this involved inverting the logic of find_formats, enumerate_devies
and wasapi_fill_VistaBlob. The latter two were trivial as their return
values were not actually checked (to be fixed in a later
commit).
Before these definitions were incorrectly guarded by and #ifdef
but since they aren't macros, this would never be true so that
if they were ever added to mingw headers we would have problems.
rename KSDATAFORMAT constants with the same mp prefix for consistency.
also use DEFINE_GUID rather than defining the bare structure
...because everything is terrible.
strerror() is not documented as having to be thread-safe by POSIX and
C11. (Which is pretty much bullshit, because both mandate threads and
some form of thread-local storage - so there's no excuse why
implementation couldn't implement this in a thread-safe way. Especially
with C11 this is ridiculous, because there is no way to use threads and
convert error numbers to strings at the same time!)
Since we heavily use threads now, we should avoid unsafe functions like
strerror().
strerror_r() is in POSIX, but GNU/glibc deliberately fucks it up and
gives the function different semantics than the POSIX one. It's a bit of
work to convince this piece of shit to expose the POSIX standard
function, and not the messed up GNU one.
strerror_l() is also in POSIX, but only since the 2008 standard, and
thus is not widespread.
The solution is using avlibc (libavutil, by its official name), which
handles the unportable details for us, mostly. We avoid some pain.
This seems safer: otherwise, opening the AO could randomly fail if the
audio formats happens to be not float.
Unfortunately, this only works if the user does not select a device.
Since ALSA devices are arbitrary strings, including plugins with complex
parameters, it's not trivial or maybe even impossible to edit the string
in a way the "plug" plugin is added.
With --audio-device, it would be safe for users to select either
"default" or one of the "plughw" devices. Everything else seems
questionable.
Use the ALSA channel map API for querying and selecting supported
channel maps.
Since we (probably?) want to be compatible with ALSA versions before the
change, we still try to select the device name by channel map, and open
that device. There's no way to negotiate a channel map before opening,
so we're stuck with this approach. Fortunately, it seems these devices
allow selecting and setting any other supported channel layout, so maybe
this is not an issue at all. In particular, this avoids selecting the
default (dmix) device, which can only do stereo.
Most code is based on Martin Herkt <lachs0r@srsfckn.biz>'s alsa_ng
branch, with heavy modifications.
Don't crash if no fallback channel layout could be found (caller can't
handle NULL return from select_chmap()). Apparently this could never
actually happen, though.
Don't treat snd_pcm_hw_params_set_periods_near() failure as fatal error.
Same deal as with snd_pcm_hw_params_set_buffer_time_near().
Actually free channel maps returned by snd_pcm_get_chmap().
Adjust some messages.
No functional changes.
ALSA_PCM_NEW_HW_PARAMS_API was a pre-ALSA 1.0.0 thing and does nothing
with modern ALSA. It stopped being necessary about 10 years ago.
3 functions are moved to avoid forward references.
If ALSA reports a channel map, and it looks like it makes sense (i.e.
could be converted to mpv channel map, and the channel count matches),
then use that instead of the channel map we are assuming.
This is based on code written by lachs0r (alsa_ng branch).
The caller set up the "start" pointer array using the number of planes,
the encode() function used the number of channels. This copied
uninitialized values for packed formats, which makes Coverity warn.
From what I understand the division is to align the dimension of the
value from seconds to milliseconds. Hard to tell whether the "rounding"
was intentional or not; I'm tipping on "not".
Found by Coverity.
When the audio thread fails to properly init, it signals failure
to the main thread, AND THEN starts to clean up. For this to work,
ao_init callback must not return until the thread's cleanup is finished.
This is correctly handled in the ao_uninit callback by waiting for
the thread to exit, so just call that to clean up the main thread.
I have no idea why I didn't do this in the first place.
dsound was set as default, because there were some hard to fix problems
with wasapi. These problems were probably fixed now, so let's try with
wasapi as default again.
Even with change notifications, there are still (rare) cases when the
feed thread gets AUDCLIENT_DEVICE_INVALIDATED. So handle failures in
thread_feed by requesting ao_reload.
on changes to PKEY_AudioEngine_DeviceFormat, device status, and default device.
call ao_reload directly in the change_notify "methods".
this requires keeping a device enumerator around for the duration of
execution, rather than just for initially querying devices
Implement skeleton IMMNotificationClient to watch for changes in the
sound device. This will make recovery possible from changes shared
mode sample rate, bit depth, "enhancements"/effects and even graceful
device removal.
http://msdn.microsoft.com/en-us/library/windows/desktop/dd371417%28v=vs.85%29.aspx
Signed-off-by: Kevin Mitchell <kevmitch@gmail.com>
Before, failures, particularly in the thread loop init, could lead to a
bad state for the duration of mpvs execution. Make sure that
everything that was initialized gets properly and safely
uninitialized.
