/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "config.h"
#include "options/m_config.h"
#include "options/m_option.h"
#include "mpv_talloc.h"
#include "common/msg.h"
#include "common/global.h"
#include "osdep/threads.h"
#include "stream/stream.h"
#include "demux.h"
#include "timeline.h"
#include "stheader.h"
#include "cue.h"
// Demuxer list
extern const struct demuxer_desc demuxer_desc_edl;
extern const struct demuxer_desc demuxer_desc_cue;
extern const demuxer_desc_t demuxer_desc_rawaudio;
extern const demuxer_desc_t demuxer_desc_rawvideo;
extern const demuxer_desc_t demuxer_desc_tv;
extern const demuxer_desc_t demuxer_desc_mf;
extern const demuxer_desc_t demuxer_desc_matroska;
extern const demuxer_desc_t demuxer_desc_lavf;
extern const demuxer_desc_t demuxer_desc_playlist;
extern const demuxer_desc_t demuxer_desc_disc;
extern const demuxer_desc_t demuxer_desc_rar;
extern const demuxer_desc_t demuxer_desc_libarchive;
extern const demuxer_desc_t demuxer_desc_null;
extern const demuxer_desc_t demuxer_desc_timeline;
/* Please do not add any new demuxers here. If you want to implement a new
* demuxer, add it to libavformat, except for wrappers around external
* libraries and demuxers requiring binary support. */
const demuxer_desc_t *const demuxer_list[] = {
&demuxer_desc_disc,
&demuxer_desc_edl,
&demuxer_desc_cue,
&demuxer_desc_rawaudio,
&demuxer_desc_rawvideo,
#if HAVE_TV
&demuxer_desc_tv,
#endif
&demuxer_desc_matroska,
#if HAVE_LIBARCHIVE
&demuxer_desc_libarchive,
#endif
&demuxer_desc_rar,
&demuxer_desc_lavf,
&demuxer_desc_mf,
&demuxer_desc_playlist,
&demuxer_desc_null,
NULL
};
struct demux_opts {
int max_bytes;
int max_bytes_bw;
double min_secs;
int force_seekable;
double min_secs_cache;
int access_references;
int seekable_cache;
int create_ccs;
};
#define OPT_BASE_STRUCT struct demux_opts
const struct m_sub_options demux_conf = {
.opts = (const struct m_option[]){
OPT_DOUBLE("demuxer-readahead-secs", min_secs, M_OPT_MIN, .min = 0),
OPT_INTRANGE("demuxer-max-bytes", max_bytes, 0, 0, INT_MAX),
OPT_INTRANGE("demuxer-max-back-bytes", max_bytes_bw, 0, 0, INT_MAX),
OPT_FLAG("force-seekable", force_seekable, 0),
OPT_DOUBLE("cache-secs", min_secs_cache, M_OPT_MIN, .min = 0),
OPT_FLAG("access-references", access_references, 0),
OPT_CHOICE("demuxer-seekable-cache", seekable_cache, 0,
({"auto", -1}, {"no", 0}, {"yes", 1})),
OPT_FLAG("sub-create-cc-track", create_ccs, 0),
{0}
},
.size = sizeof(struct demux_opts),
.defaults = &(const struct demux_opts){
.max_bytes = 400 * 1024 * 1024,
.max_bytes_bw = 400 * 1024 * 1024,
.min_secs = 1.0,
.min_secs_cache = 10.0 * 60 * 60,
.seekable_cache = -1,
.access_references = 1,
},
};
struct demux_internal {
struct mp_log *log;
// The demuxer runs potentially in another thread, so we keep two demuxer
// structs; the real demuxer can access the shadow struct only.
// Since demuxer and user threads both don't use locks, a third demuxer
// struct d_buffer is used to copy data between them in a synchronized way.
struct demuxer *d_thread; // accessed by demuxer impl. (producer)
struct demuxer *d_user; // accessed by player (consumer)
struct demuxer *d_buffer; // protected by lock; used to sync d_user/thread
// The lock protects the packet queues (struct demux_stream), d_buffer,
// and the fields below.
pthread_mutex_t lock;
pthread_cond_t wakeup;
pthread_t thread;
// -- All the following fields are protected by lock.
bool thread_terminate;
bool threading;
void (*wakeup_cb)(void *ctx);
void *wakeup_cb_ctx;
struct sh_stream **streams;
int num_streams;
int events;
bool warned_queue_overflow;
bool last_eof; // last actual global EOF status
bool eof; // whether we're in EOF state (reset for retry)
bool idle;
bool autoselect;
double min_secs;
int max_bytes;
int max_bytes_bw;
bool seekable_cache;
// At least one decoder actually requested data since init or the last seek.
// Do this to allow the decoder thread to select streams before starting.
bool reading;
// Set if we know that we are at the start of the file. This is used to
// avoid a redundant initial seek after enabling streams. We could just
// allow it, but to avoid buggy seeking affecting normal playback, we don't.
bool initial_state;
bool tracks_switched; // thread needs to inform demuxer of this
bool seeking; // there's a seek queued
int seek_flags; // flags for next seek (if seeking==true)
double seek_pts;
double ts_offset; // timestamp offset to apply to everything
void (*run_fn)(void *); // if non-NULL, function queued to be run on
void *run_fn_arg; // the thread as run_fn(run_fn_arg)
// (sorted by least recent use: index 0 is least recently used)
struct demux_cached_range **ranges;
int num_ranges;
size_t total_bytes; // total sum of packet data buffered
size_t fw_bytes; // sum of forward packet data in current_range
// Range from which decoder is reading, and to which demuxer is appending.
// This is never NULL. This is always ranges[num_ranges - 1].
struct demux_cached_range *current_range;
double highest_av_pts; // highest non-subtitle PTS seen - for duration
// Cached state.
bool force_cache_update;
struct mp_tags *stream_metadata;
struct stream_cache_info stream_cache_info;
int64_t stream_size;
// Updated during init only.
char *stream_base_filename;
};
// A continuous range of cached packets for all enabled streams.
// (One demux_queue for each known stream.)
struct demux_cached_range {
// streams[] is indexed by demux_stream->index
struct demux_queue **streams;
int num_streams;
// Computed from the stream queue's values. These fields (unlike as with
// demux_queue) are always either NOPTS, or fully valid.
double seek_start, seek_end;
};
#define MAX_INDEX_ENTRIES 16
// A continuous list of cached packets for a single stream/range. There is one
// for each stream and range. Also contains some state for use during demuxing
// (keeping it across seeks makes it easier to resume demuxing).
struct demux_queue {
struct demux_stream *ds;
struct demux_cached_range *range;
struct demux_packet *head;
struct demux_packet *tail;
struct demux_packet *next_prune_target; // cached value for faster pruning
bool correct_dts; // packet DTS is strictly monotonically increasing
bool correct_pos; // packet pos is strictly monotonically increasing
int64_t last_pos; // for determining correct_pos
double last_dts; // for determining correct_dts
double last_ts; // timestamp of the last packet added to queue
// for incrementally determining seek PTS range
double keyframe_pts, keyframe_end_pts;
struct demux_packet *keyframe_latest;
// incrementally maintained seek range, possibly invalid
double seek_start, seek_end;
double last_pruned; // timestamp of last pruned keyframe
// incomplete index to somewhat speed up seek operations
// the entries in index[] must be in packet queue append/removal order
int num_index; // valid index[] entries
double index_distance; // minimum keyframe distance to add index element
struct demux_packet *index[MAX_INDEX_ENTRIES];
};
struct demux_stream {
struct demux_internal *in;
struct sh_stream *sh; // ds->sh->ds == ds
enum stream_type type; // equals to sh->type
int index; // equals to sh->index
// --- all fields are protected by in->lock
// demuxer state
bool selected; // user wants packets from this stream
bool eager; // try to keep at least 1 packet queued
// if false, this stream is disabled, or passively
// read (like subtitles)
bool refreshing; // finding old position after track switches
bool eof; // end of demuxed stream? (true if no more packets)
bool global_correct_dts;// all observed so far
bool global_correct_pos;
// current queue - used both for reading and demuxing (this is never NULL)
struct demux_queue *queue;
// reader (decoder) state (bitrate calculations are part of it because we
// want to return the bitrate closest to the "current position")
double base_ts; // timestamp of the last packet returned to decoder
double last_br_ts; // timestamp of last packet bitrate was calculated
size_t last_br_bytes; // summed packet sizes since last bitrate calculation
double bitrate;
size_t fw_packs; // number of packets in buffer (forward)
size_t fw_bytes; // total bytes of packets in buffer (forward)
struct demux_packet *reader_head; // points at current decoder position
bool skip_to_keyframe;
bool attached_picture_added;
// for refresh seeks: pos/dts of last packet returned to reader
int64_t last_ret_pos;
double last_ret_dts;
// for closed captions (demuxer_feed_caption)
struct sh_stream *cc;
bool ignore_eof; // ignore stream in underrun detection
};
// Return "a", or if that is NOPTS, return "def".
#define PTS_OR_DEF(a, def) ((a) == MP_NOPTS_VALUE ? (def) : (a))
// If one of the values is NOPTS, always pick the other one.
#define MP_PTS_MIN(a, b) MPMIN(PTS_OR_DEF(a, b), PTS_OR_DEF(b, a))
#define MP_PTS_MAX(a, b) MPMAX(PTS_OR_DEF(a, b), PTS_OR_DEF(b, a))
#define MP_ADD_PTS(a, b) ((a) == MP_NOPTS_VALUE ? (a) : ((a) + (b)))
static void demuxer_sort_chapters(demuxer_t *demuxer);
static void *demux_thread(void *pctx);
static void update_cache(struct demux_internal *in);
#if 0
// very expensive check for redundant cached queue state
static void check_queue_consistency(struct demux_internal *in)
{
size_t total_bytes = 0;
size_t total_fw_bytes = 0;
assert(in->current_range && in->num_ranges > 0);
assert(in->current_range == in->ranges[in->num_ranges - 1]);
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *range = in->ranges[n];
assert(range->num_streams == in->num_streams);
for (int i = 0; i < range->num_streams; i++) {
struct demux_queue *queue = range->streams[i];
assert(queue->range == range);
size_t fw_bytes = 0;
size_t fw_packs = 0;
bool is_forward = false;
bool kf_found = false;
bool npt_found = false;
int next_index = 0;
for (struct demux_packet *dp = queue->head; dp; dp = dp->next) {
is_forward |= dp == queue->ds->reader_head;
kf_found |= dp == queue->keyframe_latest;
npt_found |= dp == queue->next_prune_target;
size_t bytes = demux_packet_estimate_total_size(dp);
total_bytes += bytes;
if (is_forward) {
fw_bytes += bytes;
fw_packs += 1;
assert(range == in->current_range);
assert(queue->ds->queue == queue);
}
if (!dp->next)
assert(queue->tail == dp);
if (next_index < queue->num_index && queue->index[next_index] == dp)
next_index += 1;
}
if (!queue->head)
assert(!queue->tail);
assert(next_index == queue->num_index);
// If the queue is currently used...
if (queue->ds->queue == queue) {
// ...reader_head and others must be in the queue.
