ANGLE is a GLES2 implementation for Windows that uses Direct3D 11 for
rendering, enabling vo_opengl to work on systems with poor OpenGL
drivers and bypassing some of the problems with native GL, such as VSync
in fullscreen mode.
Unfortunately, using GLES2 means that most of vo_opengl's advanced
features will not work, however ANGLE is under rapid development and
GLES3 support is supposed to be coming soon.
This loaded external .ass files via libass. libavformat's .ass reader is
now good enough, so use that instead.
Apparently libavformat still doesn't support fonts embedded into text
.ass files, but support for this has been accidentally broken in mpv for
a while anyway. (And only 1 person complained.)
Notes:
- Unfortunately the only way to talk to EGL from within DRM I could find
involves linking with GBM (generic buffer management for Mesa.)
Because of this, I'm pretty sure it won't work with proprietary NVidia
drivers, but then again, last time I checked NVidia didn't offer
proper screen resolution for VT.
- VT switching doesn't seem to work at all. It's worth mentioning that
using vo_drm before introduction of VT switcher had an anomaly where
user could switch to another VT and input text to it, while video
played on top of that VT. However, that isn't the case with drm_egl:
I can't switch to other VT during playback like this. This makes me
think that it's either a limitation coming from my firmware or from
EGL/KMS itself rather than a bug with my code. Nonetheless, I still
left (untestable) VT switching code in place, in case it's useful to
someone else.
- The mode_id, connector_id and device_path should be configurable for
power users and people who wish to watch videos on nonprimary screen.
Unfortunately I didn't see anything that would allow OpenGL backends
to register their own set of options. At the same time, adding them to
global namespace is pointless.
- A few dozens of lines could be shared with vo_drm (setting up VT
switching, most of code behind page flipping). I don't have any strong
opinion on this.
- Sometimes I get minor visual glitches. I'm not sure if there's a race
condition of some sort, unitialized variable (doubtful), or if it's
buggy driver. (I'm using integrated Intel HD Graphics 4400 with Mesa)
- .config and .control are very minimal.
Signed-off-by: wm4 <wm4@nowhere>
This is based on an older patch by James Ross-Gowan. It was rebased and
cleaned up. Also, the DWM API usage present in the older patch was
removed, because DWM reports nonsense rates at least on Windows 8.1
(they are rounded to integers, just like with the old GDI API - except
the GDI API had a good excuse, as it could report only integers).
Signed-off-by: wm4 <wm4@nowhere>
Implement NNEDI3, a neural network based deinterlacer.
The shader is reimplemented in GLSL and supports both 8x4 and 8x6
sampling window now. This allows the shader to be licensed
under LGPL2.1 so that it can be used in mpv.
The current implementation supports uploading the NN weights (up to
51kb with placebo setting) in two different way, via uniform buffer
object or hard coding into shader source. UBO requires OpenGL 3.1,
which only guarantee 16kb per block. But I find that 64kb seems to be
a default setting for recent card/driver (which nnedi3 is targeting),
so I think we're fine here (with default nnedi3 setting the size of
weights is 9kb). Hard-coding into shader requires OpenGL 3.3, for the
"intBitsToFloat()" built-in function. This is necessary to precisely
represent these weights in GLSL. I tried several human readable
floating point number format (with really high precision as for
single precision float), but for some reason they are not working
nicely, bad pixels (with NaN value) could be produced with some
weights set.
We could also add support to upload these weights with texture, just
for compatibility reason (etc. upscaling a still image with a low end
graphics card). But as I tested, it's rather slow even with 1D
texture (we probably had to use 2D texture due to dimension size
limitation). Since there is always better choice to do NNEDI3
upscaling for still image (vapoursynth plugin), it's not implemented
in this commit. If this turns out to be a popular demand from the
user, it should be easy to add it later.
For those who wants to optimize the performance a bit further, the
bottleneck seems to be:
1. overhead to upload and access these weights, (in particular,
the shader code will be regenerated for each frame, it's on CPU
though).
2. "dot()" performance in the main loop.
3. "exp()" performance in the main loop, there are various fast
implementation with some bit tricks (probably with the help of the
intBitsToFloat function).
The code is tested with nvidia card and driver (355.11), on Linux.
Closes#2230
Add the Super-xBR filter for image doubling, and the prescaling framework
to support it.