When initialization failed, vo_lavc may cause an irrecoverable state in
the ffmpeg-related structs. Therefore, we reject additional
initialization attempts at least until we know a better way to clean up
the mess.
ao_lavc currently cannot be initialized more than once, yet it's good to
do consistent changes there as well.
Also, clean up uninit-after-failure handling to be less spammy.
The mp_audio_from_avframe() function requires the AVFrame to be
refcounted, and merely increases its refcount while referencing the same
data. For non-refcounted frames, it simply did nothing and potentially
would make the caller pass around a frame with dangling pointers.
(libavcodec should always return refcounted frames, but it's not clear
what other code does; and also the function should simply work, instead
of having weird requirements on its arguments.)
This rewrites the audio decode loop to some degree. Audio filters don't
do refcounted frames yet, so af.c contains a hacky "emulation".
Remove some of the weird heuristic-heavy code in dec_audio.c. Instead of
estimating how much audio we need to filter, we always filter full
frames. Maybe this should be adjusted later: in case filtering increases
the volume of the audio data, we should try not to buffer too much
filter output by reducing the input that is fed at once.
For ad_spdif.c and ad_mpg123.c, we don't avoid extra copying yet - it
doesn't seem worth the trouble.
Use a pseudo-filter when changing speed with resampling, instead of
somehow changing a samplerate somewhere. This uses the same underlying
mechanism, but is a bit more structured and cleaner. It also makes some
of the following changes easier.
Since we now always use filters to change audio speed, move most of the
work set_playback_speed() does to recreate_audio_filters().
A helper to allocate refcounted audio frames from a pool. This will
replace the static buffer many audio filters use (af->data), because
such static buffers are incompatible with refcounting.
A first step towards refcounted audio frames.
Amazingly, the API just does what we want, and the code becomes
simpler. We will need to NIH allocation from a pool, though.
If the audio callback suddenly stops, and the AO provides no "reset"
callback, then reset() could deadlock by waiting on the audio callback
forever.
The waiting was needed to enter a consistent state, where the audio
callback guarantees it won't access the ringbuffer. This in turn is
needed because mp_ring_reset() is not concurrency-safe.
This active waiting is unavoidable. But the way it was implemented, the
audio callback had to call ao_read_data() at least once when reset() is
called. Fix this by making ao_read_data() set a flag upon entering and
leaving, which basically turns p->state into some sort of spinlock.
The audio callback actually never needs to spin, because there are only
2 states: playing audio, or playing silence. This might be a bit
surprising, because usually atomic_compare_exchange_strong() requires a
retry-loop idiom for correct operation.
This commit is needed because ao_wasapi can (or will in the future)
randomly stop the audio callback in certain corner cases. Then the
player would hang forever in reset().
This is what you would expect. Before this commit, each
ao_request_reload() call would just queue a reload command, and then
recreate the AO for the number of times the function was called.
Instead of sending a command, introduce some sort of event retrieval
mechanism. At least for the reload case, use atomics, because we're too
lazy to setup an extra mutex.
The main need I see for this is with libmpv - it would be confusing if
some application showed up as "mpv" on whateverthehell PulseAudio uses
it for (generally it does show up on various PA GUI tools).
The intention is to avoid using the timeout-based fallback.
There's some minor hope that this will help with OpenBSD (see #1239),
although it probably won't.
Some chance that this will cause trouble with obscure OSS
implementations or emulations.
If calling ao->driver->wait() fails, we need to fallback to timeout-
based waiting. But it could be that at this point, the mutex was already
released (and then re-acquired). So we need to recheck the condition in
order to avoid missed wakeups.
This probably wasn't an actually occurring problem, but still could
cause a small race-condition window if the dynamic fallback is actually
used.
Apparently this can "sometimes" return an error. In my opinion, this
should never return an error: neither the semantics of the function,
nor the ALSA documentation or ALSA sample code seem to indicate that
a failure is to be expected. I'm not perfectly sure about this though
(I blame ALSA being a weird, big, underdocumented API).