assert(is_forward == !!queue->ds->reader_head);
assert(kf_found == !!queue->keyframe_latest);
}
assert(npt_found == !!queue->next_prune_target);
total_fw_bytes += fw_bytes;
if (range == in->current_range) {
assert(queue->ds->fw_bytes == fw_bytes);
assert(queue->ds->fw_packs == fw_packs);
} else {
assert(fw_bytes == 0 && fw_packs == 0);
}
if (queue->keyframe_latest)
assert(queue->keyframe_latest->keyframe);
}
}
assert(in->total_bytes == total_bytes);
assert(in->fw_bytes == total_fw_bytes);
}
#endif
static void recompute_buffers(struct demux_stream *ds)
{
ds->fw_packs = 0;
ds->fw_bytes = 0;
for (struct demux_packet *dp = ds->reader_head; dp; dp = dp->next) {
ds->fw_bytes += demux_packet_estimate_total_size(dp);
ds->fw_packs++;
}
}
// (this doesn't do most required things for a switch, like updating ds->queue)
static void set_current_range(struct demux_internal *in,
struct demux_cached_range *range)
{
in->current_range = range;
// Move to in->ranges[in->num_ranges-1] (for LRU sorting/invariant)
for (int n = 0; n < in->num_ranges; n++) {
if (in->ranges[n] == range) {
MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n);
break;
}
}
MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range);
}
// Refresh range->seek_start/end.
static void update_seek_ranges(struct demux_cached_range *range)
{
range->seek_start = range->seek_end = MP_NOPTS_VALUE;
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
if (queue->ds->selected && queue->ds->eager) {
range->seek_start = MP_PTS_MAX(range->seek_start, queue->seek_start);
range->seek_end = MP_PTS_MIN(range->seek_end, queue->seek_end);
if (queue->seek_start >= queue->seek_end) {
range->seek_start = range->seek_end = MP_NOPTS_VALUE;
break;
}
}
}
// Sparse stream behavior is not very clearly defined, but usually we don't
// want it to restrict the range of other streams, unless
// This is incorrect in any of these cases:
// - sparse streams only (it's unknown how to determine an accurate range)
// - if sparse streams have non-keyframe packets (we set queue->last_pruned
// to the start of the pruned keyframe range - we'd need the end or so)
// We also assume that ds->eager equals to a stream being sparse (usually
// true, except if only sparse streams are selected).
// We also rely on the fact that the demuxer position will always be ahead
// of the seek_end for audio/video, because they need to prefetch at least
// 1 packet to detect the end of a keyframe range. This means that we're
// relatively guaranteed to have all sparse (subtitle) packets within the
// seekable range.
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
if (queue->ds->selected && !queue->ds->eager &&
queue->last_pruned != MP_NOPTS_VALUE)
{
// (last_pruned is _exclusive_ to the seekable range, so add a small
// value to exclude it from the valid range.)
range->seek_start =
MP_PTS_MAX(range->seek_start, queue->last_pruned + 0.1);
}
}
if (range->seek_start >= range->seek_end)
range->seek_start = range->seek_end = MP_NOPTS_VALUE;
}
// Remove queue->head from the queue. Does not update in->fw_bytes/in->fw_packs.
static void remove_head_packet(struct demux_queue *queue)
{
struct demux_packet *dp = queue->head;
assert(queue->ds->reader_head != dp);
if (queue->next_prune_target == dp)
queue->next_prune_target = NULL;
if (queue->keyframe_latest == dp)
queue->keyframe_latest = NULL;
queue->ds->in->total_bytes -= demux_packet_estimate_total_size(dp);
if (queue->num_index && queue->index[0] == dp)
MP_TARRAY_REMOVE_AT(queue->index, queue->num_index, 0);
queue->head = dp->next;
if (!queue->head)
queue->tail = NULL;
talloc_free(dp);
}
static void clear_queue(struct demux_queue *queue)
{
struct demux_stream *ds = queue->ds;
struct demux_internal *in = ds->in;
struct demux_packet *dp = queue->head;
while (dp) {
struct demux_packet *dn = dp->next;
in->total_bytes -= demux_packet_estimate_total_size(dp);
assert(ds->reader_head != dp);
talloc_free(dp);
dp = dn;
}
queue->head = queue->tail = NULL;
queue->next_prune_target = NULL;
queue->keyframe_latest = NULL;
queue->seek_start = queue->seek_end = queue->last_pruned = MP_NOPTS_VALUE;
queue->num_index = 0;
queue->index_distance = 1.0;
queue->correct_dts = queue->correct_pos = true;
queue->last_pos = -1;
queue->last_ts = queue->last_dts = MP_NOPTS_VALUE;
queue->keyframe_latest = NULL;
queue->keyframe_pts = queue->keyframe_end_pts = MP_NOPTS_VALUE;
}
static void clear_cached_range(struct demux_internal *in,
struct demux_cached_range *range)
{
for (int n = 0; n < range->num_streams; n++)
clear_queue(range->streams[n]);
update_seek_ranges(range);
}
// Remove ranges with no data (except in->current_range). Also remove excessive
// ranges.
static void free_empty_cached_ranges(struct demux_internal *in)
{
assert(in->current_range && in->num_ranges > 0);
assert(in->current_range == in->ranges[in->num_ranges - 1]);
while (1) {
struct demux_cached_range *worst = NULL;
for (int n = in->num_ranges - 2; n >= 0; n--) {
struct demux_cached_range *range = in->ranges[n];
if (range->seek_start == MP_NOPTS_VALUE || !in->seekable_cache) {
clear_cached_range(in, range);
MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n);
} else {
if (!worst || (range->seek_end - range->seek_start <
worst->seek_end - worst->seek_start))
worst = range;
}
}
if (in->num_ranges <= MAX_SEEK_RANGES)
break;
clear_cached_range(in, worst);
}
}
static void ds_clear_reader_queue_state(struct demux_stream *ds)
{
ds->in->fw_bytes -= ds->fw_bytes;
ds->reader_head = NULL;
ds->fw_bytes = 0;
ds->fw_packs = 0;
ds->eof = false;
}
static void ds_clear_reader_state(struct demux_stream *ds)
{
ds_clear_reader_queue_state(ds);
ds->base_ts = ds->last_br_ts = MP_NOPTS_VALUE;
ds->last_br_bytes = 0;
ds->bitrate = -1;
ds->skip_to_keyframe = false;
ds->attached_picture_added = false;
ds->last_ret_pos = -1;
ds->last_ret_dts = MP_NOPTS_VALUE;
}
static void update_stream_selection_state(struct demux_internal *in,
struct demux_stream *ds)
{
ds->eof = false;
ds->refreshing = false;
ds_clear_reader_state(ds);
// We still have to go over the whole stream list to update ds->eager for
// other streams too, because they depend on other stream's selections.
bool any_av_streams = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *s = in->streams[n]->ds;
s->eager = s->selected && !s->sh->attached_picture;
if (s->eager)
any_av_streams |= s->type != STREAM_SUB;
}
// Subtitles are only eagerly read if there are no other eagerly read
// streams.
if (any_av_streams) {
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *s = in->streams[n]->ds;
if (s->type == STREAM_SUB)
s->eager = false;
}
}
// Make sure any stream reselection or addition is reflected in the seek
// ranges, and also get rid of data that is not needed anymore (or
// rather, which can't be kept consistent). This has to happen after we've
// updated all the subtle state (like s->eager).
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *range = in->ranges[n];
if (!ds->selected)
clear_queue(range->streams[ds->index]);
update_seek_ranges(range);
}
free_empty_cached_ranges(in);
}
void demux_set_ts_offset(struct demuxer *demuxer, double offset)
{
struct demux_internal *in = demuxer->in;
pthread_mutex_lock(&in->lock);
in->ts_offset = offset;
pthread_mutex_unlock(&in->lock);
}
static void add_missing_streams(struct demux_internal *in,
struct demux_cached_range *range)
{
for (int n = range->num_streams; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = talloc_ptrtype(range, queue);
*queue = (struct demux_queue){
.ds = ds,
.range = range,
};
clear_queue(queue);
MP_TARRAY_APPEND(range, range->streams, range->num_streams, queue);
assert(range->streams[ds->index] == queue);
}
}
// Allocate a new sh_stream of the given type. It either has to be released
// with talloc_free(), or added to a demuxer with demux_add_sh_stream(). You
// cannot add or read packets from the stream before it has been added.
struct sh_stream *demux_alloc_sh_stream(enum stream_type type)
{
struct sh_stream *sh = talloc_ptrtype(NULL, sh);
*sh = (struct sh_stream) {
.type = type,
.index = -1,
.ff_index = -1, // may be overwritten by demuxer
.demuxer_id = -1, // ... same
.codec = talloc_zero(sh, struct mp_codec_params),
.tags = talloc_zero(sh, struct mp_tags),
};
sh->codec->type = type;
return sh;
}
// Add a new sh_stream to the demuxer. Note that as soon as the stream has been
// added, it must be immutable, and must not be released (this will happen when
// the demuxer is destroyed).
static void demux_add_sh_stream_locked(struct demux_internal *in,
struct sh_stream *sh)
{
assert(!sh->ds); // must not be added yet
sh->index = in->num_streams;
sh->ds = talloc(sh, struct demux_stream);
*sh->ds = (struct demux_stream) {
.in = in,
.sh = sh,
.type = sh->type,
.index = sh->index,
.selected = in->autoselect,
.global_correct_dts = true,
.global_correct_pos = true,
};
if (!sh->codec->codec)
sh->codec->codec = "";
if (sh->ff_index < 0)
sh->ff_index = sh->index;
if (sh->demuxer_id < 0) {
sh->demuxer_id = 0;
for (int n = 0; n < in->num_streams; n++) {
if (in->streams[n]->type == sh->type)
sh->demuxer_id += 1;
}
}
MP_TARRAY_APPEND(in, in->streams, in->num_streams, sh);
assert(in->streams[sh->index] == sh);
for (int n = 0; n < in->num_ranges; n++)
add_missing_streams(in, in->ranges[n]);
sh->ds->queue = in->current_range->streams[sh->ds->index];
update_stream_selection_state(in, sh->ds);
in->events |= DEMUX_EVENT_STREAMS;
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
}
// For demuxer implementations only.
void demux_add_sh_stream(struct demuxer *demuxer, struct sh_stream *sh)
{
struct demux_internal *in = demuxer->in;
pthread_mutex_lock(&in->lock);
demux_add_sh_stream_locked(in, sh);
pthread_mutex_unlock(&in->lock);
}
// Update sh->tags (lazily). This must be called by demuxers which update
// stream tags after init. (sh->tags can be accessed by the playback thread,
// which means the demuxer thread cannot write or read it directly.)
// Before init is finished, sh->tags can still be accessed freely.
