This is just a conceptual issue, since for now every channel count has
an associated standard layout.
But should the max. channel count ever be bumped, some things would stop
function if mp_chmap_from_channels() refused to work for any channel
count within the allowed range.
Drop mp_chmap_diff() (which is unused too now), and implement
mp_chmap_diffn() in a slightly simpler way. (Too bad there is no
standard function for counting set bits.)
Reuse MP_SPEAKER_ID_NA for this. If all mp_chmap entries are set to NA,
the channel layout has special "unknown channel layout" semantics, which
are used to deal with some corner cases.
Some audio APIs explicitly require you to add dummy channels. These are
not rendered, and only exist for the sake of the audio API or hardware
strangeness. At least ALSA, Sndio, and CoreAudio seem to have them.
This commit is preparation for using them with ao_coreaudio.
The result is a bit messy. libavresample/libswresample don't have good
API for this; avresample_set_channel_mapping() is pretty useless.
Although in theory you can use it to add and remove channels, you
can't set the channel counts. So we do the ordering ourselves by making
sure the audio data is planar, and by swapping the plane pointers. This
requires lots of messiness to get the conversions in place. Also, the
input reordering is still done with the "old" method, and doesn't
support padded channels - hopefully this will never be needed. (I tried
to come up with cleaner solutions, but compared to my other attempts,
the final commit is not that bad.)
Instead of just failing during channel map selection, try to select a close
layout that makes most sense and upmix/downmix to that instead of failing AO
initialization. The heuristic is rather simple, and uses the following steps:
1) If mono is required always prefer stereo to a multichannel upmix.
2) Search for an upmix that is an exact superset of the required channel map.
3) Search for a downmix that is the exact subset of the required channel map.
4) Search for either an upmix or downmix that is the closest (minimum difference
of channels) to the required channel map.
While I'm not very fond of "const", it's important for declarations
(it decides whether a symbol is emitted in a read-only or read/write
section). Fix all these cases, so we have writeable global data only
when we really need.
Always pass around mp_log contexts in the option parser code. This of
course affects all users of this API as well.
In stream.c, pass a mp_null_log, because we can't do it properly yet.
This will be fixed later.
FFmpeg (as well as Libav) have two layouts called "6.1":
AV_CH_LAYOUT_6POINT1 and AV_CH_LAYOUT_6POINT1_BACK. We call them "6.1"
and "6.1(back)". Change the default layout for 7 channels as well to
return the same layout as av_get_default_channel_layout(). (Looks a bit
questionable, but for now it's better to follow FFmpeg.)
It turns out that ALSA's 4 channel layout is different from mpv's and
ffmpeg's 4.0 layout. Thus trying to do 4 channel output led to incorrect
remixing via lib{av,sw}resample.
Fix the default layouts for the internal filter chain as well, although
I'm not sure if it matters at all.
The point is selecting a minimal fallback. The AOs will call this
through the AO API, so it will be possible to add options affecting
the general channel layout selection.
It provides the following mechanism to AOs:
- forcing the correct channel order
- downmixing to stereo if no layout is available
- allow 5.1 <-> 5.1(side) fallback
- handling "unknown" channel layouts
This is quite weak and lots of code/complexity for little gain. All AOs
already made sure the channel order was correct, and the fallback is of
little value, and could perhaps be done in the frontend instead, like
stereo downmixing with --channels=2 is handled. But I'm not really sure
how this stuff should _really_ work, and the new code will hopefully
provides enough flexibility to make radical changes to channel layout
negotiation easier.