vo_vdpau currently has a video queue larger than 1 entry, which causes
the video display code to never queue display the video frame. This is
because we consider cover art an endless stream of frames decoded from
the same source packet, and include special logic to actually only
decode and display 1 frame.
Also, make decode_image() also signal EOF in the cover art case.
When the player is paused, and video filters are changed, an exact seek
is executed to refresh the display. Increase the exactness of the seek
in this case; this reuses the code used for frame backstepping.
It might help in cases where seeking is very imprecise, such as with
transport streams.
This allows disabling of decoder framedrop during hr-seek.
It's basically another useless option, but it will help exploring
whether this framedropping really makes seeking faster, or whether
disabling it helps with precise seeking (especially frame backstepping).
Until recently, the VO was an unavoidable part of the seeking code path.
This was because vdpau deinterlacing could double the framerate, and hr-
seek and framestepping etc. all had to "see" the additional frames. But
we've removed the frame doubling from the vdpau VO and moved it into a
video filter (vf_vdpaupp), and there's no reason left why the VO should
participate in seeking.
Instead of queuing frames to the VO during seek and skipping them
afterwards, drop the frames early.
This actually might make seeking with vo_vdpau and software decoding
faster, although I haven't measured it.
Now we avoid calling update_video() twice on reconfig (once to check
whether there are still new frames, and again to actually do the
reconfig). Instead, we check whether there's still something going on
before calling update_video() at all, and depending on that
update_video() will be allowed to reconfig or not.
This will simplify some things later.
When loading a video, and a script reacts to MPV_EVENT_VIDEO_RECONFIG,
and the script inserts a video filter, the first frame can be skipped.
This happens simply because the first frame is (usually) still queued in
the video filter chain, and changing the filter chain will drop all
queued frames. So this is just a corner case that just happens in a
weird situation.
But it's still annoying when having such a script, and starting
something where the first frame is very visible, and not starting in
paused mode. (All in all, a corner case.) Do this by immediately queuing
1 filtered frame to the VO immediately after reconfig, instead of
leaving it to the video loop doing it as "incremental" work. Simply
fallthrough to the next case. We must not overwrite "r" in this case,
because that contains the current status.
Note that the first frame will not be filtered using the inserted
filter.
Apparently the value of a pointer is "indeterminate" after a free()
call, even if you never dereference the pointer after the free. Since
talloc_free() calls free(), this applies here.
Change how the video decoding loop works. The structure should now be a
bit easier to follow. The interactions on format changes are (probably)
simpler. This also aligns the decoding loop with future planned changes,
such as moving various things to separate threads.
Or in other words, add support for properly draining remaining frames
from video filters. vf_yadif is buffering at least one frame, and the
buffered frame was not retrieved on EOF.
For most filters, ignore this for now, and just adjust them to the
changed semantics of filter_ext. But for vf_lavfi (used by vf_yadif),
real support is implemented. libavfilter handles this simply by passing
a NULL frame to av_buffersrc_add_frame(), so we just have to make
mp_to_av() handle NULL arguments.
In load_next_vo_frame(), we first try to output a frame buffered in the
VO, then the filter, and then (if EOF is reached and there's still no
new frame) the VO again, with draining enabled. I guess this was
implemented slightly incorrectly before, because the filter chain still
could have had remaining output frames.
If the VO can't do rotation, insert a filter to do this. Note that this
doesn't reuse the filter insertion code from command.c (used by "vf"
input command), because that would end up more complicated: we don't
even want to change the user filter option.
We want to move the AO to its own thread. There's no technical reason
for making the ao struct opaque to do this. But it helps us sleep at
night, because we can control access to shared state better.
The code removed from handle_input_and_seek_coalesce() did two things:
1. If there's a queued seek, stop accepting non-seek commands, and delay
them to the next playloop iteration.
2. If a seek is executing (i.e. the seek was unqueued, and now it's
trying to decode and display the first video frame), stop accepting
seek commands (and in fact all commands that were queued after the
first seek command). This logic is disabled if seeking started longer
than 300ms ago. (To avoid starvation.)
I'm not sure why 1. would be needed. It's still possible that a command
immediately executed after a seek command sees a "seeking in progress"
state, because it affects queued seeks only, and not seeks in progress.
Drop this code, since it can easily lead to input starvation, and I'm
not aware of any disadvantages.
The logic in 2. is good to make seeking behave much better, as it
guarantees that the video display is updated frequently. Keep the core
idea, but implement it differently. Now this logic is applied to seeks
only. Commands after the seek can execute freely, and like with 1., I
don't see a reason why they couldn't. However, in some cases, seeks are
supposed to be executed instantly, so queue_seek() needs an additional
parameter to signal the need for immediate update.
One nice thing is that commands like sub_seek automatically profit from
the seek delay logic. On the other hand, hitting chapter seek multiple
times still does not update the video on chapter boundaries (as it
should be).
Note that the main goal of this commit is actually simplification of the
input processing logic and to allow all commands to be executed
immediately.
Do two things:
1. add locking to struct osd_state
2. make struct osd_state opaque
While 1. is somewhat simple, 2. is quite horrible. Lots of code accesses
lots of osd_state (and osd_object) members. To make sure everything is
accessed synchronously, I prefer making osd_state opaque, even if it
means adding pretty dumb accessors.
All of this is meant to allow running VO in their own threads.
Eventually, VOs will request OSD on their own, which means osd_state
will be accessed from foreign threads.
This is relatively hacky, but it's Christmas, so it's ok. This does two
things: 1. allow selecting two subtitle tracks, and 2. include a hack
that renders the second subtitle always as toptitle. See manpage
additions how to use this.
Since m_option.h and options.h are extremely often included, a lot of
files have to be changed.
Moving path.c/h to options/ is a bit questionable, but since this is
mainly about access to config files (which are also handled in
options/), it's probably ok.