// Ownership of tags goes to the function.
void demux_set_stream_tags(struct demuxer *demuxer, struct sh_stream *sh,
struct mp_tags *tags)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_thread);
if (sh->ds) {
while (demuxer->num_update_stream_tags <= sh->index) {
MP_TARRAY_APPEND(demuxer, demuxer->update_stream_tags,
demuxer->num_update_stream_tags, NULL);
}
talloc_free(demuxer->update_stream_tags[sh->index]);
demuxer->update_stream_tags[sh->index] = talloc_steal(demuxer, tags);
demux_changed(demuxer, DEMUX_EVENT_METADATA);
} else {
// not added yet
talloc_free(sh->tags);
sh->tags = talloc_steal(sh, tags);
}
}
// Return a stream with the given index. Since streams can only be added during
// the lifetime of the demuxer, it is guaranteed that an index within the valid
// range [0, demux_get_num_stream()) always returns a valid sh_stream pointer,
// which will be valid until the demuxer is destroyed.
struct sh_stream *demux_get_stream(struct demuxer *demuxer, int index)
{
struct demux_internal *in = demuxer->in;
pthread_mutex_lock(&in->lock);
assert(index >= 0 && index < in->num_streams);
struct sh_stream *r = in->streams[index];
pthread_mutex_unlock(&in->lock);
return r;
}
// See demux_get_stream().
int demux_get_num_stream(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
pthread_mutex_lock(&in->lock);
int r = in->num_streams;
pthread_mutex_unlock(&in->lock);
return r;
}
void free_demuxer(demuxer_t *demuxer)
{
if (!demuxer)
return;
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
demux_stop_thread(demuxer);
if (demuxer->desc->close)
demuxer->desc->close(in->d_thread);
demux_flush(demuxer);
assert(in->total_bytes == 0);
for (int n = 0; n < in->num_streams; n++)
talloc_free(in->streams[n]);
pthread_mutex_destroy(&in->lock);
pthread_cond_destroy(&in->wakeup);
talloc_free(demuxer);
}
void free_demuxer_and_stream(struct demuxer *demuxer)
{
if (!demuxer)
return;
struct stream *s = demuxer->stream;
free_demuxer(demuxer);
free_stream(s);
}
// Start the demuxer thread, which reads ahead packets on its own.
void demux_start_thread(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (!in->threading) {
in->threading = true;
if (pthread_create(&in->thread, NULL, demux_thread, in))
in->threading = false;
}
}
void demux_stop_thread(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (in->threading) {
pthread_mutex_lock(&in->lock);
in->thread_terminate = true;
pthread_cond_signal(&in->wakeup);
pthread_mutex_unlock(&in->lock);
pthread_join(in->thread, NULL);
in->threading = false;
in->thread_terminate = false;
}
}
// The demuxer thread will call cb(ctx) if there's a new packet, or EOF is reached.
void demux_set_wakeup_cb(struct demuxer *demuxer, void (*cb)(void *ctx), void *ctx)
{
struct demux_internal *in = demuxer->in;
pthread_mutex_lock(&in->lock);
in->wakeup_cb = cb;
in->wakeup_cb_ctx = ctx;
pthread_mutex_unlock(&in->lock);
}
const char *stream_type_name(enum stream_type type)
{
switch (type) {
case STREAM_VIDEO: return "video";
case STREAM_AUDIO: return "audio";
case STREAM_SUB: return "sub";
default: return "unknown";
}
}
static struct sh_stream *demuxer_get_cc_track_locked(struct sh_stream *stream)
{
struct sh_stream *sh = stream->ds->cc;
if (!sh) {
sh = demux_alloc_sh_stream(STREAM_SUB);
if (!sh)
return NULL;
sh->codec->codec = "eia_608";
sh->default_track = true;
stream->ds->cc = sh;
demux_add_sh_stream_locked(stream->ds->in, sh);
sh->ds->ignore_eof = true;
}
return sh;
}
void demuxer_feed_caption(struct sh_stream *stream, demux_packet_t *dp)
{
struct demux_internal *in = stream->ds->in;
pthread_mutex_lock(&in->lock);
struct sh_stream *sh = demuxer_get_cc_track_locked(stream);
if (!sh) {
pthread_mutex_unlock(&in->lock);
talloc_free(dp);
return;
}
dp->pts = MP_ADD_PTS(dp->pts, -in->ts_offset);
dp->dts = MP_ADD_PTS(dp->dts, -in->ts_offset);
pthread_mutex_unlock(&in->lock);
demux_add_packet(sh, dp);
}
// Add the keyframe to the end of the index. Not all packets are actually added.
static void add_index_entry(struct demux_queue *queue, struct demux_packet *dp)
{
assert(dp->keyframe && dp->kf_seek_pts != MP_NOPTS_VALUE);
if (queue->num_index) {
double prev = queue->index[queue->num_index - 1]->kf_seek_pts;
if (dp->kf_seek_pts < prev + queue->index_distance)
return;
}
if (queue->num_index == MAX_INDEX_ENTRIES) {
for (int n = 0; n < MAX_INDEX_ENTRIES / 2; n++)
queue->index[n] = queue->index[n * 2];
queue->num_index = MAX_INDEX_ENTRIES / 2;
queue->index_distance *= 2;
}
queue->index[queue->num_index++] = dp;
}
// Check whether the next range in the list is, and if it appears to overlap,
// try joining it into a single range.
static void attempt_range_joining(struct demux_internal *in)
{
struct demux_cached_range *next = NULL;
double next_dist = INFINITY;
assert(in->current_range && in->num_ranges > 0);
assert(in->current_range == in->ranges[in->num_ranges - 1]);
for (int n = 0; n < in->num_ranges - 1; n++) {
struct demux_cached_range *range = in->ranges[n];
if (in->current_range->seek_start <= range->seek_start) {
// This uses ">" to get some non-0 overlap.
double dist = in->current_range->seek_end - range->seek_start;
if (dist > 0 && dist < next_dist) {
next = range;
next_dist = dist;
}
}
}
if (!next)
return;
MP_VERBOSE(in, "going to join ranges %f-%f + %f-%f\n",
in->current_range->seek_start, in->current_range->seek_end,
next->seek_start, next->seek_end);
// Try to find a join point, where packets obviously overlap. (It would be
// better and faster to do this incrementally, but probably too complex.)
// The current range can overlap arbitrarily with the next one, not only by
// by the seek overlap, but for arbitrary packet readahead as well.
// We also drop the overlapping packets (if joining fails, we discard the
// entire next range anyway, so this does no harm).
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *q1 = in->current_range->streams[n];
struct demux_queue *q2 = next->streams[n];
if (!ds->global_correct_pos && !ds->global_correct_dts) {
MP_WARN(in, "stream %d: ranges unjoinable\n", n);
goto failed;
}
struct demux_packet *end = q1->tail;
bool join_point_found = !end; // no packets yet -> joining will work
if (end) {
while (q2->head) {
struct demux_packet *dp = q2->head;
// Some weird corner-case. We'd have to search the equivalent
// packet in q1 to update it correctly. Better just give up.
if (dp == q2->keyframe_latest) {
MP_WARN(in, "stream %d: not enough keyframes\n", n);
goto failed;
}
if ((ds->global_correct_dts && dp->dts == end->dts) ||
(ds->global_correct_pos && dp->pos == end->pos))
{
// Do some additional checks as a (imperfect) sanity check
// in case pos/dts are not "correct" across the ranges (we
// never actually check that).
if (dp->dts != end->dts || dp->pos != end->pos ||
dp->pts != end->pts || dp->len != end->len)
{
MP_WARN(in, "stream %d: weird demuxer behavior\n", n);
goto failed;
}
remove_head_packet(q2);
join_point_found = true;
break;
}
// This happens if the next range misses the end packet. For
// normal streams (ds->eager==true), this is a failure to find
// an overlap. For subtitles, this can mean the current_range
// has a subtitle somewhere before the end of its range, and
// next has another subtitle somewhere after the start of its
// range.
if ((ds->global_correct_dts && dp->dts > end->dts) ||
(ds->global_correct_pos && dp->pos > end->pos))
break;
remove_head_packet(q2);
}
}
// For enabled non-sparse streams, always require an overlap packet.
if (ds->eager && !join_point_found) {
MP_WARN(in, "stream %d: no joint point found\n", n);
goto failed;
}
}
// Actually join the ranges. Now that we think it will work, mutate the
// data associated with the current range.
in->fw_bytes = 0;
for (int n = 0; n < in->num_streams; n++) {
struct demux_queue *q1 = in->current_range->streams[n];
struct demux_queue *q2 = next->streams[n];
struct demux_stream *ds = in->streams[n]->ds;
if (q2->head) {
if (q1->head) {
q1->tail->next = q2->head;
} else {
q1->head = q2->head;
}
q1->tail = q2->tail;
}
q1->seek_end = q2->seek_end;
q1->correct_dts &= q2->correct_dts;
q1->correct_pos &= q2->correct_pos;
q1->last_pos = q2->last_pos;
q1->last_dts = q2->last_dts;
q1->last_ts = q2->last_ts;
q1->keyframe_pts = q2->keyframe_pts;
q1->keyframe_end_pts = q2->keyframe_end_pts;
q1->keyframe_latest = q2->keyframe_latest;
q2->head = q2->tail = NULL;
q2->next_prune_target = NULL;
q2->keyframe_latest = NULL;
for (int i = 0; i < q2->num_index; i++)
add_index_entry(q1, q2->index[i]);
q2->num_index = 0;
recompute_buffers(ds);
in->fw_bytes += ds->fw_bytes;
// For moving demuxer position.
ds->refreshing = ds->selected;
}
update_seek_ranges(in->current_range);
// Move demuxing position to after the current range.
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = next->seek_end - 1.0;
MP_VERBOSE(in, "ranges joined!\n");
failed:
clear_cached_range(in, next);
free_empty_cached_ranges(in);
}
// Determine seekable range when a packet is added. If dp==NULL, treat it as
// EOF (i.e. closes the current block).
// This has to deal with a number of corner cases, such as demuxers potentially
// starting output at non-keyframes.
// Can join seek ranges, which messes with in->current_range and all.
static void adjust_seek_range_on_packet(struct demux_stream *ds,
struct demux_packet *dp)
{
struct demux_queue *queue = ds->queue;
bool attempt_range_join = false;
if (!ds->in->seekable_cache)
return;
if (!dp || dp->keyframe) {
if (queue->keyframe_latest) {
queue->keyframe_latest->kf_seek_pts = queue->keyframe_pts;
double old_end = queue->range->seek_end;
if (queue->seek_start == MP_NOPTS_VALUE)
queue->seek_start = queue->keyframe_pts;
if (queue->keyframe_end_pts != MP_NOPTS_VALUE)
queue->seek_end = queue->keyframe_end_pts;
update_seek_ranges(queue->range);
attempt_range_join = queue->range->seek_end > old_end;
if (queue->keyframe_latest->kf_seek_pts != MP_NOPTS_VALUE)
add_index_entry(queue, queue->keyframe_latest);
}
queue->keyframe_latest = dp;
queue->keyframe_pts = queue->keyframe_end_pts = MP_NOPTS_VALUE;
}
if (dp) {
dp->kf_seek_pts = MP_NOPTS_VALUE;
double ts = PTS_OR_DEF(dp->pts, dp->dts);
if (dp->segmented && (ts < dp->start || ts > dp->end))
ts = MP_NOPTS_VALUE;
queue->keyframe_pts = MP_PTS_MIN(queue->keyframe_pts, ts);
queue->keyframe_end_pts = MP_PTS_MAX(queue->keyframe_end_pts, ts);
}
if (attempt_range_join)
attempt_range_joining(ds->in);
}
void demux_add_packet(struct sh_stream *stream, demux_packet_t *dp)
{
struct demux_stream *ds = stream ? stream->ds : NULL;
if (!dp || !dp->len || !ds) {
talloc_free(dp);
return;
}
struct demux_internal *in = ds->in;
pthread_mutex_lock(&in->lock);
struct demux_queue *queue = ds->queue;
bool drop = !ds->selected || in->seeking;
if (!drop && ds->refreshing) {
// Resume reading once the old position was reached (i.e. we start
// returning packets where we left off before the refresh).