The shader code was ported from MPDN extensions project, with
modification to process luma only.
This commit is largely inspired by code from #2266, with
`gl_transform_trans()` authored by @haasn taken directly.
This reverts commit d11184a256ed709a03fa94a4e3940eed1b76d76f.
Unfortunately, there was a lot of unexpected resistance.
Do note that this is still extremely slow, crappy, etc.
Note that vo_x11.c was further edited. Compared to the removed vo_x11.c,
an additional ~200 lines of code was removed in order to simplify it. I
tried to strip it down as much as possible. In particular, support for
odd non-32 bit formats (24, 16, 15, 8 bit) is dropped.
Closes#2300.
It doesn't deal with VDA at all anymore. Rename it to hwdec_osx.c. Not
using hwdec_videotoolbox.c, because that would give it the longest
source path in this project yet. (Also, this code isn't even
VideoToolox-specific, other than the name of the pixel format used.)
VideoToolbox is preferred. Now that FFmpeg released 2.8, there's no
reason to support VDA anymore. In fact, we had a bug that made VDA not
useable with older FFmpeg versions in some newer mpv releases.
VideoToolbox is supported even on slightly older OSX versions, and if
not, you still can run mpv without hw decoding.
There are at least 2 ways of using VAAPI without X11 (Wayland, DRM).
Remove the X11 requirement from the decoder part and the EGL interop.
This will be used by a following commit, which adds Wayland support.
The worst about this is the decoder part, which includes a bad hack for
using the decoder without any VO interop (also known as "vaapi-copy"
mode). Separate the X11 parts so that they're self-contained. For the
EGL interop code we do something similar (it's kept slightly simpler,
because it essentially only has to translate between our silly
MPGetNativeDisplay abstraction and the vaGetDisplay...() call).
Make the GPU memcpy from the dxva2 code generally useful to other parts
of the player.
We need to check at configure time whether SSE intrinsics work at all.
(At least in this form, they won't work on clang, for example. It also
won't work on non-x86.)
Introduce a mp_image_copy_gpu(), and make the dxva2 code use it. Do some
awkward stuff to share the existing code used by mp_image_copy(). I'm
hoping that FFmpeg will sooner or later provide a function like this, so
we can remove most of this again. (There is a patch, bit it's stuck in
limbo since forever.)
All this is used by the following commit.
Should work much better than the old GLX interop code. Requires Mesa 11,
and explicitly selecting the X11 EGL backend with:
--vo=opengl:backend=x11egl
Should it turn out that the new interop works well, we will try to
autodetect EGL by default.
This code still uses some bad assumptions, like expecting surfaces to be
in NV12. (This is probably ok, because virtually all HW will use this
format. But we should at least check this on init or so, instead of
failing to render an image if our assumption doesn't hold up.)
This repo was a lot of help: https://github.com/gbeauchesne/ffvademo
The kodi code was also helpful (the magic FourCC it uses for
EGL_LINUX_DRM_FOURCC_EXT are nowhere documented, and
EGL_IMAGE_INTERNAL_FORMAT_EXT as used in ffvademo does
not actually exist).
(This is the 3rd VAAPI GL interop that was implemented in this player.)
This was in sub/, because the code used to be specific to subtitles. It
was extended to automatically load external audio files too, and moving
the file and renaming it was long overdue.
I see no point in keeping these around. Keeping wrappers for some select
libavfilter filters just because MPlayer had these filters is not a good
reason.
Ultimately, all real filtering work should go to libavfilter, and users
should get used to using vf_lavfi directly. We might even not require
the awful double-nested syntax for using libavfilter one day.
vf_rotate, vf_yadif, vf_stereo3d are kept because mpv uses them
internally. (They all extend the lavfi filters or change their
defaults.) vf_mirror is kept for symmetry with vf_flip. vf_gradfun and
vf_pullup are probably semi-popular, so I'll remove them not yet - only
after some more discussion.
This is mostly to cut down somewhat on the amount of code bloat in
video.c by moving out helper functions (including scaler kernels and
color management routines) to a separate file.
It would certainly be possible to move out more functions (eg. dithering
or CMS code) with some extra effort/refactoring, but this is a start.
Signed-off-by: wm4 <wm4@nowhere>
Some users still use this filter, so the filter was going to be kept.
