The code actually kept going out of EOF mode into resync mode back into
EOF mode when the playloop had to wait after an audio EOF caused by the
endpts. This would break seamless looping (as added by the next commit).
Apply endpts earlier, to ensure the filter_audio() function always
returns AD_EOF in this case.
The idiotic ao_buffer makes this an amazing pain in the ass.
Instead of letting it keep decoding by trying to find a new frame,
"plug" the frame queue by not removing it. (Or actually, by putting
it back instead of discarding it.)
Matters for seamless looping (following commits), and possibly some
other corner cases.
The added function vf_unread_output_frame() is a bit of a sin, but still
reasonable, since its implementation is trivial.
The --image-display-duration option controls how long an image is
displayed. It's also possible to display the image forever (until manual
user interaction stops playback).
With this, the core drops the old method to "drain" video (i.e. waiting
for the last frame duration on end of playback). Instead, we reuse
MPContext.time_frame. The old mechanism was disabled for non-images
anyway.
Fixes#3425.
When an ogg track upodates metadata, we have to perform a complicated
runtime update due to the demux.c architecture. A detail was broken and
an array was allocated with the previous number of streams, which
usually led to invalid memory write accesses at least on the first
update.
See github commit comment on commit b9ba9a89.
The touched code is for seek resets and such - we simply want to reset
the entire resample state. But I noticed after a seek a tiny bit of
audio is missing (mpv's audio sync code inserted silence to compensate).
It turns out swr_drop_output() either does not reset some internal state
as we expect, or it's designed to drop not only buffered samples, but
also future samples.
On the other hand, libavresample's avresample_read(), does not have this
problem. (It is also pretty explicit in what it does - return/skip
buffered data, nothing else.)
Is the libswresample behavior a bug? Or a feature? Does nobody even
know? Who cares - use the hammer to unfuck the situation. Destroy and
deallocate the libswresample context and recreate it. On every seek.
Change the last parameter from a bool to an int, which is supposed to
take bit-flags. The at this point only flag is MPSEEK_FLAG_DELAY, which
replaces the previous bool parameter. The old false parameter becomes 0,
the old true parameter becomes MPSEEK_FLAG_DELAY.
Since the old "immediate" parameter is now essentially inverted, two
coalesced immediate and delayed seeks end up as delayed instead of
immediate. This change doesn't matter, since there are no relative
immediate seeks anyway.
The accepts_packet packet callback is supposed to deal with subtitle
decoders which have only a small queue of current subtitle events (i.e.
sd_lavc.c), in case feeding it too many packets would discard events
that are still needed.
Normally, the number of subtitles that need to be preserved is estimated
by the rendering pts (get_bitmaps() argument). Rendering lags behind
decoding, so normally the rendering pts is smaller than the next video
frame pts, and we simply discard all subtitle events until the rendering
pts.
This breaks down in some annoying corner cases. One of them is seeking
backwards: the VO will still try to render the old PTS during seeks,
which passes a high PTS to the subtitle renderer, which in turn would
discard more subtitles than it should. There is a similar issue with
forward seeks. Add hacks to deal with those issues.
There should be a better way to deal with the essentially unknown
"rendering position", which is made worse by screenshots or rendering
with vf_sub. At the very least, we could handle seeks better, and e.g.
either force the VO not to re-render subs after seeks (ugly), or
introduce seek sequence numbers to distinguish attempts to render
earlier subtitles when a seek is done.
If the PEAK tag is invalid, return an error.
Make the error signalling conventions more uniform by strictly returning
a negative value on error, and treating >=0 as success.
The demuxer layer usually doesn't log per-stream information, and even
the replaygain information was logged only if it came from tags.
So log it in af_volume instead.
...and ignore it. The main purpose is for retrieving per-track
replaygain tags. Other than that per-track tags are not used or accessed
by the playback core yet.
The demuxer infrastructure is still not really good with that whole
synchronization thing (at least in part due to being inherited from
mplayer's single-threaded architecture). A convoluted mechanism is
needed to transport the tags from demuxer thread to user thread. Two
factors contribute to the complexity: tags can change during playback,
and tracks (i.e. struct sh_stream) are not duplicated per thread.
