The first one is printed even if the user disabled video (or there's no
video), so just remove it. The second one uses deprecated sub-option
syntax, so remove that as well.
And introduce a global option which does this. Or more precisely, this
deprecates the global wasapi and coreaudio options, and adds a new one
that merges their functionality. (Due to the way the sub-option
deprecation mechanism works, this is simpler.)
I decided that it's too much work to convert all the VO/AOs to the new
option system manually at once. So here's a shitty hack instead, which
achieves almost the same thing. (The only user-visible difference is
that e.g. --vo=name:help will list the sub-options normally, instead of
showing them as deprecation placeholders. Also, the sub-option parser
will verify each option normally, instead of deferring to the global
option parser.)
Another advantage is that once we drop the deprecated options,
converting the remaining things will be easier, because we obviously
don't need to add the compatibility hacks.
Using this mechanism is separate in the next commit to keep the diff
noise down.
Instead of requiring each VO or AO to manually add members to MPOpts and
the global option table, make it possible to register them automatically
via vo_driver/ao_driver.global_opts members. This avoids modifying
options.c/options.h every time, including having to duplicate the exact
ifdeffery used to enable a driver.
Normally I'd prefer a bunch of smaller functions with fewer parameters
over a single function with a lot of parameters. But future changes will
require messing with the parameters in a slightly more complex way, so a
combined function will be needed anyway. The now-unused "global"
parameter is required for later as well.
Positional parameters cause problems because they can be ambiguous with
flag options. If a flag option is removed or turned into a non-flag
option, it'll usually be interpreted as value for the first sub-option
(as positional parameter), resulting in very confusing error messages.
This changes it into a simple "option not found" error.
I don't expect that anyone really used positional parameters with --vo
or --ao. Although the docs for --ao=pulse seem to encourage positional
parameters for the host/sink options, which means it could possibly
annoy some PulseAudio users.
--vf and --af are still mostly used with positional parameters, so this
must be a configurable option in the option parser.
These are different AVCodecContext fields. pkt_timebase is the correct
one for identifying the unit of packet/frame timestamps when decoding,
while time_base is for encoding. Some decoders also overwrite the
time_base field with some unrelated codec metadata.
pkt_timebase does not exist in Libav, so an #if is required.
There are situations where the resampler is destroyed and recreated
during playback. If recreating the resampler unexpectedly fails, the
filter function is supposed to return an error. This wasn't done
correctly, because get_out_samples() accessed the resampler before the
check. Move the check up to fix this.
Instead of passing through double float timestamps opaquely, pass real
timestamps. Do so by always setting a valid timebase on the
AVCodecContext for audio and video decoding.
Specifically try not to round timestamps to a too coarse timebase, which
could round off small adjustments to timestamps (such as for start time
rebasing or demux_timeline). If the timebase is considered too coarse,
make it finer.
This gets rid of the need to do this specifically for some hardware
decoding wrapper. The old method of passing through double timestamps
was also a bit questionable. While libavcodec is not supposed to
interpret timestamps at all if no timebase is provided, it was
needlessly tricky. Also, it actually does compare them with
AV_NOPTS_VALUE. This change will probably also reduce confusion in the
future.
The code actually kept going out of EOF mode into resync mode back into
EOF mode when the playloop had to wait after an audio EOF caused by the
endpts. This would break seamless looping (as added by the next commit).
Apply endpts earlier, to ensure the filter_audio() function always
returns AD_EOF in this case.
The idiotic ao_buffer makes this an amazing pain in the ass.
The touched code is for seek resets and such - we simply want to reset
the entire resample state. But I noticed after a seek a tiny bit of
audio is missing (mpv's audio sync code inserted silence to compensate).
It turns out swr_drop_output() either does not reset some internal state
as we expect, or it's designed to drop not only buffered samples, but
also future samples.
On the other hand, libavresample's avresample_read(), does not have this
problem. (It is also pretty explicit in what it does - return/skip
buffered data, nothing else.)
Is the libswresample behavior a bug? Or a feature? Does nobody even
know? Who cares - use the hammer to unfuck the situation. Destroy and
deallocate the libswresample context and recreate it. On every seek.
The demuxer layer usually doesn't log per-stream information, and even
the replaygain information was logged only if it came from tags.
So log it in af_volume instead.
With the previous commit, ao_alsa.c now has 3 possible ways to pause
playback. Actually all 3 of them need get_delay() to fake its return
value, so don't duplicate that code.
Also much of the code looks a bit questionable when considering
inconsistent pause/resume calls from outside, so ignore redundant calls.
push.c does not handle this automatically, and AOs using push.c have to
handle it themselves. Also, ALSA is low-level enough that it needs
explicit support in user code. At least I haven't found any option that
does this.
We still can get away relatively cheaply by abusing underflow-handling
for this. ao_alsa.c already configures ALSA to handle underflows by
playing silence. So we purposely induce an underflow when opening the
device, as well as when pausing or resetting the device.
This introduces minor misbehavior: it doesn't account for the additional
delay the initial silence adds, unless the device has fully played the
fragment of silence when the player starts sending data to it. But
nobody cares.
Exactly the same situation as with ao_alsa in commit 0b144eac (except
that we can detect the situation better under wasapi).
Essentially, wasapi will allow us to output any sample format, and not
just the one configured by the user in the audio system settings.
