The main difference between the old and new callbacks is that the old
callbacks required passing the window size, which is and always was very
inconvenient and confusing, since the window size is already in
vo->dwidth and vo->dheight.
This is not strictly needed anymore. (On the other hand, it's not really
possible to do hw decoding with vo_null, because the VO is still
responsible for opening the hw decoder API, but that's another story.)
Use VOCTRL_CHECK_EVENTS instead. Change the remaining VOs to use it.
Only vo_sdl and vo_caca actually need this, and vo_null, vo_lavc, and
vo_image had stubs only.
VFCAP_OSD was used to determine at runtime whether the VO supports OSD
rendering. This was mostly unused. vo_direct3d had an option to disable
OSD (was supposed to allow to force auto-insertion of vf_ass, but we
removed that anyway). vo_opengl_old could disable OSD rendering when a
very old OpenGL version was detected, and had an option to explicitly
disable it as well.
Remove VFCAP_OSD from everything (and some associated logic). Now the
vo_driver.draw_osd callback can be set to NULL to indicate missing OSD
support (important so that vo_null etc. don't single-step on OSD
redraw), and if OSD support depends on runtime support, the VO's
draw_osd should just do nothing if OSD is not available.
Also, do not access vo->want_redraw directly. Change the want_redraw
reset logic for this purpose, too. (Probably unneeded, vo_flip_page
resets it already.)
Slices allowed filtering or drawing video in horizontal bands or
blocks. This allowed working on the video in smaller units. In theory,
this could bring a performance win by lowering cache pressure, as you
didn't have to keep the whole video frame in cache while filtering,
only the slice.
In practice, the slice code path was barely used for the following
reasons:
- Multithreaded decoding with ffmpeg didn't use slices. The ffmpeg
slice callback was disabled, because it can be called from another
thread, and the mplayer video chain is not thread-safe.
- There was nothing that would turn "full" images into appropriate
slices, so slices were rarely used.
- Most filters didn't actually support slices.
On the other hand, supporting slices lead to code duplication and more
complex code in general. I made some experiments and didn't find any
actual measurable performance improvements when using slices. Even
ffmpeg removed slices based filtering from libavfilter in favor of
simpler code.
The most broken thing about the slices code path is that slices can't
be queued, like it is done for images in vo.c.
Remove VOCTRL_DRAW_IMAGE and always set vo_driver.draw_image in VOs.
Make draw_image mandatory: change some VOs (like vo_x11) to support it,
and remove the image-to-slices fallback in vf_vo.
Remove vo_driver.is_new. This member indicated whether draw_image is
supported unconditionally, which is now always the case.
draw_image_pts is a hack until the video filter chain is changed to
include the PTS as field in mp_image. Then vo_vdpau and vo_lavc will
be changed to use draw_image.
Finish renaming directories and moving files. Adjust all include
statements to make the previous commit compile.
The two commits are separate, because git is bad at tracking renames
and content changes at the same time.
Also take this as an opportunity to remove the separation between
"common" and "mplayer" sources in the Makefile. ("common" used to be
shared between mplayer and mencoder.)
Tis drops the silly lib prefixes, and attempts to organize the tree in
a more logical way. Make the top-level directory less cluttered as
well.
Renames the following directories:
libaf -> audio/filter
libao2 -> audio/out
libvo -> video/out
libmpdemux -> demux
Split libmpcodecs:
vf* -> video/filter
vd*, dec_video.* -> video/decode
mp_image*, img_format*, ... -> video/
ad*, dec_audio.* -> audio/decode
libaf/format.* is moved to audio/ - this is similar to how mp_image.*
is located in video/.
Move most top-level .c/.h files to core. (talloc.c/.h is left on top-
level, because it's external.) Park some of the more annoying files
in compat/. Some of these are relicts from the time mplayer used
ffmpeg internals.
sub/ is not split, because it's too much of a mess (subtitle code is
mixed with OSD display and rendering).
Maybe the organization of core is not ideal: it mixes playback core
(like mplayer.c) and utility helpers (like bstr.c/h). Should the need
arise, the playback core will be moved somewhere else, while core
contains all helper and common code.