// If it's the same position, drop, but continue normally next time.
if (queue->correct_dts) {
ds->refreshing = dp->dts < queue->last_dts;
} else if (queue->correct_pos) {
ds->refreshing = dp->pos < queue->last_pos;
} else {
ds->refreshing = false; // should not happen
MP_WARN(in, "stream %d: demux refreshing failed\n", ds->index);
}
drop = true;
}
if (drop) {
pthread_mutex_unlock(&in->lock);
talloc_free(dp);
return;
}
queue->correct_pos &= dp->pos >= 0 && dp->pos > queue->last_pos;
queue->correct_dts &= dp->dts != MP_NOPTS_VALUE && dp->dts > queue->last_dts;
queue->last_pos = dp->pos;
queue->last_dts = dp->dts;
ds->global_correct_pos &= queue->correct_pos;
ds->global_correct_dts &= queue->correct_dts;
dp->stream = stream->index;
dp->next = NULL;
// (keep in mind that even if the reader went out of data, the queue is not
// necessarily empty due to the backbuffer)
if (!ds->reader_head && (!ds->skip_to_keyframe || dp->keyframe)) {
ds->reader_head = dp;
ds->skip_to_keyframe = false;
}
size_t bytes = demux_packet_estimate_total_size(dp);
ds->in->total_bytes += bytes;
if (ds->reader_head) {
ds->fw_packs++;
ds->fw_bytes += bytes;
in->fw_bytes += bytes;
}
if (queue->tail) {
// next packet in stream
queue->tail->next = dp;
queue->tail = dp;
} else {
// first packet in stream
queue->head = queue->tail = dp;
}
if (!ds->ignore_eof) {
// obviously not true anymore
ds->eof = false;
in->last_eof = in->eof = false;
}
// For video, PTS determination is not trivial, but for other media types
// distinguishing PTS and DTS is not useful.
if (stream->type != STREAM_VIDEO && dp->pts == MP_NOPTS_VALUE)
dp->pts = dp->dts;
double ts = dp->dts == MP_NOPTS_VALUE ? dp->pts : dp->dts;
if (dp->segmented)
ts = MP_PTS_MIN(ts, dp->end);
if (ts != MP_NOPTS_VALUE && (ts > queue->last_ts || ts + 10 < queue->last_ts))
queue->last_ts = ts;
if (ds->base_ts == MP_NOPTS_VALUE)
ds->base_ts = queue->last_ts;
MP_TRACE(in, "append packet to %s: size=%d pts=%f dts=%f pos=%"PRIi64" "
"[num=%zd size=%zd]\n", stream_type_name(stream->type),
dp->len, dp->pts, dp->dts, dp->pos, ds->fw_packs, ds->fw_bytes);
adjust_seek_range_on_packet(ds, dp);
// Possible update duration based on highest TS demuxed (but ignore subs).
if (stream->type != STREAM_SUB) {
if (dp->segmented)
ts = MP_PTS_MIN(ts, dp->end);
if (ts > in->highest_av_pts) {
in->highest_av_pts = ts;
double duration = in->highest_av_pts - in->d_thread->start_time;
if (duration > in->d_thread->duration) {
in->d_thread->duration = duration;
// (Don't wakeup like like demux_changed(), would be too noisy.)
in->d_thread->events |= DEMUX_EVENT_DURATION;
in->d_buffer->duration = duration;
in->d_buffer->events |= DEMUX_EVENT_DURATION;
}
}
}
// Wake up if this was the first packet after start/possible underrun.
if (ds->in->wakeup_cb && ds->reader_head && !ds->reader_head->next)
ds->in->wakeup_cb(ds->in->wakeup_cb_ctx);
pthread_cond_signal(&in->wakeup);
pthread_mutex_unlock(&in->lock);
}
// Returns true if there was "progress" (lock was released temporarily).
static bool read_packet(struct demux_internal *in)
{
in->eof = false;
in->idle = true;
if (!in->reading)
return false;
// Check if we need to read a new packet. We do this if all queues are below
// the minimum, or if a stream explicitly needs new packets. Also includes
// safe-guards against packet queue overflow.
bool read_more = false, prefetch_more = false, refresh_more = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
read_more |= ds->eager && !ds->reader_head;
refresh_more |= ds->refreshing;
if (ds->eager && ds->queue->last_ts != MP_NOPTS_VALUE &&
in->min_secs > 0 && ds->base_ts != MP_NOPTS_VALUE &&
ds->queue->last_ts >= ds->base_ts)
prefetch_more |= ds->queue->last_ts - ds->base_ts < in->min_secs;
}
MP_TRACE(in, "bytes=%zd, read_more=%d prefetch_more=%d, refresh_more=%d\n",
in->fw_bytes, read_more, prefetch_more, refresh_more);
if (in->fw_bytes >= in->max_bytes) {
// if we hit the limit just by prefetching, simply stop prefetching
if (!read_more)
return false;
if (!in->warned_queue_overflow) {
in->warned_queue_overflow = true;
MP_WARN(in, "Too many packets in the demuxer packet queues:\n");
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->selected) {
MP_WARN(in, " %s/%d: %zd packets, %zd bytes%s%s\n",
stream_type_name(ds->type), n,
ds->fw_packs, ds->fw_bytes,
ds->eager ? "" : " (lazy)",
ds->refreshing ? " (refreshing)" : "");
}
}
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
bool eof = !ds->reader_head;
if (eof && !ds->eof) {
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
pthread_cond_signal(&in->wakeup);
}
ds->eof |= eof;
}
return false;
}
if (!read_more && !prefetch_more && !refresh_more)
return false;
// Actually read a packet. Drop the lock while doing so, because waiting
// for disk or network I/O can take time.
in->idle = false;
in->initial_state = false;
pthread_mutex_unlock(&in->lock);
struct demuxer *demux = in->d_thread;
bool eof = true;
if (demux->desc->fill_buffer && !demux_cancel_test(demux))
eof = demux->desc->fill_buffer(demux) <= 0;
update_cache(in);
pthread_mutex_lock(&in->lock);
if (!in->seeking) {
if (eof) {
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (!ds->eof)
adjust_seek_range_on_packet(ds, NULL);
ds->eof = true;
}
// If we had EOF previously, then don't wakeup (avoids wakeup loop)
if (!in->last_eof) {
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
pthread_cond_signal(&in->wakeup);
MP_VERBOSE(in, "EOF reached.\n");
}
}
in->eof = in->last_eof = eof;
}
return true;
}
static void prune_old_packets(struct demux_internal *in)
{
assert(in->current_range == in->ranges[in->num_ranges - 1]);
// It's not clear what the ideal way to prune old packets is. For now, we
// prune the oldest packet runs, as long as the total cache amount is too
// big.
size_t max_bytes = in->seekable_cache ? in->max_bytes_bw : 0;
while (in->total_bytes - in->fw_bytes > max_bytes) {
// (Start from least recently used range.)
struct demux_cached_range *range = in->ranges[0];
double earliest_ts = MP_NOPTS_VALUE;
struct demux_stream *earliest_stream = NULL;
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
struct demux_stream *ds = queue->ds;
if (queue->head && queue->head != ds->reader_head) {
struct demux_packet *dp = queue->head;
double ts = dp->kf_seek_pts;
// Note: in obscure cases, packets might have no timestamps set,
// in which case we still need to prune _something_.
bool prune_always =
!in->seekable_cache || ts == MP_NOPTS_VALUE || !dp->keyframe;
if (prune_always || !earliest_stream || ts < earliest_ts) {
earliest_ts = ts;
earliest_stream = ds;
if (prune_always)
break;
}
}
}
assert(earliest_stream); // incorrect accounting of buffered sizes?
struct demux_stream *ds = earliest_stream;
struct demux_queue *queue = range->streams[ds->index];
// Prune all packets until the next keyframe or reader_head. Keeping
// those packets would not help with seeking at all, so we strictly
// drop them.
// In addition, we need to find the new possibly min. seek target,
// which in the worst case could be inside the forward buffer. The fact
// that many keyframe ranges without keyframes exist (audio packets)
// makes this much harder.
if (in->seekable_cache && !queue->next_prune_target) {
// (Has to be _after_ queue->head to drop at least 1 packet.)
struct demux_packet *prev = queue->head;
if (queue->seek_start != MP_NOPTS_VALUE)
queue->last_pruned = queue->seek_start;
queue->seek_start = MP_NOPTS_VALUE;
queue->next_prune_target = queue->tail; // (prune all if none found)
while (prev->next) {
struct demux_packet *dp = prev->next;
// Note that the next back_pts might be above the lowest buffered
// packet, but it will still be only viable lowest seek target.
if (dp->keyframe && dp->kf_seek_pts != MP_NOPTS_VALUE) {
queue->seek_start = dp->kf_seek_pts;
queue->next_prune_target = prev;
break;
}
prev = prev->next;
}
update_seek_ranges(range);
}
bool done = false;
while (!done && queue->head && queue->head != ds->reader_head) {
done = queue->next_prune_target == queue->head;
remove_head_packet(queue);
}
if (range != in->current_range && range->seek_start == MP_NOPTS_VALUE)
free_empty_cached_ranges(in);
}
}
static void execute_trackswitch(struct demux_internal *in)
{
in->tracks_switched = false;
bool any_selected = false;
for (int n = 0; n < in->num_streams; n++)
any_selected |= in->streams[n]->ds->selected;
pthread_mutex_unlock(&in->lock);
if (in->d_thread->desc->control)
in->d_thread->desc->control(in->d_thread, DEMUXER_CTRL_SWITCHED_TRACKS, 0);
stream_control(in->d_thread->stream, STREAM_CTRL_SET_READAHEAD,
&(int){any_selected});
pthread_mutex_lock(&in->lock);
}
static void execute_seek(struct demux_internal *in)
{
int flags = in->seek_flags;
double pts = in->seek_pts;
in->seeking = false;
in->initial_state = false;
pthread_mutex_unlock(&in->lock);
MP_VERBOSE(in, "execute seek (to %f flags %d)\n", pts, flags);
if (in->d_thread->desc->seek)
in->d_thread->desc->seek(in->d_thread, pts, flags);
MP_VERBOSE(in, "seek done\n");
pthread_mutex_lock(&in->lock);
}
// Make demuxing progress. Return whether progress was made.
