This can be useful in other contexts.
Note that we end up setting AVCodecContext.width/height instead of
coded_width/coded_height now. AVCodecParameters can't set coded_width,
but this is probably more correct anyway.
The FFmpeg versions we support all have the APIs we were checking for.
Only Libav missed them. Simplify this by explicitly checking for FFmpeg
in the code, instead of trying to detect the presence of the API.
Since we set "skip_manual", we can actually get frames with this set.
Currently, only AV_PKT_FLAG_DISCARD will trigger this flag, and only
mov.c sets the latter flags, so this is related to FFmpeg's half-broken
mp4 edit list support.
Same deal as with video. Including the EOF handling.
(It would be nice if this code were not duplicated, but right now we're
not even close to unifying the audio and video code paths.)
Both AVFrame.pts and AVFrame.pkt_pts have existed for a long time. Until
now, decoders always returned the pts via the pkt_pts field, while the
pts field was used for encoding and libavfilter only. Recently, pkt_pts
was deprecated, and pts was switched to always carry the pts.
This means we have to be careful not to accidentally use the wrong
field, depending on the libavcodec version. We have to explicitly check
the version numbers. Of course the version numbers are completely
idiotic, because idiotically the pkg-config and library names are the
same for FFmpeg and Libav, so we have to deal with this explicitly as
well.
These are different AVCodecContext fields. pkt_timebase is the correct
one for identifying the unit of packet/frame timestamps when decoding,
while time_base is for encoding. Some decoders also overwrite the
time_base field with some unrelated codec metadata.
pkt_timebase does not exist in Libav, so an #if is required.
Instead of passing through double float timestamps opaquely, pass real
timestamps. Do so by always setting a valid timebase on the
AVCodecContext for audio and video decoding.
Specifically try not to round timestamps to a too coarse timebase, which
could round off small adjustments to timestamps (such as for start time
rebasing or demux_timeline). If the timebase is considered too coarse,
make it finer.
This gets rid of the need to do this specifically for some hardware
decoding wrapper. The old method of passing through double timestamps
was also a bit questionable. While libavcodec is not supposed to
interpret timestamps at all if no timebase is provided, it was
needlessly tricky. Also, it actually does compare them with
AV_NOPTS_VALUE. This change will probably also reduce confusion in the
future.
This commit adds an --audio-channel=auto-safe mode, and makes it the
default. This mode behaves like "auto" with most AOs, except with
ao_alsa. The intention is to allow multichannel output by default on
sane APIs. ALSA is not sane as in it's so low level that it will e.g.
configure any layout over HDMI, even if the connected A/V receiver does
not support it. The HDMI fuckup is of course not ALSA's fault, but other
audio APIs normally isolate applications from dealing with this and
require the user to globally configure the correct output layout.
This will help with other AOs too. ao_lavc (encoding) is changed to the
new semantics as well, because it used to force stereo (perhaps because
encoding mode is supposed to produce safe files for crap devices?).
Exclusive mode output on Windows might need to be adjusted accordingly,
as it grants the same kind of low level access as ALSA (requires more
research).
In addition to the things mentioned above, the --audio-channels option
is extended to accept a set of channel layouts. This is supposed to be
the correct way to configure mpv ALSA multichannel output. You need to
put a list of channel layouts that your A/V receiver supports.
The libavcodec wmapro decoder will skip some bytes at the start of the
first packet and return each time. It will not return any audio data in
this state.
Our own code as well as libavcodec's new API handling
(avcodec_send_packet() etc.) discard the PTS on the first return, which
means the PTS is never known for the first packet. This results in a
"Failed audio resync." message.
Fixy it by remember the PTS in next_pts. This field is used only if the
decoder outputs no PTS, and is updated after each frame - and thus
should be safe to set.
(Possibly this should be fixed in libavcodec new API handling by not
setting the PTS to NOPTS as long as no real data has been output. It
could even interpolate the PTS if the timebase is known.)
Fixes the failure message seen in #3297.
Workaround for an awful corner-case. The new decode API "locks" the
decoder into the EOF state once a drain packet has been sent. The
problem starts with a file containing a 0-sized packet, which is
interpreted as drain packet.
This should probably be changed in libavcodec (not treating 0-sized
packets as drain packets with the new API) or in libavformat (discard
0-sized packets as invalid), but efforts to do so have been fruitless.
Note that vd_lavc.c already does something similar, but originally for
other reasons.
Fixes#3106.
AVFormatContext.codec is deprecated now, and you're supposed to use
AVFormatContext.codecpar instead.
Handle this for all of the normal playback code.
Encoding mode isn't touched.
Fixes correctness_trimming_nobeeps.opus. One nasty thing is that this
mechanism interferes with the container-signalled mechanism with
AV_FRAME_DATA_SKIP_SAMPLES. So apply it only if that is apparently not
present. It's a mess, and it's still broken in FFmpeg CLI, so I'm sure
this will get fucked up later again.
I'm not quite sure what the FFmpeg AV_FRAME_DATA_SKIP_SAMPLES API
demands here. The code so far assumed that skipping can be more than a
frame, but not trimming. Extend it to trimming too.
This is actually already done by dec_audio.c. But if
AV_FRAME_DATA_SKIP_SAMPLES is applied, this happens too late here. The
problem is that this will slice off samples, and make it impossible for
later code to reconstruct the timestamp properly.
Missing timestamps can still happen with some demuxers, e.g. demux_mkv.c
with Opus tracks. (Although libavformat interpolates these itself.)
The code is shared with the --vd-lavc-threads option, so using 0 for
auto-detection just works.
But no, this is not useful. Just change it for orthogonality.