But I overlooked that libavfilter provides this filter. Remove the
redundant wrapper from mpv. Something like --af=lavfi=bs2b should work
and give exactly the same results.
All of these filters are considered not useful anymore by us. Some have
replacements in libavfilter (useable through af_lavfi).
af_center, af_extrastereo, af_karaoke, af_sinesuppress, af_sub,
af_surround, af_sweep: pretty simple and useless filters which probably
nobody ever wants.
af_ladspa: has a replacement in libavfilter.
af_hrtf: the algorithm doesn't work properly on most sources, and the
implementation was buggy and complicated. (The filter was inherited from
MPlayer; but even in mpv times we had to apply fixes that fixed major
issues with added noise.) There is a ladspa filter if you still want to
use it.
af_export: I'm not even sure what this is supposed to do. Possibly it
was meant for GUIs rendering audio visualizations, but it couldn't
really work well. For example, the size of the audio depended on the
samplerate (fixed number of samples only), and it couldn't retrieve the
complete audio, only fragments. If this is really needed for GUIs, mpv
should add native visualization, or a proper API for it.
Slightly faster than using the dispmanx mess (perhaps to a large amount
due to the rather stupid C-only unoptimized ASS->RGBA blending code).
Do this by reusing vo_opengl's subtitle renderer, and vo_opengl's RPI
backend.
This works similar to the existing .rar support, but uses libarchive.
libarchive supports a number of formats, including zip and (most of)
rar.
Unfortunately, seeking does not work too well. Most libarchive readers
do not support seeking, so it's emulated by skipping data until the
target position. On backwards seek, the file is reopened. This works
fine on a local machine (and if the file is not too large), but will
perform not so well over network connection.
This is disabled by default for now. One reason is that we try
libarchive on every file we open, before trying libavformat, and I'm not
sure if I trust libarchive that much yet. Another reason is that this
breaks multivolume rar support. While libarchive supports seeking in
rar, and (probably) supports multivolume archive, our support of
libarchive (probably) does not. I don't care about multivolume rar, but
vocal users do.
While the "old" libavcodec vdpau API is not deprecated (only the very-
old API is), it's still relatively complicated code that badly
duplicates the much simpler newer vdpau code. It exists only for the
sake of older FFmpeg releases; get rid of it.
VDA is being deprecated in OS X 10.11 so this is needed to keep hwdec working.
The code needs libavcodec support which was added recently (to FFmpeg git,
libav doesn't support it).
Signed-off-by: Stefano Pigozzi <stefano.pigozzi@gmail.com>
Nobody wanted to restore this, so it gets the boot.
If anyone still wants to volunteer to restore menu support, this would
be welcome. (I might even try it myself if I feel masochistic and like
wasting a lot of time for nothing.) But if it does get restored, it
should be done differently. There were many stupid things about how it
was done. For example, it somehow tried to pull mp_nav_events through
all the layers (including needing to "buffer" them in the demuxer),
which was needlessly complicated. It could be done simpler.
This code was already inactive, so this commit actually changes nothing.
Also keep in mind that normal DVD/BD playback still works.
Normally, vdpau decoded frames are passed directly to a suitable
vo (vo_vdpau or vo_opengl) without ever touching system memory. This
is efficient for output purposes, but prevents any of the regular
filters from being used with such frames.
This new filter implements a read-back step to pull the frames back
into system memory where they can be acted on by other filters.
Eventually the frames will be sent to the vo as if they were normal
software-decoded frames.
Note that a vdpau compatible vo must still be used to ensure that
the decoder is properly initialised.
Signed-off-by: wm4 <wm4@nowhere>
This is basically a hack for drivers which prevent the mpv DXVA2 decoder
glue from working if OpenGL is in fullscreen mode.
Since it doesn't add any "hard" new API to the client API, some of the
code would be required for a true zero-copy hw decoding pipeline, and
sine it isn't too much code after all, this is probably acceptable.
They are useless. Not only are they actually rarely in use; but
libavcodec doesn't even output them, as libavcodec has no such sample
formats for decoded audio.
Even if it should happen that we actually still need them (e.g. if doing
direct hardware output), there are better solutions. Swapping the sign
is a fast and lossless operation and can be done inplace, so AO actually
needing it could do this directly.