static bool thread_work(struct demux_internal *in)
{
if (in->run_fn) {
in->run_fn(in->run_fn_arg);
in->run_fn = NULL;
pthread_cond_signal(&in->wakeup);
return true;
}
if (in->tracks_switched) {
execute_trackswitch(in);
return true;
}
if (in->seeking) {
execute_seek(in);
return true;
}
if (!in->eof) {
if (read_packet(in))
return true; // read_packet unlocked, so recheck conditions
}
if (in->force_cache_update) {
pthread_mutex_unlock(&in->lock);
update_cache(in);
pthread_mutex_lock(&in->lock);
in->force_cache_update = false;
return true;
}
return false;
}
static void *demux_thread(void *pctx)
{
struct demux_internal *in = pctx;
mpthread_set_name("demux");
pthread_mutex_lock(&in->lock);
while (!in->thread_terminate) {
if (thread_work(in))
continue;
pthread_cond_signal(&in->wakeup);
pthread_cond_wait(&in->wakeup, &in->lock);
}
pthread_mutex_unlock(&in->lock);
return NULL;
}
static struct demux_packet *dequeue_packet(struct demux_stream *ds)
{
if (ds->sh->attached_picture) {
ds->eof = true;
if (ds->attached_picture_added)
return NULL;
ds->attached_picture_added = true;
struct demux_packet *pkt = demux_copy_packet(ds->sh->attached_picture);
if (!pkt)
abort();
pkt->stream = ds->sh->index;
return pkt;
}
if (!ds->reader_head)
return NULL;
struct demux_packet *pkt = ds->reader_head;
ds->reader_head = pkt->next;
// Update cached packet queue state.
ds->fw_packs--;
size_t bytes = demux_packet_estimate_total_size(pkt);
ds->fw_bytes -= bytes;
ds->in->fw_bytes -= bytes;
ds->last_ret_pos = pkt->pos;
ds->last_ret_dts = pkt->dts;
// The returned packet is mutated etc. and will be owned by the user.
pkt = demux_copy_packet(pkt);
if (!pkt)
abort();
pkt->next = NULL;
double ts = PTS_OR_DEF(pkt->dts, pkt->pts);
if (ts != MP_NOPTS_VALUE)
ds->base_ts = ts;
if (pkt->keyframe && ts != MP_NOPTS_VALUE) {
// Update bitrate - only at keyframe points, because we use the
// (possibly) reordered packet timestamps instead of realtime.
double d = ts - ds->last_br_ts;
if (ds->last_br_ts == MP_NOPTS_VALUE || d < 0) {
ds->bitrate = -1;
ds->last_br_ts = ts;
ds->last_br_bytes = 0;
} else if (d >= 0.5) { // a window of least 500ms for UI purposes
ds->bitrate = ds->last_br_bytes / d;
ds->last_br_ts = ts;
ds->last_br_bytes = 0;
}
}
ds->last_br_bytes += pkt->len;
// This implies this function is actually called from "the" user thread.
if (pkt->pos >= ds->in->d_user->filepos)
ds->in->d_user->filepos = pkt->pos;
pkt->pts = MP_ADD_PTS(pkt->pts, ds->in->ts_offset);
pkt->dts = MP_ADD_PTS(pkt->dts, ds->in->ts_offset);
if (pkt->segmented) {
pkt->start = MP_ADD_PTS(pkt->start, ds->in->ts_offset);
pkt->end = MP_ADD_PTS(pkt->end, ds->in->ts_offset);
}
prune_old_packets(ds->in);
return pkt;
}
// Read a packet from the given stream. The returned packet belongs to the
// caller, who has to free it with talloc_free(). Might block. Returns NULL
// on EOF.
struct demux_packet *demux_read_packet(struct sh_stream *sh)
{
struct demux_stream *ds = sh ? sh->ds : NULL;
if (!ds)
return NULL;
struct demux_internal *in = ds->in;
pthread_mutex_lock(&in->lock);
if (ds->eager) {
const char *t = stream_type_name(ds->type);
MP_DBG(in, "reading packet for %s\n", t);
in->eof = false; // force retry
while (ds->selected && !ds->reader_head) {
in->reading = true;
// Note: the following code marks EOF if it can't continue
if (in->threading) {
MP_VERBOSE(in, "waiting for demux thread (%s)\n", t);
pthread_cond_signal(&in->wakeup);
pthread_cond_wait(&in->wakeup, &in->lock);
} else {
thread_work(in);
}
if (ds->eof)
break;
}
}
struct demux_packet *pkt = dequeue_packet(ds);
pthread_cond_signal(&in->wakeup); // possibly read more
pthread_mutex_unlock(&in->lock);
return pkt;
}
// Poll the demuxer queue, and if there's a packet, return it. Otherwise, just
// make the demuxer thread read packets for this stream, and if there's at
// least one packet, call the wakeup callback.
// Unlike demux_read_packet(), this always enables readahead (except for
// interleaved subtitles).
// Returns:
// < 0: EOF was reached, *out_pkt=NULL
// == 0: no new packet yet, but maybe later, *out_pkt=NULL
// > 0: new packet read, *out_pkt is set
// Note: when reading interleaved subtitles, the demuxer won't try to forcibly
// read ahead to get the next subtitle packet (as the next packet could be
// minutes away). In this situation, this function will just return -1.
int demux_read_packet_async(struct sh_stream *sh, struct demux_packet **out_pkt)
{
struct demux_stream *ds = sh ? sh->ds : NULL;
int r = -1;
*out_pkt = NULL;
if (!ds)
return r;
if (ds->in->threading) {
pthread_mutex_lock(&ds->in->lock);
*out_pkt = dequeue_packet(ds);
if (ds->eager) {
r = *out_pkt ? 1 : (ds->eof ? -1 : 0);
ds->in->reading = true; // enable readahead
ds->in->eof = false; // force retry
pthread_cond_signal(&ds->in->wakeup); // possibly read more
} else {
r = *out_pkt ? 1 : -1;
}
pthread_mutex_unlock(&ds->in->lock);
} else {
*out_pkt = demux_read_packet(sh);
r = *out_pkt ? 1 : -1;
}
return r;
}
// Return whether a packet is queued. Never blocks, never forces any reads.
bool demux_has_packet(struct sh_stream *sh)
{
bool has_packet = false;
if (sh) {
pthread_mutex_lock(&sh->ds->in->lock);
has_packet = sh->ds->reader_head;
pthread_mutex_unlock(&sh->ds->in->lock);
}
return has_packet;
}
// Read and return any packet we find. NULL means EOF.
struct demux_packet *demux_read_any_packet(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(!in->threading); // doesn't work with threading
bool read_more = true;
while (read_more) {
for (int n = 0; n < in->num_streams; n++) {
in->reading = true; // force read_packet() to read
struct demux_packet *pkt = dequeue_packet(in->streams[n]->ds);
if (pkt)
return pkt;
}
// retry after calling this
pthread_mutex_lock(&in->lock); // lock only because thread_work unlocks
read_more = thread_work(in);
read_more &= !in->eof;
pthread_mutex_unlock(&in->lock);
}
return NULL;
}
void demuxer_help(struct mp_log *log)
{
int i;
mp_info(log, "Available demuxers:\n");
mp_info(log, " demuxer: info:\n");
for (i = 0; demuxer_list[i]; i++) {
mp_info(log, "%10s %s\n",
demuxer_list[i]->name, demuxer_list[i]->desc);
}
}
static const char *d_level(enum demux_check level)
{
switch (level) {
case DEMUX_CHECK_FORCE: return "force";
case DEMUX_CHECK_UNSAFE: return "unsafe";
case DEMUX_CHECK_REQUEST:return "request";
case DEMUX_CHECK_NORMAL: return "normal";
}
abort();
}
static int decode_float(char *str, float *out)
{
char *rest;
float dec_val;
dec_val = strtod(str, &rest);
if (!rest || (rest == str) || !isfinite(dec_val))
return -1;
*out = dec_val;
return 0;
}
static int decode_gain(struct mp_log *log, struct mp_tags *tags,
const char *tag, float *out)
{
char *tag_val = NULL;
float dec_val;
tag_val = mp_tags_get_str(tags, tag);
if (!tag_val)
return -1;
if (decode_float(tag_val, &dec_val) < 0) {
mp_msg(log, MSGL_ERR, "Invalid replaygain value\n");
return -1;
}
*out = dec_val;
return 0;
}
static int decode_peak(struct mp_log *log, struct mp_tags *tags,
const char *tag, float *out)
{
char *tag_val = NULL;
float dec_val;
*out = 1.0;
tag_val = mp_tags_get_str(tags, tag);
if (!tag_val)
return 0;
if (decode_float(tag_val, &dec_val) < 0 || dec_val <= 0.0)
return -1;
*out = dec_val;
return 0;
}
static struct replaygain_data *decode_rgain(struct mp_log *log,
struct mp_tags *tags)
{
struct replaygain_data rg = {0};
if (decode_gain(log, tags, "REPLAYGAIN_TRACK_GAIN", &rg.track_gain) >= 0 &&
decode_peak(log, tags, "REPLAYGAIN_TRACK_PEAK", &rg.track_peak) >= 0)
{
if (decode_gain(log, tags, "REPLAYGAIN_ALBUM_GAIN", &rg.album_gain) < 0 ||
decode_peak(log, tags, "REPLAYGAIN_ALBUM_PEAK", &rg.album_peak) < 0)
{
rg.album_gain = rg.track_gain;
rg.album_peak = rg.track_peak;
}
return talloc_memdup(NULL, &rg, sizeof(rg));
}
if (decode_gain(log, tags, "REPLAYGAIN_GAIN", &rg.track_gain) >= 0 &&
decode_peak(log, tags, "REPLAYGAIN_PEAK", &rg.track_peak) >= 0)
{
rg.album_gain = rg.track_gain;
rg.album_peak = rg.track_peak;
return talloc_memdup(NULL, &rg, sizeof(rg));
}
return NULL;
}
static void demux_update_replaygain(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
if (sh->type == STREAM_AUDIO && !sh->codec->replaygain_data) {
struct replaygain_data *rg = decode_rgain(demuxer->log, sh->tags);
if (!rg)
rg = decode_rgain(demuxer->log, demuxer->metadata);
if (rg)
sh->codec->replaygain_data = talloc_steal(in, rg);
}
}
}
// Copy all fields from src to dst, depending on event flags.
static void demux_copy(struct demuxer *dst, struct demuxer *src)
{
if (src->events & DEMUX_EVENT_INIT) {
// Note that we do as shallow copies as possible. We expect the data
// that is not-copied (only referenced) to be immutable.