In particular, we update the way replaygain tags are retrieved. We first
try to use per-track tags (common in Matroska) and global tags
(effectively formats like mp3). This part fixes#3405.
With the previous commit, ao_alsa.c now has 3 possible ways to pause
playback. Actually all 3 of them need get_delay() to fake its return
value, so don't duplicate that code.
Also much of the code looks a bit questionable when considering
inconsistent pause/resume calls from outside, so ignore redundant calls.
push.c does not handle this automatically, and AOs using push.c have to
handle it themselves. Also, ALSA is low-level enough that it needs
explicit support in user code. At least I haven't found any option that
does this.
We still can get away relatively cheaply by abusing underflow-handling
for this. ao_alsa.c already configures ALSA to handle underflows by
playing silence. So we purposely induce an underflow when opening the
device, as well as when pausing or resetting the device.
This introduces minor misbehavior: it doesn't account for the additional
delay the initial silence adds, unless the device has fully played the
fragment of silence when the player starts sending data to it. But
nobody cares.
The current stdatomic check verifies the availability of the function by
calling atomic_load(). It also uses this test to check if linking
against libatomic is needed or not.
Unfortunately, on specific architectures (namely SPARC), using
atomic_load() does *not* require linking against libatomic, while other
atomic operations do. Due to this, mpv's wscript concludes that
stdatomic is available, and that linking against libatomic is not
needed, causing the following link failure:
[190/190] Linking build/mpv
audio/out/ao.c.13.o: In function `ao_query_and_reset_events':
/home/peko/autobuild/instance-0/output/build/mpv-0.18.1/build/../audio/out/ao.c:399: undefined reference to `__atomic_fetch_and_4'
In order to fix this, the stdatomic check is adjusted to call
atomic_fetch_add() instead, which does require libatomic. Thanks to
this, the wscript realizes that linking against libatomic is needed, and
the build works fine.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
If the normal stream cache init fails, and a file cache was initialized
before, we free the file cache as well. But since the file cache is
chained to the real stream, the real stream will also be freed. This has
to be prevented by clearing the pointer to the original stream in the
uncached_stream field.
This could in particular be triggered by using --cache-initial=1000 and
aborting playback during loading. (Without that option, stream cache
init failure is far less likely.)
Forgotten in previous commit.
Also minor semi-related change: remove the extra "," from the
mpv_sub_api enum, which I accidentally added in the previous commit.
(C99 is fine with trailing ",", C89 strictly speaking not. So do
this for maximum compatibility.)
Relative seeks backwards with external audio tracks does not always work
well: it tends to happen that video seek back further than audio, so
audio will remain silent until the audio's after-seek position is
reached. This happens because we strictly seek both video and audio
demuxer to the approximate desirted target PTS, and then start decoding
from that.
Commit 81358380 removes an older method that was supposed to deal with
this. It was sort of bad, because it could lead to the playback core
freezing by waiting on network.
Ideally, the demuxer layer would probably somehow deal with such seeks,
and do them in a way the audio is seeked after video. Currently this is
infeasible, because the demuxer layer assumes a single demuxer, and
external tracks simply use separate demuxer layers. (MPlayer actually
had a pseudo-demuxer that joined external tracks into a single demuxer,
but this is not flexible enough - and also, the demuxer layer as it
currently exists can't deal with dynamically removing external tracks
either. Maybe some time in the future.)
Instead, add a gross hack, that essentially reseeks the audio if it
detects that it's too far off. The result is actually not too bad,
because we can reuse the mechanism that is used for instant track
switching. This way we can make sure of the right position, without
having to care about certain other issues.
It should be noted that if the audio demuxer is used for other tracks
too, and the demuxer does not support refresh seeking, audio will
probably be off by even a higher amount. But this should be rare.
This code is for resyncing audio-only streams (e.g. switching between
audio tracks if no video track is active). This must not be run if the
video PTS just isn't known yet. (Although the case in which this changes
anything is probably very obscure, if it can even happen. Still, it's a
bit more correct.)
