->GenVertexArrays(1, &p->vao); gl->BindVertexArray(p->vao); setup_vertex_array(gl); gl->BindVertexArray(0); } else { setup_vertex_array(gl); } gl->BindBuffer(GL_ARRAY_BUFFER, 0); gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f); debug_check_gl(p, "after init_gl"); return 1; } void gl_video_uninit(struct gl_video *p) { GL *gl = p->gl; uninit_video(p); if (gl->DeleteVertexArrays) gl->DeleteVertexArrays(1, &p->vao); gl->DeleteBuffers(1, &p->vertex_buffer); gl->DeleteTextures(1, &p->lut_3d_texture); mpgl_osd_destroy(p->osd); talloc_free(p); } // dest = src. (always using 4 components) static void packed_fmt_swizzle(char w[5], const struct packed_fmt_entry *fmt) { for (int c = 0; c < 4; c++) w[c] = "rgba"[MPMAX(fmt->components[c] - 1, 0)]; w[4] = '\0'; } static const struct fmt_entry *find_tex_format(int bytes_per_comp, int n_channels) { assert(bytes_per_comp == 1 || bytes_per_comp == 2); assert(n_channels >= 1 && n_channels <= 4); return &gl_byte_formats[n_channels - 1 + (bytes_per_comp - 1) * 4]; } static bool init_format(int fmt, struct gl_video *init) { struct gl_video dummy; if (!init) init = &dummy; init->hwdec_active = false; if (init->hwdec && init->hwdec->driver->imgfmt == fmt) { fmt = init->hwdec->converted_imgfmt; init->hwdec_active = true; } struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt); if (!desc.id) return false; if (desc.num_planes > 4) return false; const struct fmt_entry *plane_format[4] = {0}; init->image_format = fmt; init->plane_bits = desc.bpp[0]; init->color_swizzle[0] = '\0'; init->has_alpha = false; // YUV/planar formats if (desc.flags & MP_IMGFLAG_YUV_P) { int bits = desc.plane_bits; if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) { init->plane_bits = bits; init->has_alpha = desc.num_planes > 3; plane_format[0] = find_tex_format((bits + 7) / 8, 1); for (int p = 1; p < desc.num_planes; p++) plane_format[p] = plane_format[0]; goto supported; } } // YUV/half-packed if (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21) { plane_format[0] = find_tex_format(1, 1); plane_format[1] = find_tex_format(1, 2); if (fmt == IMGFMT_NV21) snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga"); goto supported; } // RGB/planar if (fmt == IMGFMT_GBRP) { snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga"); plane_format[0] = find_tex_format(1, 1); for (int p = 1; p < desc.num_planes; p++) plane_format[p] = plane_format[0]; goto supported; } // XYZ (same organization as RGB packed, but requires conversion matrix) if (fmt == IMGFMT_XYZ12) { plane_format[0] = find_tex_format(2, 3); goto supported; } // Packed RGB special formats for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) { if (e->mp_format == fmt) { plane_format[0] = e; goto supported; } } // Packed RGB(A) formats for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) { if (e->fmt == fmt) { int n_comp = desc.bytes[0] / e->component_size; plane_format[0] = find_tex_format(e->component_size, n_comp); packed_fmt_swizzle(init->color_swizzle, e); init->has_alpha = e->components[3] != 0; goto supported; } } // Packed YUV Apple formats if (init->gl->mpgl_caps & MPGL_CAP_APPLE_RGB_422) { for (const struct fmt_entry *e = gl_apple_formats; e->mp_format; e++) { if (e->mp_format == fmt) { init->is_packed_yuv = true; snprintf(init->color_swizzle, sizeof(init->color_swizzle), "gbra"); plane_format[0] = e; goto supported; } } } // Unsupported format return false; supported: // Stuff like IMGFMT_420AP10. Untested, most likely insane. if (desc.num_planes == 4 && (init->plane_bits % 8) != 0) return false; for (int p = 0; p < desc.num_planes; p++) { struct texplane *plane = &init->image.planes[p]; const struct fmt_entry *format = plane_format[p]; assert(format); plane->gl_format = format->format; plane->gl_internal_format = format->internal_format; plane->gl_type = format->type; } init->is_yuv = desc.flags & MP_IMGFLAG_YUV; init->is_rgb = desc.flags & MP_IMGFLAG_RGB; init->is_linear_rgb = false; init->plane_count = desc.num_planes; init->image_desc = desc; return true; } bool gl_video_check_format(struct gl_video *p, int mp_format) { struct gl_video tmp = *p; return init_format(mp_format, &tmp); } void gl_video_config(struct gl_video *p, struct mp_image_params *params) { p->have_image = false; mp_image_unrefp(&p->image.hwimage); if (!mp_image_params_equal(&p->image_params, params)) { uninit_video(p); init_video(p, params); } } void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b) { MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b); p->depth_g = g; } struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd) { struct gl_video *p = talloc_ptrtype(NULL, p); *p = (struct gl_video) { .gl = gl, .log = log, .osd_state = osd, .opts = gl_video_opts_def, .gl_target = GL_TEXTURE_2D, .gl_debug = true, .scalers = { { .index = 0, .name = "bilinear" }, { .index = 1, .name = "bilinear" }, }, .scratch = talloc_zero_array(p, char *, 1), }; init_gl(p); recreate_osd(p); return p; } static bool can_use_filter_kernel(const struct filter_kernel *kernel) { if (!kernel) return false; struct filter_kernel k = *kernel; return mp_init_filter(&k, filter_sizes, 1); } // Get static string for scaler shader. static const char* handle_scaler_opt(const char *name) { if (name) { const struct filter_kernel *kernel = mp_find_filter_kernel(name); if (can_use_filter_kernel(kernel)) return kernel->name; for (const char *const *filter = fixed_scale_filters; *filter; filter++) { if (strcmp(*filter, name) == 0) return *filter; } } return NULL; } // Set the options, and possibly update the filter chain too. // Note: assumes all options are valid and verified by the option parser. void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts) { p->opts = *opts; for (int n = 0; n < 2; n++) { p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]); assert(p->opts.scalers[n]); p->scalers[n].name = p->opts.scalers[n]; } check_gl_features(p); reinit_rendering(p); } void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params) { *params = p->image_params; // supports everything } bool gl_video_set_equalizer(struct gl_video *p, const char *name, int val) { if (mp_csp_equalizer_set(&p->video_eq, name, val) >= 0) { if (!p->opts.gamma && p->video_eq.values[MP_CSP_EQ_GAMMA] != 0) { MP_VERBOSE(p, "Auto-enabling gamma.\n"); p->opts.gamma = 1.0f; compile_shaders(p); } update_all_uniforms(p); return true; } return false; } bool gl_video_get_equalizer(struct gl_video *p, const char *name, int *val) { return mp_csp_equalizer_get(&p->video_eq, name, val) >= 0; } static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt, struct bstr name, struct bstr param) { if (bstr_equals0(param, "help")) { mp_info(log, "Available scalers:\n"); for (const char *const *filter = fixed_scale_filters; *filter; filter++) mp_info(log, " %s\n", *filter); for (int n = 0; mp_filter_kernels[n].name; n++) mp_info(log, " %s\n", mp_filter_kernels[n].name); return M_OPT_EXIT - 1; } char s[20]; snprintf(s, sizeof(s), "%.*s", BSTR_P(param)); return handle_scaler_opt(s) ? 1 : M_OPT_INVALID; } // Resize and redraw the contents of the window without further configuration. // Intended to be used in situations where the frontend can't really be // involved with reconfiguring the VO properly. // gl_video_resize() should be called when user interaction is done. void gl_video_resize_redraw(struct gl_video *p, int w, int h) { p->gl->Viewport(p->vp_x, p->vp_y, w, h); p->vp_w = w; p->vp_h = h; gl_video_render_frame(p); } void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec) { p->hwdec = hwdec; mp_image_unrefp(&p->image.hwimage); }