// This implies e.g. that no chapters are added after initialization.
dst->chapters = src->chapters;
dst->num_chapters = src->num_chapters;
dst->editions = src->editions;
dst->num_editions = src->num_editions;
dst->edition = src->edition;
dst->attachments = src->attachments;
dst->num_attachments = src->num_attachments;
dst->matroska_data = src->matroska_data;
dst->playlist = src->playlist;
dst->seekable = src->seekable;
dst->partially_seekable = src->partially_seekable;
dst->filetype = src->filetype;
dst->ts_resets_possible = src->ts_resets_possible;
dst->fully_read = src->fully_read;
dst->start_time = src->start_time;
dst->duration = src->duration;
dst->is_network = src->is_network;
dst->priv = src->priv;
}
if (src->events & DEMUX_EVENT_METADATA) {
talloc_free(dst->metadata);
dst->metadata = mp_tags_dup(dst, src->metadata);
if (dst->num_update_stream_tags != src->num_update_stream_tags) {
dst->num_update_stream_tags = src->num_update_stream_tags;
talloc_free(dst->update_stream_tags);
dst->update_stream_tags =
talloc_zero_array(dst, struct mp_tags *, dst->num_update_stream_tags);
}
for (int n = 0; n < dst->num_update_stream_tags; n++) {
talloc_free(dst->update_stream_tags[n]);
dst->update_stream_tags[n] =
talloc_steal(dst->update_stream_tags, src->update_stream_tags[n]);
src->update_stream_tags[n] = NULL;
}
}
if (src->events & DEMUX_EVENT_DURATION)
dst->duration = src->duration;
dst->events |= src->events;
src->events = 0;
}
// This is called by demuxer implementations if certain parameters change
// at runtime.
// events is one of DEMUX_EVENT_*
// The code will copy the fields references by the events to the user-thread.
void demux_changed(demuxer_t *demuxer, int events)
{
assert(demuxer == demuxer->in->d_thread); // call from demuxer impl. only
struct demux_internal *in = demuxer->in;
demuxer->events |= events;
update_cache(in);
pthread_mutex_lock(&in->lock);
if (demuxer->events & DEMUX_EVENT_INIT)
demuxer_sort_chapters(demuxer);
demux_copy(in->d_buffer, demuxer);
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
pthread_mutex_unlock(&in->lock);
}
// Called by the user thread (i.e. player) to update metadata and other things
// from the demuxer thread.
void demux_update(demuxer_t *demuxer)
{
assert(demuxer == demuxer->in->d_user);
struct demux_internal *in = demuxer->in;
if (!in->threading)
update_cache(in);
pthread_mutex_lock(&in->lock);
demux_copy(demuxer, in->d_buffer);
demuxer->events |= in->events;
in->events = 0;
if (demuxer->events & DEMUX_EVENT_METADATA) {
int num_streams = MPMIN(in->num_streams, demuxer->num_update_stream_tags);
for (int n = 0; n < num_streams; n++) {
struct mp_tags *tags = demuxer->update_stream_tags[n];
demuxer->update_stream_tags[n] = NULL;
if (tags) {
struct sh_stream *sh = in->streams[n];
talloc_free(sh->tags);
sh->tags = talloc_steal(sh, tags);
}
}
// Often useful audio-only files, which have metadata in the audio track
// metadata instead of the main metadata (especially OGG).
if (in->num_streams == 1)
mp_tags_merge(demuxer->metadata, in->streams[0]->tags);
if (in->stream_metadata)
mp_tags_merge(demuxer->metadata, in->stream_metadata);
}
if (demuxer->events & (DEMUX_EVENT_METADATA | DEMUX_EVENT_STREAMS))
demux_update_replaygain(demuxer);
pthread_mutex_unlock(&in->lock);
}
static void demux_init_cache(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
struct stream *stream = demuxer->stream;
char *base = NULL;
stream_control(stream, STREAM_CTRL_GET_BASE_FILENAME, &base);
in->stream_base_filename = talloc_steal(demuxer, base);
}
static void demux_init_cuesheet(struct demuxer *demuxer)
{
char *cue = mp_tags_get_str(demuxer->metadata, "cuesheet");
if (cue && !demuxer->num_chapters) {
struct cue_file *f = mp_parse_cue(bstr0(cue));
if (f) {
if (mp_check_embedded_cue(f) < 0) {
MP_WARN(demuxer, "Embedded cue sheet references more than one file. "
"Ignoring it.\n");
} else {
for (int n = 0; n < f->num_tracks; n++) {
struct cue_track *t = &f->tracks[n];
int idx = demuxer_add_chapter(demuxer, "", t->start, -1);
mp_tags_merge(demuxer->chapters[idx].metadata, t->tags);
}
}
}
talloc_free(f);
}
}
static void demux_maybe_replace_stream(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(!in->threading && demuxer == in->d_user);
if (demuxer->fully_read) {
MP_VERBOSE(demuxer, "assuming demuxer read all data; closing stream\n");
free_stream(demuxer->stream);
demuxer->stream = open_memory_stream(NULL, 0); // dummy
in->d_thread->stream = demuxer->stream;
in->d_buffer->stream = demuxer->stream;
if (demuxer->desc->control)
demuxer->desc->control(in->d_thread, DEMUXER_CTRL_REPLACE_STREAM, NULL);
}
}
static void demux_init_ccs(struct demuxer *demuxer, struct demux_opts *opts)
{
struct demux_internal *in = demuxer->in;
if (!opts->create_ccs)
return;
pthread_mutex_lock(&in->lock);
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
if (sh->type == STREAM_VIDEO)
demuxer_get_cc_track_locked(sh);
}
pthread_mutex_unlock(&in->lock);
}
static struct demuxer *open_given_type(struct mpv_global *global,
struct mp_log *log,
const struct demuxer_desc *desc,
struct stream *stream,
struct demuxer_params *params,
enum demux_check check)
{
if (mp_cancel_test(stream->cancel))
return NULL;
struct demuxer *demuxer = talloc_ptrtype(NULL, demuxer);
struct demux_opts *opts = mp_get_config_group(demuxer, global, &demux_conf);
*demuxer = (struct demuxer) {
.desc = desc,
.stream = stream,
.seekable = stream->seekable,
.filepos = -1,
.global = global,
.log = mp_log_new(demuxer, log, desc->name),
.glog = log,
.filename = talloc_strdup(demuxer, stream->url),
.is_network = stream->is_network,
.access_references = opts->access_references,
.events = DEMUX_EVENT_ALL,
.duration = -1,
};
demuxer->seekable = stream->seekable;
if (demuxer->stream->underlying && !demuxer->stream->underlying->seekable)
demuxer->seekable = false;
struct demux_internal *in = demuxer->in = talloc_ptrtype(demuxer, in);
*in = (struct demux_internal){
.log = demuxer->log,
.d_thread = talloc(demuxer, struct demuxer),
.d_buffer = talloc(demuxer, struct demuxer),
.d_user = demuxer,
.min_secs = opts->min_secs,
.max_bytes = opts->max_bytes,
.max_bytes_bw = opts->max_bytes_bw,
.initial_state = true,
.highest_av_pts = MP_NOPTS_VALUE,
};
pthread_mutex_init(&in->lock, NULL);
pthread_cond_init(&in->wakeup, NULL);
in->current_range = talloc_ptrtype(in, in->current_range);
*in->current_range = (struct demux_cached_range){
.seek_start = MP_NOPTS_VALUE,
.seek_end = MP_NOPTS_VALUE,
};
MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, in->current_range);
*in->d_thread = *demuxer;
*in->d_buffer = *demuxer;
in->d_thread->metadata = talloc_zero(in->d_thread, struct mp_tags);
in->d_user->metadata = talloc_zero(in->d_user, struct mp_tags);
in->d_buffer->metadata = talloc_zero(in->d_buffer, struct mp_tags);
mp_dbg(log, "Trying demuxer: %s (force-level: %s)\n",
desc->name, d_level(check));
// not for DVD/BD/DVB in particular
if (stream->seekable && (!params || !params->timeline))
stream_seek(stream, 0);
// Peek this much data to avoid that stream_read() run by some demuxers
// will flush previous peeked data.
stream_peek(stream, STREAM_BUFFER_SIZE);
in->d_thread->params = params; // temporary during open()
int ret = demuxer->desc->open(in->d_thread, check);
if (ret >= 0) {
in->d_thread->params = NULL;
if (in->d_thread->filetype)
mp_verbose(log, "Detected file format: %s (%s)\n",
in->d_thread->filetype, desc->desc);
else
mp_verbose(log, "Detected file format: %s\n", desc->desc);
if (!in->d_thread->seekable)
mp_verbose(log, "Stream is not seekable.\n");
if (!in->d_thread->seekable && opts->force_seekable) {
mp_warn(log, "Not seekable, but enabling seeking on user request.\n");
in->d_thread->seekable = true;
in->d_thread->partially_seekable = true;
}
demux_init_cuesheet(in->d_thread);
demux_init_cache(demuxer);
demux_init_ccs(demuxer, opts);
demux_changed(in->d_thread, DEMUX_EVENT_ALL);
demux_update(demuxer);
stream_control(demuxer->stream, STREAM_CTRL_SET_READAHEAD,
&(int){params ? params->initial_readahead : false});
int seekable = opts->seekable_cache;
if (demuxer->is_network || stream->caching) {
in->min_secs = MPMAX(in->min_secs, opts->min_secs_cache);
if (seekable < 0)
seekable = 1;
}
in->seekable_cache = seekable == 1;
if (!(params && params->disable_timeline)) {
struct timeline *tl = timeline_load(global, log, demuxer);
if (tl) {
struct demuxer_params params2 = {0};
params2.timeline = tl;
struct demuxer *sub =
open_given_type(global, log, &demuxer_desc_timeline, stream,
¶ms2, DEMUX_CHECK_FORCE);
if (sub) {
demuxer = sub;
} else {
timeline_destroy(tl);
}
}
}
return demuxer;
}
free_demuxer(demuxer);
return NULL;
}
static const int d_normal[] = {DEMUX_CHECK_NORMAL, DEMUX_CHECK_UNSAFE, -1};
static const int d_request[] = {DEMUX_CHECK_REQUEST, -1};
static const int d_force[] = {DEMUX_CHECK_FORCE, -1};
// params can be NULL
struct demuxer *demux_open(struct stream *stream, struct demuxer_params *params,
struct mpv_global *global)
{
const int *check_levels = d_normal;
const struct demuxer_desc *check_desc = NULL;
struct mp_log *log = mp_log_new(NULL, global->log, "!demux");
struct demuxer *demuxer = NULL;
char *force_format = params ? params->force_format : NULL;
if (!force_format)
force_format = stream->demuxer;
if (force_format && force_format[0]) {
check_levels = d_request;
if (force_format[0] == '+') {
force_format += 1;
check_levels = d_force;
}
for (int n = 0; demuxer_list[n]; n++) {
if (strcmp(demuxer_list[n]->name, force_format) == 0)
check_desc = demuxer_list[n];
}
if (!check_desc) {
mp_err(log, "Demuxer %s does not exist.\n", force_format);
goto done;
}
}
// Test demuxers from first to last, one pass for each check_levels[] entry
for (int pass = 0; check_levels[pass] != -1; pass++) {
enum demux_check level = check_levels[pass];
mp_verbose(log, "Trying demuxers for level=%s.\n", d_level(level));
for (int n = 0; demuxer_list[n]; n++) {
const struct demuxer_desc *desc = demuxer_list[n];
if (!check_desc || desc == check_desc) {
demuxer = open_given_type(global, log, desc, stream, params, level);
if (demuxer) {
talloc_steal(demuxer, log);
log = NULL;
goto done;
}
}
}
}
done:
talloc_free(log);
return demuxer;
}
// Convenience function: open the stream, enable the cache (according to params
// and global opts.), open the demuxer.
