Until now, each .c file in test/ was built as separate, self-contained
binary. Each binary could be run to execute the tests it contained.
Change this and make them part of the normal mpv binary. Now the tests
have to be invoked via the --unittest option. Do this for two reasons:
- Tests now run within a "properly" initialized mpv instance, so all
services are available.
- Possibly simplifying the situation for future build systems.
The first point is the main motivation. The mpv code is entangled with
mp_log and the option system. It feels like a bad idea to duplicate some
of the initialization of this just so you can call code using them.
I'm also getting rid of cmocka. There wouldn't be any problem to keep it
(it's a perfectly sane set of helpers), but NIH calls. I would have had
to aggregate all tests into a CMUnitTest list, and I don't see how I'd
get different types of entry points easily. Probably easily solvable,
but since we made only pretty basic use of this library, NIH-ing this is
actually easier (I needed a list of tests with custom metadata anyway,
so all what was left was reimplement the assert_* helpers).
Unit tests now don't output anything, and if they fail, they'll simply
crash and leave a message that typically requires inspecting the test
code to figure out what went wrong (and probably editing the test code
to get more information). I even merged the various test functions into
single ones. Sucks, but here you go.
chmap_sel.c is merged into chmap.c, because I didn't see the point of
this being separate. json.c drops the print_message() to go along with
the new silent-by-default idea, also there's a memory leak fix unrelated
to the rest of this commit.
The new code is enabled with --enable-tests (--enable-test goes away).
Due to waf's option parser, --enable-test still works, because it's a
unique prefix to --enable-tests.
Just use cmocka's function. It takes an epsilon argument, which we now
provide directly.
There's no assert_double_equal() in cmocka (and the float variant
actually forces a conversion to the float type), but fortunately we
didn't use it.
This automatically sets the gamma option depending on lighting conditions
measured from the computer's ambient light sensor.
sRGB – arguably the “sibling” to BT.709 for still images – has a reference
viewing environment defined in its specification (IEC 61966-2-1:1999, see
http://www.color.org/chardata/rgb/srgb.xalter). According to this data, the
assumed ambient illuminance is 64 lux. This is the illuminance where the gamma
that results from ICC color management is correct.
On the other hand, BT.1886 formalizes that the gamma level for dim environments
to be 2.40, and Apple resources (WWDC12: 2012 Session 523: Best practices for
color management) define the BT.1886 dim at 16 lux.
So the logic we apply is:
* >= 64lux -> 1.961 gamma
* =< 16lux -> 2.400 gamma
* 16lux < x < 64lux -> logaritmic rescale of lux to gamma. The human
perception of illuminance roughly follows a logaritmic scale of lux [1].
[1]: https://msdn.microsoft.com/en-us/library/windows/desktop/dd319008%28v=vs.85%29.aspx