Since it causes problems for some users, and since there is really no
reason why we should abort on such an error, turn it into a warning.
Fixes#1231.
Since the list associated with --audio-device is supposed to enable
simple user-selection, it doesn't make much sense to include overly
special things like ao_pcm or ao_null in the list. Specifically,
ao_pcm is harmful, because it will just dump all audio to a file
named audiodump.wav in the current working directory. The user can't
choose the filename (it can be customized, but not through this
option), and the working directory might be essentially random,
especially if this is used from a GUI.
Exclude "strange" entries. We reuse the fact that there's already a
simple list ordered by auto-probe priority in order to avoid having to
add an additional flag. This is also why coreaudio_exclusive was moved
above ao_null: ao_null ends auto-probing and marks the start of
"special" outputs, which don't show up on the device, but we want
coreaudio_exclusive to be selectable (I think).
Move it above ao_null, so that it can be selected during auto-probing
(even if it's only last). I see no reason why it should not be included,
and it makes the following commit slightly more elegant. (See
explanations there.)
Especially with other components (libavcodec, OSX stuff), the thread
list can get quite populated. Setting the thread name helps when
debugging.
Since this is not portable, we check the OS variants in waf configure.
old-configure just gets a special-case for glibc, since doing a full
check here would probably be a waste of effort.
While conceptually this sink stuff in PulseAudio does just the right
thing, actually listing the sinks is unbelievable complicated. Not only
is the idea that listing them should happen asynchronously completely
bullshit (who the fuck runs the PulseAudio server on a separate
computer), but the way this is done is full of bullshit too. Why
separate callbacks for each device? Why this obtuse mainloop shit?
Especially the mainloop shit makes it actively worse than doing things
manually with pthread primitives, and the reason for that (different
mainloop implementations for GUIs?) is laughable too. It's like they
chose the most complicated API possible just because they attempted
to "abstract" basic mechanisms in order to handle "everything". While
I don't claim to design the best APIs, this API is fucking terrible
without any excuse. (End of rant.)
All the dumb crap in pa_init_boilerplate() is needed to talk to the
audio server at all. Might also fix some subtle bugs in the init code
(which is strange, because the original file was contributed by the
devil himself).
The one in msg.c was mistakenly removed with commit e99a37f6.
I didn't actually test the change in ao_sndio.c (but obviously "ap"
shouldn't be static).
Don't wait after the audio thread has pushed the remaining audio to the
AO. Avoids hard hangs if the heuristic fails completely (could still
happen if get_delay returns absurd values).
CC: @mpv-player/stable
Since the internal AO driver API has no proper way to determine EOF, we
need to guess by querying get_delay. But some AOs (e.g. ao_pulse with
no-latency-hacks set) may never reach 0, maybe because they naively add
the latency to the buffer level. In this case our heuristic can break.
Fix by always using the delay to estimate the EOF time. It's not even
that important - it's mostly used to avoid blocking draining. So this
should be ok.
CC: @mpv-player/stable (maybe)
Unfortunately, ALSA is particularly bad with this, because mpv has to
add all sorts of magic crap to the device name to make things work. The
device selection overrides this, so explicitly selecting devices will
most likely break your audio. This has yet to be solved.
This function is available starting with PulseAudio 2.0, while we only
require 1.0. This broke compilation on Ubuntu 12.04.5 LTS.
Use our own function to calculate the buffer size, which is actually
simpler and needs slightly less code.
Hopefully fixes#1154.
CC: @mpv-player/stable
It was more complicated than it had to be: the audio thread already
determines whether audio has ended, so we can use that. Remove the
separate logic for draining.
Commit 957097 attempted to use PA_STREAM_FAIL_ON_SUSPEND to make
ao_pulse exit if the stream was started suspended.
Unfortunately, PA_STREAM_FAIL_ON_SUSPEND is active even during playback.
If you pause mpv, pulseaudio will close the actual audio device after a
while (or something like this), and unpausing won't work. Instead, it
will spam "Entity killed" error messages.
Undo this change and check for suspended audio manually during init.
CC: @mpv-player/stable
Sometimes, ao_pulse starts in suspended mode, which means playback is
essentially paused in pulseaudio. This gives the impression that mpv is
hanging, since it times video against the audio playback progress, and
audio never makes progress in this state.
I'm not sure if this will help - possibly it does with mixed
pulseaudio/alsa setups. However, if the alsa setup has the pulseaudio
plugin, alsa will hang too. But there's still a chance we get less
blame for pulseaudio messes.