// (use free_demuxer_and_stream() to free the underlying stream too)
// Also for some reason may close the opened stream if it's not needed.
struct demuxer *demux_open_url(const char *url,
struct demuxer_params *params,
struct mp_cancel *cancel,
struct mpv_global *global)
{
struct demuxer_params dummy = {0};
if (!params)
params = &dummy;
struct stream *s = stream_create(url, STREAM_READ | params->stream_flags,
cancel, global);
if (!s)
return NULL;
if (!params->disable_cache)
stream_enable_cache_defaults(&s);
struct demuxer *d = demux_open(s, params, global);
if (d) {
demux_maybe_replace_stream(d);
} else {
params->demuxer_failed = true;
free_stream(s);
}
return d;
}
// called locked, from user thread only
static void clear_reader_state(struct demux_internal *in)
{
for (int n = 0; n < in->num_streams; n++)
ds_clear_reader_state(in->streams[n]->ds);
in->warned_queue_overflow = false;
in->d_user->filepos = -1; // implicitly synchronized
assert(in->fw_bytes == 0);
}
// clear the packet queues
void demux_flush(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
pthread_mutex_lock(&demuxer->in->lock);
clear_reader_state(in);
for (int n = 0; n < in->num_ranges; n++)
clear_cached_range(in, in->ranges[n]);
free_empty_cached_ranges(in);
pthread_mutex_unlock(&demuxer->in->lock);
}
// Does some (but not all) things for switching to another range.
static void switch_current_range(struct demux_internal *in,
struct demux_cached_range *range)
{
struct demux_cached_range *old = in->current_range;
assert(old != range);
set_current_range(in, range);
// Remove packets which can't be used when seeking back to the range.
for (int n = 0; n < in->num_streams; n++) {
struct demux_queue *queue = old->streams[n];
// Remove all packets from head up until including next_prune_target.
while (queue->next_prune_target)
remove_head_packet(queue);
}
// Exclude weird corner cases that break resuming.
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
// This is needed to resume or join the range at all.
if (ds->selected && !(ds->global_correct_dts || ds->global_correct_pos)) {
MP_VERBOSE(in, "discarding old range, due to stream %d: "
"correct_dts=%d correct_pos=%d\n", n,
ds->global_correct_dts, ds->global_correct_pos);
clear_cached_range(in, old);
break;
}
}
// Set up reading from new range (as well as writing to it).
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
ds->queue = range->streams[n];
ds->refreshing = false;
ds->eof = false;
}
// No point in keeping any junk (especially if old current_range is empty).
free_empty_cached_ranges(in);
}
static struct demux_packet *find_seek_target(struct demux_queue *queue,
double pts, int flags)
{
struct demux_packet *start = queue->head;
for (int n = 0; n < queue->num_index; n++) {
if (queue->index[n]->kf_seek_pts > pts)
break;
start = queue->index[n];
}
struct demux_packet *target = NULL;
double target_diff = MP_NOPTS_VALUE;
for (struct demux_packet *dp = start; dp; dp = dp->next) {
double range_pts = dp->kf_seek_pts;
if (!dp->keyframe || range_pts == MP_NOPTS_VALUE)
continue;
double diff = range_pts - pts;
if (flags & SEEK_FORWARD) {
diff = -diff;
if (diff > 0)
continue;
}
if (target) {
if (diff <= 0) {
if (target_diff <= 0 && diff <= target_diff)
continue;
} else if (diff >= target_diff)
continue;
}
target_diff = diff;
target = dp;
if (range_pts > pts)
break;
}
return target;
}
// must be called locked
static struct demux_cached_range *find_cache_seek_target(struct demux_internal *in,
double pts, int flags)
{
// Note about queued low level seeks: in->seeking can be true here, and it
// might come from a previous resume seek to the current range. If we end
// up seeking into the current range (i.e. just changing time offset), the
// seek needs to continue. Otherwise, we override the queued seek anyway.
if ((flags & SEEK_FACTOR) || !in->seekable_cache)
return NULL;
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *r = in->ranges[n];
if (r->seek_start != MP_NOPTS_VALUE) {
MP_VERBOSE(in, "cached range %d: %f <-> %f\n",
n, r->seek_start, r->seek_end);
if (pts >= r->seek_start && pts <= r->seek_end) {
MP_VERBOSE(in, "...using this range for in-cache seek.\n");
return r;
}
}
}
return NULL;
}
// must be called locked
// range must be non-NULL and from find_cache_seek_target() using the same pts
// and flags, before any other changes to the cached state
static void execute_cache_seek(struct demux_internal *in,
struct demux_cached_range *range,
double pts, int flags)
{
// Adjust the seek target to the found video key frames. Otherwise the
// video will undershoot the seek target, while audio will be closer to it.
// The player frontend will play the additional video without audio, so
// you get silent audio for the amount of "undershoot". Adjusting the seek
// target will make the audio seek to the video target or before.
// (If hr-seeks are used, it's better to skip this, as it would only mean
// that more audio data than necessary would have to be decoded.)
if (!(flags & SEEK_HR)) {
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = range->streams[n];
if (ds->selected && ds->type == STREAM_VIDEO) {
struct demux_packet *target = find_seek_target(queue, pts, flags);
if (target) {
double target_pts = target->kf_seek_pts;
if (target_pts != MP_NOPTS_VALUE) {
MP_VERBOSE(in, "adjust seek target %f -> %f\n",
pts, target_pts);
// (We assume the find_seek_target() will return the
// same target for the video stream.)
pts = target_pts;
flags &= ~SEEK_FORWARD;
}
}
break;
}
}
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = range->streams[n];
struct demux_packet *target = find_seek_target(queue, pts, flags);
ds->reader_head = target;
ds->skip_to_keyframe = !target;
if (ds->reader_head)
ds->base_ts = PTS_OR_DEF(ds->reader_head->pts, ds->reader_head->dts);
recompute_buffers(ds);
in->fw_bytes += ds->fw_bytes;
MP_VERBOSE(in, "seeking stream %d (%s) to ",
n, stream_type_name(ds->type));
if (target) {
MP_VERBOSE(in, "packet %f/%f\n", target->pts, target->dts);
} else {
MP_VERBOSE(in, "nothing\n");
}
}
// If we seek to another range, we want to seek the low level demuxer to
// there as well, because reader and demuxer queue must be the same.
if (in->current_range != range) {
switch_current_range(in, range);
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = range->seek_end - 1.0;
// When new packets are being appended, they could overlap with the old
// range due to demuxer seek imprecisions, or because the queue contains
// packets past the seek target but before the next seek target. Don't
// append them twice, instead skip them until new packets are found.
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
ds->refreshing = ds->selected;
}
MP_VERBOSE(in, "resuming demuxer to end of cached range\n");
}
}
// Create a new blank ache range, and backup the old one. If the seekable
// demuxer cache is disabled, merely reset the current range to a blank state.
static void switch_to_fresh_cache_range(struct demux_internal *in)
{
if (!in->seekable_cache) {
clear_cached_range(in, in->current_range);
return;
}
struct demux_cached_range *range = talloc_ptrtype(in, range);
*range = (struct demux_cached_range){
.seek_start = MP_NOPTS_VALUE,
.seek_end = MP_NOPTS_VALUE,
};
MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range);
add_missing_streams(in, range);
switch_current_range(in, range);
}
int demux_seek(demuxer_t *demuxer, double seek_pts, int flags)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
int res = 0;
pthread_mutex_lock(&in->lock);
if (seek_pts == MP_NOPTS_VALUE)
goto done;
MP_VERBOSE(in, "queuing seek to %f%s\n", seek_pts,
in->seeking ? " (cascade)" : "");
if (!(flags & SEEK_FACTOR))
seek_pts = MP_ADD_PTS(seek_pts, -in->ts_offset);
bool require_cache = flags & SEEK_CACHED;
flags &= ~(unsigned)SEEK_CACHED;
struct demux_cached_range *cache_target =
find_cache_seek_target(in, seek_pts, flags);
if (!cache_target) {
if (require_cache) {
MP_VERBOSE(demuxer, "Cached seek not possible.\n");
goto done;
}
if (!demuxer->seekable) {
MP_WARN(demuxer, "Cannot seek in this file.\n");
goto done;
}
}
clear_reader_state(in);
in->eof = false;
in->last_eof = false;
in->idle = true;
in->reading = false;
if (cache_target) {
execute_cache_seek(in, cache_target, seek_pts, flags);
} else {
switch_to_fresh_cache_range(in);
in->seeking = true;
in->seek_flags = flags;
in->seek_pts = seek_pts;
}
if (!in->threading && in->seeking)
execute_seek(in);
res = 1;
done:
pthread_cond_signal(&in->wakeup);
pthread_mutex_unlock(&in->lock);
return res;
}
struct sh_stream *demuxer_stream_by_demuxer_id(struct demuxer *d,
enum stream_type t, int id)
{
int num = demux_get_num_stream(d);
for (int n = 0; n < num; n++) {
struct sh_stream *s = demux_get_stream(d, n);
if (s->type == t && s->demuxer_id == id)
return s;
}
return NULL;
}
// An obscure mechanism to get stream switching to be executed "faster" (as
// perceived by the user), by making the stream return packets from the
// current position
// On a switch, it seeks back, and then grabs all packets that were
// "missing" from the packet queue of the newly selected stream.
static void initiate_refresh_seek(struct demux_internal *in,
struct demux_stream *stream,
double start_ts)
{
struct demuxer *demux = in->d_thread;
bool seekable = demux->desc->seek && demux->seekable &&
!demux->partially_seekable;
bool normal_seek = true;
bool refresh_possible = true;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (!ds->selected)
continue;
if (ds->type == STREAM_VIDEO || ds->type == STREAM_AUDIO)
start_ts = MP_PTS_MIN(start_ts, ds->base_ts);
// If there were no other streams selected, we can use a normal seek.
normal_seek &= stream == ds;
refresh_possible &= ds->queue->correct_dts || ds->queue->correct_pos;
}
if (start_ts == MP_NOPTS_VALUE || !seekable)
return;
if (!normal_seek) {
if (!refresh_possible) {
MP_VERBOSE(in, "can't issue refresh seek\n");
return;
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
bool correct_pos = ds->queue->correct_pos;
bool correct_dts = ds->queue->correct_dts;
// We need to re-read all packets anyway, so discard the buffered
// data. (In theory, we could keep the packets, and be able to use
// it for seeking if partially read streams are deselected again,
// but this causes other problems like queue overflows when
// selecting a new stream.)
ds_clear_reader_queue_state(ds);
clear_queue(ds->queue);
// Streams which didn't have any packets yet will return all packets,
// other streams return packets only starting from the last position.
if (ds->selected && (ds->last_ret_pos != -1 ||
ds->last_ret_dts != MP_NOPTS_VALUE))
{
ds->refreshing = true;
ds->queue->correct_dts = correct_dts;
ds->queue->correct_pos = correct_pos;
ds->queue->last_pos = ds->last_ret_pos;
ds->queue->last_dts = ds->last_ret_dts;
}
update_seek_ranges(in->current_range);
}
start_ts -= 1.0; // small offset to get correct overlap
}
MP_VERBOSE(in, "refresh seek to %f\n", start_ts);
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = start_ts;
}
// Set whether the given stream should return packets.