Similar to the video path. dec_audio.c now handles decoding only. It
also looks very similar to dec_video.c, and actually contains some of
the rewritten code from it. (A further goal might be unifying the
decoders, I guess.)
High potential for regressions.
This is mainly a refactor. I'm hoping it will make some things easier
in the future due to cleanly separating codec metadata and stream
metadata.
Also, declare that the "codec" field can not be NULL anymore. demux.c
will set it to "" if it's NULL when added. This gets rid of a corner
case everything had to handle, but which rarely happened.
Instead of requiring the decoder to set the PTS directly on the
dec_audio context (including handling absence of PTS etc.), transfer the
packet PTS to the decoded audio frame. Marginally simpler, and gives
more control to the generic code.
MPlayer traditionally had completely separate sh_ structs for
audio/video/subs, without a good way to share fields. This meant that
fields shared across all these headers had to be duplicated. This commit
deduplicates essentially the last remaining duplicated fields.
Remove the old implementation for these properties. It was never very
good, often returned very innaccurate values or just 0, and was static
even if the source was variable bitrate. Replace it with the
implementation of "packet-video-bitrate". Mark the "packet-..."
properties as deprecated. (The effective difference is different
formatting, and returning the raw value in bits instead of kilobits.)
Also extend the documentation a little.
It appears at least some decoders (sipr?) need the
AVCodecContext.bit_rate field set, so this one is still passed through.
This rewrites the audio decode loop to some degree. Audio filters don't
do refcounted frames yet, so af.c contains a hacky "emulation".
Remove some of the weird heuristic-heavy code in dec_audio.c. Instead of
estimating how much audio we need to filter, we always filter full
frames. Maybe this should be adjusted later: in case filtering increases
the volume of the audio data, we should try not to buffer too much
filter output by reducing the input that is fed at once.
For ad_spdif.c and ad_mpg123.c, we don't avoid extra copying yet - it
doesn't seem worth the trouble.
This gets rid of this warning:
Could not update timestamps for skipped samples.
This required an API addition to FFmpeg (otherwise it would instead
doing arithmetic on the timestamps itself), so whether it works depends
on the FFmpeg version.
Let codec_tags.c do the messy mapping.
In theory we could simplify further by makign demux_mkv.c directly use
codec names instead of the MPlayer-inherited "internal FourCC" business,
but I'd rather not touch this - it would just break things.
For a while, we used this to transfer PCM from demuxer to the filter
chain. We had a special "codec" that mapped what MPlayer used to do
(MPlayer passes the AF sample format over an extra field to ad_pcm,
which specially interprets it).
Do this by providing a mp_set_pcm_codec() function, which describes a
sample format in a generic way, and sets the appropriate demuxer header
fields so that libavcodec interprets it correctly. We use the fact that
libavcodec has separate PCM decoders for each format. These are
systematically named, so we can easily map them.
This has the advantage that we can change the audio filter chain as we
like, without losing features from the "rawaudio" demuxer. In fact, this
commit also gets rid of the audio filter chain formats completely.
Instead have an explicit list of PCM formats. (We could even just have
the user pass libavcodec PCM decoder names directly, but that would be
annoying in other ways.)
Until now, the audio chain could handle both little endian and big
endian formats. This actually doesn't make much sense, since the audio
API and the HW will most likely prefer native formats. Or at the very
least, it should be trivial for audio drivers to do the byte swapping
themselves.
From now on, the audio chain contains native-endian formats only. All
AOs and some filters are adjusted. af_convertsignendian.c is now wrongly
named, but the filter name is adjusted. In some cases, the audio
infrastructure was reused on the demuxer side, but that is relatively
easy to rectify.
This is a quite intrusive and radical change. It's possible that it will
break some things (especially if they're obscure or not Linux), so watch
out for regressions. It's probably still better to do it the bulldozer
way, since slow transition and researching foreign platforms would take
a lot of time and effort.
bstr.c doesn't really deserve its own directory, and compat had just
a few files, most of which may as well be in osdep. There isn't really
any justification for these extra directories, so get rid of them.
The compat/libav.h was empty - just delete it. We changed our approach
to API compatibility, and will likely not need it anymore.
Use OPT_KEYVALUELIST() for all places where AVOptions are directly set
from mpv command line options. This allows escaping values, better
diagnostics (also no more "pal"), and somehow reduces code size.
Remove the old crappy option parser (av_opts.c).
This commit makes audio decoding non-blocking. If e.g. the network is
too slow the playloop will just go to sleep, instead of blocking until
enough data is available.
For video, this was already done with commit 7083f88c. For audio, it's
unfortunately much more complicated, because the audio decoder was used
in a blocking manner. Large changes are required to get around this.
The whole playback restart mechanism must be turned into a statemachine,
especially since it has close interactions with video restart. Lots of
video code is thus also changed.
(For the record, I don't think switching this code to threads would
make this conceptually easier: the code would still have to deal with
external input while blocked, so these in-between states do get visible
[and thus need to be handled] anyway. On the other hand, it certainly
should be possible to modularize this code a bit better.)
This will probably cause a bunch of regressions.
This commit mainly moves the initial decoding of data (done to probe the
audio format) to generic code. This will make it easier to make audio
decoding non-blocking in a later commit.
This commit also changes how decoders return data: instead of having
them write the data into a prepared buffer, they return a reference to
an internal buffer (by setting dec_audio.decoded). This makes it
significantly easier to handle audio format changes, since the decoders
don't really need to care anymore.
If the decoder didn't set a samplerate, it was initialized from the
container samplerate.
This probably didn't make much sense, because it's passed to the
decoder on initialization (so it could definitely use it). It's an
artifact from commit 66a9eb57 (which removed some Matroska-specific non-
sense), and I've never seen it actually happen since it was made into a
warning. Just get rid of it.