This gets rid of this warning:
Could not update timestamps for skipped samples.
This required an API addition to FFmpeg (otherwise it would instead
doing arithmetic on the timestamps itself), so whether it works depends
on the FFmpeg version.
Although the "af" command already could do this, it seems it's better
to introduce a lower level mechanism for now. This avoids some messy
issues, since that code would recursive call reinit_audio_chain().
To be used by the next commit.
There's no real reason why audio_init_filter() should exist. Just use
af_init or af_reinit directly. (We lose a useless message; the same
information is printed in a quite close place with more details.)
Requires less code, and the way the filter chain is marked as having
failed to initialize allows just switching off audio instead of
crashing if trying to insert a volume filter in mixer.c fails, and
recreating the old filter chain fails too.
libsndio has absolutely no mechanism to discard already written audio
(other than SIGKILLing the sound server). sio_stop() will always block
until all audio is played. This is a legitimate design bug.
In theory, we could just not stop it at all, so if the player is e.g.
paused, the remaining audio would be played. When resuming, we would
have to do something to ensure get_delay() returns the right value. But
I couldn't get it to work in all cases.
get_delay needs to report the current audio buffer status. It's
important for A/V sync that this information is current, but functions
which update it were called on play() or get_space() calls only.
This was in bytes, but it's more convenient to use samples (or frames;
in any case the smallest unit of audio that includes all channels).
Remove the ao->bps line too; it will be set after init() returns.
Let codec_tags.c do the messy mapping.
In theory we could simplify further by makign demux_mkv.c directly use
codec names instead of the MPlayer-inherited "internal FourCC" business,
but I'd rather not touch this - it would just break things.
For a while, we used this to transfer PCM from demuxer to the filter
chain. We had a special "codec" that mapped what MPlayer used to do
(MPlayer passes the AF sample format over an extra field to ad_pcm,
which specially interprets it).
Do this by providing a mp_set_pcm_codec() function, which describes a
sample format in a generic way, and sets the appropriate demuxer header
fields so that libavcodec interprets it correctly. We use the fact that
libavcodec has separate PCM decoders for each format. These are
systematically named, so we can easily map them.
This has the advantage that we can change the audio filter chain as we
like, without losing features from the "rawaudio" demuxer. In fact, this
commit also gets rid of the audio filter chain formats completely.
Instead have an explicit list of PCM formats. (We could even just have
the user pass libavcodec PCM decoder names directly, but that would be
annoying in other ways.)
Digital pass-through was probably broken. Possibly fix it (no way to
test). This also should make the logic slightly saner.
Fortunately, it's unlikely that anyone who uses OSS has a spdif setup.
Commit 5b5a3d0c broke this. The really funny thing is that this code was
actually always under "#if BYTE_ORDER == BIG_ENDIAN". The breaking
commit just edited this code slightly, but it must have failed to
compile on big endian long before (since over 1 year ago, commit d3fb58).
Should be able to pass-through AC3, DTS, and others.
It seems PulseAudio wants players to fallback to PCM on certain events
signaled by the server, but we don't implement that. There's not much
documentation available anyway.
Before this commit, there was AF_FORMAT_AC3 (the original spdif format,
used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS
and DTS-HD), which was handled as some sort of superset for
AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used
IEC61937-framing, but still was handled as something "separate".
Technically, all of them are pretty similar, but may use different
bitrates. Since digital passthrough pretends to be PCM (just with
special headers that wrap digital packets), this is easily detectable by
the higher samplerate or higher number of channels, so I don't know why
you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs.
AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is
just a mess.
Simplify this by handling all these formats the same way.
AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3).
All AOs just accept all spdif formats now - whether that works or not is
not really clear (seems inconsistent due to earlier attempts to make
DTS-HD work). But on the other hand, enabling spdif requires manual user
interaction, so it doesn't matter much if initialization fails in
slightly less graceful ways if it can't work at all.
At a later point, we will support passthrough with ao_pulse. It seems
the PulseAudio API wants to know the codec type (or maybe not - feeding
it DTS while telling it it's AC3 works), add separate formats for each
codecs. While this reminds of the earlier chaos, it's stricter, and most
code just uses AF_FORMAT_IS_IEC61937().
Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to
include special formats, so that it always describes the fundamental
sample format type. This also ensures valid AF formats are never 0 (this
was probably broken in one of the earlier commits from today).