If you wonder why we keep U8 instead of S8: because libavcodec does it.
Yet another of these dozens of hwaccel changes. This time, libavcodec
provides utility functions, which initialize the vdpau decoder and map
codec profiles. So a lot of work the API user had to do falls away.
This also will give us support for high bit depth profiles, and possibly
HEVC once libavcodec supports it.
Move all of the channel map retrieval/negotiation code to a separate
file. This will (probably) be helpful when extending
ao_coreaudio_exclusive.c.
Nothing else changes, other than some minor cosmetics and renaming,
and changing some details for decoupling it from the ao_coreaudio.c
internals.
And split the Cocoa and Unix cases. Simplify the Cocoa case slightly by
calling mpv_main directly, instead of passing a function pointer. Also
add a comment explaining why Cocoa needs a special case at all.
This unbreaks compiling command line player and libmpv at the same
time. The problem was that doing so silently disabled the OSX
application thing - but the command line player can not use the
vo_opengl Cocoa backend without it.
The OSX application code is basically dead in libmpv, but it's not
that much code anyway.
If you want a mpv binary that does not create an OSX application
singleton (and creates a menu etc.), you must disable cocoa
completely, as cocoa can't be used anyway in this case.
Somewhat less ifdeffery, higher flexibility. Now there are 3 separate
config file resolvers for 3 platforms (unix, win, osx), and they can
still interact with each other somewhat. For example, OSX for now uses
most of Unix, but adds the OSX bundle path.
This can be extended to resolve very specific platform paths, such as
location of the desktop.
Most of the Unix specific code moves to path-unix.c.
The behavior should be the same - if not, it is likely a bug.
It's entirely useless, especially now that vo.c handles screenshots in a
generic way, and requires no special VO support. There are some
potential weird use-cases, but actually I've never seen it being used.
Add a platform-specific entry-point for Windows. This will allow some
platform-specific initialization to be added without the need for ugly
ifdeffery in main.c.
As an immediate advantage, mpv can now use a unicode entry-point and
convert the command line arguments to UTF-8 before passing them to
mpv_main, so osdep_preinit can be simplified a little bit.
This requires FFmpeg git master for accelerated hardware decoding.
Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav
will also work.
Most things work. Screenshots don't work with accelerated/opaque
decoding (except using full window screenshot mode). Subtitles are
very slow - even simple but huge overlays can cause frame drops.
This always uses fullscreen mode. It uses dispmanx and mmal directly,
and there are no window managers or anything on this level.
vo_opengl also kind of works, but is pretty useless and slow. It can't
use opaque hardware decoding (copy back can be used by forcing the
option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend
is preferred over the X11 ones in case you're trying on X11; but X11
is even more useless on RPI.
This doesn't correctly reject extended h264 profiles and thus doesn't
fallback to software decoding. The hw supports only up to the high
profile, and will e.g. return garbage for Hi10P video.
This sets a precedent of enabling hw decoding by default, but only
if RPI support is compiled (which most hopefully it will be disabled
on desktop Linux platforms). While it's more or less required to use
hw decoding on the weak RPI, it causes more problems than it solves
on real platforms (Linux has the Intel GPU problem, OSX still has
some cases with broken decoding.) So I can live with this compromise
of having different defaults depending on the platform.
Raspberry Pi 2 is required. This wasn't tested on the original RPI,
though at least decoding itself seems to work (but full playback was
not tested).
With a recent cleanup, rar support was stuffed into demux_playlist.c
(because "opening" rar files pretty much just lists archive contents and
adds them to a playlist using a special rar:// protocol, which will
actually access the rar file contents).
Since demux_playlist.c is probed _after_ demux_lavf.c (and should/must
be), libavformat was given the chance to detect DTS streams embedded
within the rar file. This is not really what we want, and a regression
what happened before rar listing was moved to demux_playlist.c.
Fix it by moving the rar listing into its own pseudo-demuxer, and let ir
probe before demux_lavf.c.
(Yes, this feature still has users.)
Why did this exist in the first place? Other than being completely
useless, this even caused some regressions in the past. For example,
there was the case of a laptop exposing its accelerometer as joystick
device, which led to extremely fun things due to the default mappings of
axis movement being mapped to seeking.
I suppose those who really want to use their joystick to control a media
player (???) can configure it as mouse device or so.