This commit adds an --audio-channel=auto-safe mode, and makes it the
default. This mode behaves like "auto" with most AOs, except with
ao_alsa. The intention is to allow multichannel output by default on
sane APIs. ALSA is not sane as in it's so low level that it will e.g.
configure any layout over HDMI, even if the connected A/V receiver does
not support it. The HDMI fuckup is of course not ALSA's fault, but other
audio APIs normally isolate applications from dealing with this and
require the user to globally configure the correct output layout.
This will help with other AOs too. ao_lavc (encoding) is changed to the
new semantics as well, because it used to force stereo (perhaps because
encoding mode is supposed to produce safe files for crap devices?).
Exclusive mode output on Windows might need to be adjusted accordingly,
as it grants the same kind of low level access as ALSA (requires more
research).
In addition to the things mentioned above, the --audio-channels option
is extended to accept a set of channel layouts. This is supposed to be
the correct way to configure mpv ALSA multichannel output. You need to
put a list of channel layouts that your A/V receiver supports.
Pointless anyway. With superficial checking I couldn't find any decoder
which actually outputs this, and AO chmap negotiation would properly
ignore them anyway in most cases.
We send a refcounted frame to the encoder, but then disrespect
refcounting rules and write to the frame data without making sure the
buffer is really writeable.
In theory this can lead to reallocation on every frame is the encoder
really keeps a reference. If we really cared, we could fix this by
providing a buffer pool. But then again, we don't care.
This is logical: the function makes sense only in situations where you
are going to write to the audio data. To make it worse,
av_buffer_realloc() also handles this situation, but only if the buffer
size changes (simply because it can't realloc memory in use), so we have
to explicitly force reallocation by unreffing the buffers first.
The FFmpeg API is incredibly weird and inconsistent about this. This is
also a FFmpeg-only issue and nothing like this is in Libav - which
doesn't really show FFmpeg in a very positive light.
(To make it even worse: this is a full-blown Libav API incompatibility,
even though this crap was added for Libav ABI-compatibility. It's
absurd.)
Quoting the FFmpeg header for the AVFrame.channels field:
/**
* number of audio channels, only used for audio.
* Code outside libavutil should access this field using:
* av_frame_get_channels(frame)
* - encoding: unused
* - decoding: Read by user.
*/
int channels;
It says "should" not must, and it doesn't even mention
av_frame_set_channels(). It's also in the section for public fields (not
below a marker that indicates private fields in a public struct, like
it's done e.g. in AVCodecContext).
But not using the accessor will cause silent failures on ABI changes.
The failure that happened due to this code didn't even make it apparent
what was wrong. So just use the idiotic accessor.
Also harmonize the FFmpeg-cursing in the code. (It's fully justified.)
Fixes#3295.
Note that mpv will still check the exact library version numbers, and
reject mismatches - to protect itself from such issues in the future.
mixer.c didn't really deserve to be separate anymore, as half of its
contents were unnecessary glue code after recent changes. It also
created a weird split between audio.c and af.c due to the fact that
mixer.c could insert audio filters. With the code being in audio.c
directly, together with other code that unserts filters during runtime,
it will be possible to cleanup this code a bit and make it work like the
video filter code.
As part of this change, make the balance code work like the volume code,
and add an option to back the current balance value. Also, since the
balance semantics are unexpected for most users (panning between the
audio channels, instead of just changing the relative volume), and there
are some other volumes, formally deprecate both the old property and the
new option.
Since mixer->ao is always NULL now (it was really just forgotten to be
removed), the uninit call never actually cleared the af field, leaving
a dangling pointer that could be accessed by volume control.
This code was supposed to adjust existing conversion filters (to make
them output a different format). But the code was just broken,
apparently a refactoring accident. It accessed af instead of af->prev.
The bug tended to add new conversion filters, even if an existing one
could have been used. (Can be tested by inserting a dummy lavrresample
filter followed by a format filter which forces conversion.)
In addition, it's probably better to return the actual error code if
reinitializing the filter fails. It would then respect an AF_FALSE
return value, which means format negotiation failed, instead of a
generic error.
af_volume has a volumedb sub-option, which allows the user to set an
explicit volume. Until recently, the player read back this value and
used it as initial softvol volume. But now it just overwrites it.
Instead of overwriting it, multiply the different gain values. Above
all, this will do the right thing if only softvol is used, or if the
user only adds the af_volume filter manually.
Normally, you want downmixing to happen first thing in the filter chain.
This is reflected in codec downmixing, which feeds the filter chain
downmixed audio in the first place. Doing this has the advantage of
needing less data to process. But the main motivation is that if there
is a drc filter in the chain, you want to process it the downmixed
audio.
Add an idiotic heuristic to achieve this. It tries to detect whether the
audio was indeed automatically downmixed (or upmixed). To detect what
the output format is going to be, it builds the filter chain normally,
and then retries with the heuristic applied (and for extra paranoia,
retries without the heuristic again if it fails to successfully rebuild
the filter chain for unknown reasons). This is simple and will work in
almost all cases.
Doing it in a more complete way is rather hard, because filters are so
generic. For example, we know absolutely nothing about the behavior of
af_lavfi, which creates an opaque filter graph with libavfilter. We
don't know why a filter would e.g. change the channel layout on its
output. (Our heuristic bails out in this case.) We're also slave to the
lowest common denominator of how our format negotiation works, and how
libavfilter's works.
In theory, we could make this mechanism explicit by introducing a
special dummy filter. The filter chain would then try to convert between
input and output formats at the dummy filter, which would give the user
more control over how downmix happens. On the other hand, the user could
just insert explicit conversion filters instead, so this would probably
have questionable value.