This code tried to play with the format bits, and potentially could
create invalid formats, or reinterpret obscure formats in unexpected
ways.
Also there was an abort() call if the winapi or mpv used a format with
unexpected bit-width. This could probably easily happen; for example,
mpv supports at least one 64 bit format. And what would happen on 8 bit
formats anyway?
Untested.
Until now, the audio chain could handle both little endian and big
endian formats. This actually doesn't make much sense, since the audio
API and the HW will most likely prefer native formats. Or at the very
least, it should be trivial for audio drivers to do the byte swapping
themselves.
From now on, the audio chain contains native-endian formats only. All
AOs and some filters are adjusted. af_convertsignendian.c is now wrongly
named, but the filter name is adjusted. In some cases, the audio
infrastructure was reused on the demuxer side, but that is relatively
easy to rectify.
This is a quite intrusive and radical change. It's possible that it will
break some things (especially if they're obscure or not Linux), so watch
out for regressions. It's probably still better to do it the bulldozer
way, since slow transition and researching foreign platforms would take
a lot of time and effort.
IEC 61937 frames should always be little endian (little endian 16 bit
words). I don't see any apparent need why the audio chain should handle
swapped-endian formats.
It could be that some audio outputs might want them (especially on big
endian architectures). On the other hand, it's not clear how that works
on these architectures, and it's not even known whether the current code
works on big endian at all. If something should break, and it should
turn out that swapped-endian spdif is needed on any platform/AO,
swapping still could be done in-place within the affected AO, and
there's no need for the additional complexity in the rest of the player.
Note that af_lavcac3enc outputs big endian spdif frames for unknown
reasons. Normally, the resulting data is just pulled through an auto-
inserted conversion filter and turned into little endian. Maybe this was
done as a trick so that the code didn't have to byte-swap the actual
audio frame. In any case, just make it output little endian frames.
All of this is untested, because I have no receiver hardware.
libavcodec/libavformat now handles gapless audio better. In theory, this
could be implemented with ad_mpg123 too, but since libavformat strips
metadata from mp3 files and passes pure mp3 packets to the decoders
only, this can't work by itself. Instead, the player must pass this
metadata separately. libav* do this relatively transparently over packet
"side data" (attached to AVPacket).
It might also be possible to let libmpg123 handles all this by
implementing it as demuxer that outputs PCM, but that would have other
problems, and I think it's better to make libavformat work correctly.
libmpg123 can still be used with '--ad=mpg123:mp3'.
Also see issue #1101.
Be less clever, and restore the volume state even with AOs like pulse,
which have per-application audio.
Before this commit we didn't do this, because the volume is global (even
if per-application), so the volume will persist between invocations. But
to me it looks like always restoring is less tricky and makes for easier
to understand semantics.
Also, don't always unmute on exit. Unmuting was done even with ao_pulse,
and interfered with user expectations (see #1107).
This might annoy some users, because mpv will change the volume all the
time. We will see.
Fixes#1107.
Sometimes, --af=hrtf produces heavy artifacts or silence. It's possible
that this commit fixes these issues. My theory is that usually, the
uninitialized coefficients quickly converge to sane values as more audio
is filtered, which would explain why there are often artifacts on init,
with normal playback after that. It's also possible that sometimes, the
uninitialized values were NaN or inf, so that the artifacts (or silence)
would never go away.
Fix this by initializing the coefficients to 0. I'm not sure if this is
correct, but certainly better than before.
See issue #1104.
Pausing/unpausing while the audio device can't be reopened, and then
unpausing again when the device is finally reopened, can hang the
player for a while.
This happens because p->prepause_samples grows without bounds each
time the player is unpaused while the device is lost. On unpause,
ao_oss plays prepause_samples of silence to compensate for A/V timing
issues due to the partially lost buffer (we can't pause the device at
an arbitrary sample position, and the current period will be lost).
This in turn will make the player appear to be frozen if too much
audio is queued. (Normally, play() must never block, but here it
happens because more data is written than get_space() reports. A
better implementation would never let prepause_samples grow larger
than the period size.)
The unbounded growth happens because get_space() always returns that
the device can be written while the device is lost. So limit it to
200ms. (A better implementation would limit it to the period size.)
Also see #1080.
The filter output size can be 0. Due to how filtering works, this is
nothing unusual, but avresample_convert() will return 0. The same case
is already handling with "normal" resampling (this commit fixes the
reordering code).