// ref_pts is used only if the stream is enabled. Then it serves as approximate
// start pts for this stream (in the worst case it is ignored).
void demuxer_select_track(struct demuxer *demuxer, struct sh_stream *stream,
double ref_pts, bool selected)
{
struct demux_internal *in = demuxer->in;
struct demux_stream *ds = stream->ds;
pthread_mutex_lock(&in->lock);
// don't flush buffers if stream is already selected / unselected
if (ds->selected != selected) {
MP_VERBOSE(in, "%sselect track %d\n", selected ? "" : "de", stream->index);
ds->selected = selected;
update_stream_selection_state(in, ds);
in->tracks_switched = true;
if (ds->selected && !in->initial_state)
initiate_refresh_seek(in, ds, MP_ADD_PTS(ref_pts, -in->ts_offset));
if (in->threading) {
pthread_cond_signal(&in->wakeup);
} else {
execute_trackswitch(in);
}
}
pthread_mutex_unlock(&in->lock);
}
void demux_set_stream_autoselect(struct demuxer *demuxer, bool autoselect)
{
assert(!demuxer->in->threading); // laziness
demuxer->in->autoselect = autoselect;
}
// This is for demuxer implementations only. demuxer_select_track() sets the
// logical state, while this function returns the actual state (in case the
// demuxer attempts to cache even unselected packets for track switching - this
// will potentially be done in the future).
bool demux_stream_is_selected(struct sh_stream *stream)
{
if (!stream)
return false;
bool r = false;
pthread_mutex_lock(&stream->ds->in->lock);
r = stream->ds->selected;
pthread_mutex_unlock(&stream->ds->in->lock);
return r;
}
int demuxer_add_attachment(demuxer_t *demuxer, char *name, char *type,
void *data, size_t data_size)
{
if (!(demuxer->num_attachments % 32))
demuxer->attachments = talloc_realloc(demuxer, demuxer->attachments,
struct demux_attachment,
demuxer->num_attachments + 32);
struct demux_attachment *att = &demuxer->attachments[demuxer->num_attachments];
att->name = talloc_strdup(demuxer->attachments, name);
att->type = talloc_strdup(demuxer->attachments, type);
att->data = talloc_memdup(demuxer->attachments, data, data_size);
att->data_size = data_size;
return demuxer->num_attachments++;
}
static int chapter_compare(const void *p1, const void *p2)
{
struct demux_chapter *c1 = (void *)p1;
struct demux_chapter *c2 = (void *)p2;
if (c1->pts > c2->pts)
return 1;
else if (c1->pts < c2->pts)
return -1;
return c1->original_index > c2->original_index ? 1 :-1; // never equal
}
static void demuxer_sort_chapters(demuxer_t *demuxer)
{
qsort(demuxer->chapters, demuxer->num_chapters,
sizeof(struct demux_chapter), chapter_compare);
}
int demuxer_add_chapter(demuxer_t *demuxer, char *name,
double pts, uint64_t demuxer_id)
{
struct demux_chapter new = {
.original_index = demuxer->num_chapters,
.pts = pts,
.metadata = talloc_zero(demuxer, struct mp_tags),
.demuxer_id = demuxer_id,
};
mp_tags_set_str(new.metadata, "TITLE", name);
MP_TARRAY_APPEND(demuxer, demuxer->chapters, demuxer->num_chapters, new);
return demuxer->num_chapters - 1;
}
void demux_disable_cache(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
pthread_mutex_lock(&in->lock);
if (in->seekable_cache) {
MP_VERBOSE(demuxer, "disabling persistent packet cache\n");
in->seekable_cache = false;
// Get rid of potential buffered ranges floating around.
free_empty_cached_ranges(in);
// Get rid of potential old packets in the current range.
prune_old_packets(in);
}
pthread_mutex_unlock(&in->lock);
}
// must be called not locked
static void update_cache(struct demux_internal *in)
{
struct demuxer *demuxer = in->d_thread;
struct stream *stream = demuxer->stream;
// Don't lock while querying the stream.
struct mp_tags *stream_metadata = NULL;
struct stream_cache_info stream_cache_info = {.size = -1};
int64_t stream_size = stream_get_size(stream);
stream_control(stream, STREAM_CTRL_GET_METADATA, &stream_metadata);
stream_control(stream, STREAM_CTRL_GET_CACHE_INFO, &stream_cache_info);
pthread_mutex_lock(&in->lock);
in->stream_size = stream_size;
in->stream_cache_info = stream_cache_info;
if (stream_metadata) {
talloc_free(in->stream_metadata);
in->stream_metadata = talloc_steal(in, stream_metadata);
in->d_buffer->events |= DEMUX_EVENT_METADATA;
}
pthread_mutex_unlock(&in->lock);
}
// must be called locked
static int cached_stream_control(struct demux_internal *in, int cmd, void *arg)
{
// If the cache is active, wake up the thread to possibly update cache state.
if (in->stream_cache_info.size >= 0) {
in->force_cache_update = true;
pthread_cond_signal(&in->wakeup);
}
switch (cmd) {
case STREAM_CTRL_GET_CACHE_INFO:
if (in->stream_cache_info.size < 0)
return STREAM_UNSUPPORTED;
*(struct stream_cache_info *)arg = in->stream_cache_info;
return STREAM_OK;
case STREAM_CTRL_GET_SIZE:
if (in->stream_size < 0)
return STREAM_UNSUPPORTED;
*(int64_t *)arg = in->stream_size;
return STREAM_OK;
case STREAM_CTRL_GET_BASE_FILENAME:
if (!in->stream_base_filename)
return STREAM_UNSUPPORTED;
*(char **)arg = talloc_strdup(NULL, in->stream_base_filename);
return STREAM_OK;
}
return STREAM_ERROR;
}
// must be called locked
static int cached_demux_control(struct demux_internal *in, int cmd, void *arg)
{
switch (cmd) {
case DEMUXER_CTRL_STREAM_CTRL: {
struct demux_ctrl_stream_ctrl *c = arg;
int r = cached_stream_control(in, c->ctrl, c->arg);
if (r == STREAM_ERROR)
break;
c->res = r;
return CONTROL_OK;
}
case DEMUXER_CTRL_GET_BITRATE_STATS: {
double *rates = arg;
for (int n = 0; n < STREAM_TYPE_COUNT; n++)
rates[n] = -1;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->selected && ds->bitrate >= 0)
rates[ds->type] = MPMAX(0, rates[ds->type]) + ds->bitrate;
}
return CONTROL_OK;
}
case DEMUXER_CTRL_GET_READER_STATE: {
struct demux_ctrl_reader_state *r = arg;
*r = (struct demux_ctrl_reader_state){
.eof = in->last_eof,
.ts_reader = MP_NOPTS_VALUE,
.ts_end = MP_NOPTS_VALUE,
.ts_duration = -1,
.total_bytes = in->total_bytes,
.fw_bytes = in->fw_bytes,
};
bool any_packets = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->eager && !(!ds->queue->head && ds->eof) && !ds->ignore_eof)
{
r->underrun |= !ds->reader_head && !ds->eof;
r->ts_reader = MP_PTS_MAX(r->ts_reader, ds->base_ts);
r->ts_end = MP_PTS_MAX(r->ts_end, ds->queue->last_ts);
any_packets |= !!ds->queue->head;
}
}
r->idle = (in->idle && !r->underrun) || r->eof;
r->underrun &= !r->idle;
r->ts_reader = MP_ADD_PTS(r->ts_reader, in->ts_offset);
r->ts_end = MP_ADD_PTS(r->ts_end, in->ts_offset);
if (r->ts_reader != MP_NOPTS_VALUE && r->ts_reader <= r->ts_end)
r->ts_duration = r->ts_end - r->ts_reader;
if (in->seeking || !any_packets)
r->ts_duration = 0;
for (int n = 0; n < MPMIN(in->num_ranges, MAX_SEEK_RANGES); n++) {
struct demux_cached_range *range = in->ranges[n];
if (range->seek_start != MP_NOPTS_VALUE) {
r->seek_ranges[r->num_seek_ranges++] =
(struct demux_seek_range){
.start = MP_ADD_PTS(range->seek_start, in->ts_offset),
.end = MP_ADD_PTS(range->seek_end, in->ts_offset),
};
}
}
return CONTROL_OK;
}
}
return CONTROL_UNKNOWN;
}
struct demux_control_args {
struct demuxer *demuxer;
int cmd;
void *arg;
int *r;
};
static void thread_demux_control(void *p)
{
struct demux_control_args *args = p;
struct demuxer *demuxer = args->demuxer;
int cmd = args->cmd;
void *arg = args->arg;
struct demux_internal *in = demuxer->in;
int r = CONTROL_UNKNOWN;
if (cmd == DEMUXER_CTRL_STREAM_CTRL) {
struct demux_ctrl_stream_ctrl *c = arg;
if (in->threading)
MP_VERBOSE(demuxer, "blocking for STREAM_CTRL %d\n", c->ctrl);
c->res = stream_control(demuxer->stream, c->ctrl, c->arg);
if (c->res != STREAM_UNSUPPORTED)
r = CONTROL_OK;
}
if (r != CONTROL_OK) {
if (in->threading)
MP_VERBOSE(demuxer, "blocking for DEMUXER_CTRL %d\n", cmd);
if (demuxer->desc->control)
r = demuxer->desc->control(demuxer->in->d_thread, cmd, arg);
}
*args->r = r;
}
int demux_control(demuxer_t *demuxer, int cmd, void *arg)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (in->threading) {
pthread_mutex_lock(&in->lock);
int cr = cached_demux_control(in, cmd, arg);
pthread_mutex_unlock(&in->lock);
if (cr != CONTROL_UNKNOWN)
return cr;
}
int r = 0;
struct demux_control_args args = {demuxer, cmd, arg, &r};
if (in->threading) {
MP_VERBOSE(in, "blocking on demuxer thread\n");
pthread_mutex_lock(&in->lock);
while (in->run_fn)
pthread_cond_wait(&in->wakeup, &in->lock);
in->run_fn = thread_demux_control;
in->run_fn_arg = &args;
pthread_cond_signal(&in->wakeup);
while (in->run_fn)
pthread_cond_wait(&in->wakeup, &in->lock);
pthread_mutex_unlock(&in->lock);
} else {
thread_demux_control(&args);
}
return r;
}
int demux_stream_control(demuxer_t *demuxer, int ctrl, void *arg)
{
struct demux_ctrl_stream_ctrl c = {ctrl, arg, STREAM_UNSUPPORTED};
demux_control(demuxer, DEMUXER_CTRL_STREAM_CTRL, &c);
return c.res;
}
bool demux_cancel_test(struct demuxer *demuxer)
{
return mp_cancel_test(demuxer->stream->cancel);
}
struct demux_chapter *demux_copy_chapter_data(struct demux_chapter *c, int num)
{
struct demux_chapter *new = talloc_array(NULL, struct demux_chapter, num);
for (int n = 0; n < num; n++) {
new[n] = c[n];
new[n].metadata = mp_tags_dup(new, new[n].metadata);
}
return new;
}