gl_video_set_options() does not acquire ownership of the opts parameter
or its contents. In case of vo_cmdline, opts will point to temporary
memory. This memory will be free'd at a later point, and p->opts will
point to free'd memory on the next reinitialization.
The fix is pretty ugly, but it's a quick bug fix. This can probably be
removed once VO sub-options are exposed as properties.
Fixes#2035.
All vo_gl.c related code has been GPL+LGPL dual-licensed. The OSD code
is no exception and is also derived from vo_gl.c. Thus it should have
the same license (although I think technically speaking sub-licensing
it by removing one of the licenses is ok).
Commits 92b27be and f4ce99d removed high-fps logic to to a bug. That bug was
a missing parenthesis around everything after duration >= 0 && ... at the
removed code.
This patch restores the removed code, fixes the bug and then refactors the
code a bit.
This reverts commit f1746741de.
Together with the other revert, this fixes#2023 (the reason being
broken framedrop handling - it was dropping frames when it shouldn't).
read_output_surface() could fail and return NULL.
Also, make sure we don't set the image to a size larger than the
allocated size. Normally this shouldn't happen, but in theory it could
in corner cases; this is for robustness.
We can't do much in this case, but at least we can not call the vdpau
API functions with too large sizes. Apparently the API considers this
undefined behavior, and random stuff might happen.
The previous code was not wrong, but I'd claim this makes the code more
robust. If a situation could happen in which the passed surface size is
incorrect, we could have passed a too small image, and
VdpOutputSurfaceGetBitsNative could have randomly overwritten memory.
Check the maximum size of video surfaces, and refuse initialization if
the video is too large for them.
Maybe we could do something more sophisticated, like inserting a
software scaler. On the other hand, this would have a very questionable
benefit, as it would be guaranteed to be too slow.
Reconfiguring with the same video size should never cause the window to
resize back to the video size (if the user changed its size). This was
broken and it resized anyway.
If gl_hwdec_driver.map_image fails, all textures will be set to 0. This
in turn makes pass_prepare_src_tex() skip generation of the texture
uniforms, which leads to a shader compilation error, as e.g. texture0 is
not defined but expected to exist and accessed.
Set the textures to an invalid non-0 ID instead. OpenGL can deal with
it.
Always configure the vdpau mixer based on the current surface sent to
it. Before this, we just hardcoded the chroma type, and the surface size
was essentially a guess.
Calling VdpVideoSurfaceGetParameters() on every surface is a bit
suspicious, but it appears it's a cheap function (just requiring some
locks and a table lookup). This way we avoid creating another
complicated mechanism to carry around the actual surface parameters
with a mp_image/AVFrame.
They're completely orthogonal concepts, merged in the past due to
convenience and ease of implementing it in the old #ifdef hell renderer.
Especially after the CMS stuff was generalized by 634b4a, this was a
trivial change to implement and also means color management will be much
higher quality when enabled with vo=opengl (which had quantization
issues in the past due to the 8 bit FBO format and upscaling), since it
can be done in a single pass now.
A rather dumb hack to copy the problematic rectangle textures (mandated
by VDA) into 2D ones.
(This isn't done yet for OpenGL 3.0+. We need to make sure the
performance isn't reduced too much by it.)
It sometimes happens on exit, and it's probably a bad idea. If the
process hangs on exit (possibly due to stupid hardcoded timeouts it's
doing), mpv will also hang now, unfortunately.
It appears some WMs have a problem with out method of setting initial
fullscreen mode. We assume that if the window's _NET_WM_STATE includes
_NET_WM_STATE_FULLSCREEN before mapping the window, the WM will show it
as fullscreen at mapped. EWMH doesn't say anything that this should
work, although one could argue that it's implied.
In any case, since it's not standard behavior without at least some
doubt, it's probably a good idea to try the "old" method as well.
Fortunately, it should be idempotent.
See #1937, #1920.
An attempt to get rid of the weird mix of callbacks that take either
struct vo or MPGLCopntext as parameter. This is not perfect, and the
API will probably change a bit until all other code is ported to it.
the main question is how to separate struct vo completely from the
windowing code, which actually needs vo for very little.
In the end, the legacy callbacks will be dropped.
Instead of having separate backends, make use of GLES a flag. This
reduces the number of backends and the resulting annoyances.
Also, nobody cares about using GLES, so there's no backward
compatibility either.
Before this change, Cocoa state was accessed from both the VO and the
Cocoa main thread. This was probably not a good idea. There was some
locking as well as implicit synchronization using the dispatch
mechanism, but it wasn't watertight.
Change this completely. Now Cocoa things are always accessed from the
main thread only. The old mutex falls away, as well as the
vo_cocoa_set_current_context() function, which implicitly used the lock
to coordinate VO accesses. With the new code, the VO thread generally
has to wait for the main thread, while the main thread never waits for
the VO and rarely accesses it. Fortunately, this is rather straight
forward, and most of this is achieved by making vo_cocoa_control() run
on the main thread. The logic of the code does generally not change.
Some aspects are trickier. Apparently we can't access the
NSOpenGLContext from the VO thread, because this object is not thread-
safe. We use some CGLContextObj functions instead, such as for making
the context current and swapping the buffers.
The hardware always decodes to nv12 so using this image format causes less cpu
usage than uyvy (which we are currently using, since Apple examples and other
free software use that). The reduction in cpu usage can add up to quite a bit,
especially for 4k or high fps video.
This needs an accompaning commit in libavcodec.