This is a correction to commit 91a3bda6.
In display-sync mode, the very first video frame is idiotically fully
timed, even though audio has not been synced yet at this point, and the
video frame is more like a "preview" frame. But since it's fully timed,
an underflow is detected if audio takes longer than the display time of
the frame (we send the second frame only after audio is done).
The timing code will try to compensate for the determined desync, but it
really shouldn't. So explicitly discard the timing info in this specific
case. On the other hand, if the first frame still hasn't finished
display, we can pretend everything is ok.
This is a hack - ideally, we either would send a frame without timing
info (and then send it again or so when playback starts properly), or we
would add real pause support to the VO, and pause it during syncing.
Play a trick to make the packet pos field monotonically increasing over
segment boundaries if the source demuxers return monotonically
increasing pos values. This allows the demuxer to uniquely identify
packets with the pos field, and can do refresh seeks using that.
Normally, the packet pos field is used as a fallback for determining the
playback position if the demuxer returns no proper duration. But
demux_timeline.c always will, and the packet pos fields usually make no
sense in relation to the returned file size anyway if the timeline
source demuxers originate from separate streams.
Remove the explicit whitelisting of formats for refresh seeks. Instead,
check whether the packet position is somewhat reliable during demuxing.
If there are packets without position, or the packet position is not
monotonically increasing, then do not use them for refresh seeks.
This does not make sure of some requirements, such as deterministic
seeks. If that happens, mpv will mess up a bit on stream switching.
Also, add another method that uses DTS to identify packets, and prefer
it to the packet position method. Even if there's a demuxer which
randomizes packet positions, it hardly can do that with DTS. The DTS
method is not always available either, though. Some formats do not have
a DTS, and others are not always strictly monotonic (possibly due to
libavformat codec parsing and timestamp determination issues).
If an audio track is enabled during playback, then make it resume at the
exact "current position", instead of playing audio before that position.
This was already done for video.
If the packet read function returns, and EOF was detected, and a seek
was issued in the meantime, then don't use the EOF result. The seek will
be processed later, and reset the EOF state anyway.
The main effect is probably that we don't return EOF to the decoders
(which the playback core resets before issuing the seek), and that we
won't log an EOF message.
Not important, but slightly more correct.
When switching tracks, we normally have the problem that data gets lost
due to readahead buffering. (Which in turn is because we're stubborn and
instruct the demuxers to discard data on unselected streams.) The
demuxer layer has a hack that re-reads discarded buffered data if a
stream is enabled mid-stream, so track switching will seem instant.
A somewhat similar problem is when all tracks of an external files were
disabled - when enabling the first track, we have to seek to the target
position.
Handle these with the same mechanism. Pass the "current time" to the
demuxer's stream switch function, and let the demuxer figure out what to
do. The demuxer will issue a refresh seek (if possible) to update the
new stream, or will issue a "normal" seek if there was no active stream
yet.
One case that changes is when a video/audio stream is enabled on an
external file with only a subtitle stream active, and the demuxer does
not support rrefresh seeks. This is a fuzzy case, because subtitles are
sparse, and the demuxer might have skipped large amounts of data. We
used to seek (and send the subtitle decoder some subtitle packets
twice). This case is sort of obscure and insane, and the fix would be
questionable, so we simply don't care.
Should mostly fix#3392.
Always require them, instead of just for some components which have hard
requirements on correct atomic semantics. They should be widely
available, and are supported by all recent gcc and clang compiler
versions. We even have the fallbacks builtins, which should keep this
working on very old gcc releases.
In particular, w32_common.c recently added a hard requirement on
atomics, but checking this properly in the build system would have been
messy. This commit makes sure it always works.
The fallback where weak atomic semantics are always fine is in theory
rather questionable as well.
Exactly the same situation as with ao_alsa in commit 0b144eac (except
that we can detect the situation better under wasapi).
Essentially, wasapi will allow us to output any sample format, and not
just the one configured by the user in the audio system settings.