Additionally, don't use an assert(). avresample_convert() failing is
unusual, but might also happen due to e.g. internal out of memory
conditions, so we shouldn't just crash on it.
Curiously observed with --ao=oss --audio-channels=5.1 when changing
speed.
Apparently NetBSD users want/need this (see issue #1080).
In order not to break playback, we need at least to emulate get_delay().
We do this approximately by using the system clock.
Also, always close the audio device on reset. Reopen it on play only. If
we can't reopen it, don't retry until after the next time reset or
resume is called, to avoid spam and unexpectedly "stealing" back the
audio device.
Also do something about framestepping causing audio desync.
The context struct had an audio_buf_info field, but there's no reason
why this would be needed. It's a tiny struct, and it isn't permanent
state. It's always returned by SNDCTL_DSP_GETOSPACE. Keeping this as
field is just confusing, so get rid of it.
The code for reopening the audio device was separate, and duplicated
some of the "real" open code. This was very badly done, and major
required parts of initialization were skipped. Fix this by removing
the code duplication. This consists mainly of moving the code for
opening the device to a separate function, and adding some changes
to handle format changes gracefully. (We can't change the audio
format on the fly, but we can at least not explode and play noise
when that happens.)
As a minor change, actually always use SNDCTL_DSP_RESET when closing
the audio device. We don't want to wait until the rest of the buffer
is played.
Also, don't use strerror() when printing the error message that
reopening failed, simply because reopen_device() takes care of this,
and also errno might be clobbered at this point.
I have no idea whether this is true, because there literally doesn't
seem to exist documentation for SNDCTL_DSP_RESET. But at least on
Linux' OSS emulation, it is true. Also, it would be quite insane if
it would be needed.
It seems on NetBSD SNDCTL_DSP_RESET exists, but using it for pausing
is not feasible. We still use it to discard the audio buffer when
closing the audio device.
Replace select() usage with poll() (and reduce code duplication).
Also, while we're at it, drop --disable-audio-select, since it has the
wrong name anyway. And I have doubts that this is needed anywhere. If
it is, it should probably fallback to doing the right thing by default,
instead of requiring the user to do it manually. Since nobody has done
that yet, and since this configure option has been part of MPlayer ever
since ao_oss was added, it's probably safe to say it's not needed.
The '#ifdef SNDCTL_DSP_GETOSPACE' was pointless, since it's already used
unconditionally in another place.
Improve the logic how the audio thread decides how to wait until the AO
is ready for new data. The previous commit makes some of this easier,
although it turned out that it wasn't required, and we still can handle
AOs with bad get_space implementation (although the new code prints an
error message, and it might fail in obscure situations).
The new code is pretty similar to the old one, and the main thing that
changes is that complicated conditions are tweaked. AO waiting is now
used better (mainly instead of max>0, r>0 is used). Whether to wakeup
is reevaluated every time, instead of somehow doing the wrong thing
and compensating for it with a flag.
This fixes the specific situation when the device buffer is full, and
we don't want to buffer more data. In the old code, this wasn't handled
correctly: the AO went to sleep forever, because it prevented proper
wakeup by the AO driver, and as consequence never asked the core for new
data. Commit 4fa3ffeb was a hack-fix against this, and now that we have
a proper solution, this hack is removed as well.
Also make the refill threshold consistent and always use 1/4 of the
buffer. (The threshold is used for situations when an AO doesn't
support proper waiting or chunked processing.)
This commit will probably cause a bunch of regressions again.
Round get_space() results in the same way play() rounds the input size.
Some audio APIs do this for various reasons.
This affects only "push" based AOs. Some of these need no change,
because they either do it already right (like ao_openal), or they seem
not to have any such requirements (like ao_pulse).
Needed for the following commit.
Remove the unnecessary indirection through ao fields.
Also fix the inverted result of AOCONTROL_HAS_TEMP_VOLUME. Hopefully the
change is equivalent. But actually, it looks like the old code did it
wrong.
With --gapless-audio=no, changing from one file to the next apparently
made it hang, until the player was woken up by unrelated events like
input. The reason was that the AO doesn't notify the player of EOF
properly. the played was querying ao_eof_reached(), and then just went
to sleep, without anything waking it up.
Make it event-based: the AO wakes up the playloop if the EOF state
changes.
We could have fixed this in a simpler way by synchronously draining the
AO in these cases. But I think proper event handling is preferable.
Fixes: #1069
CC: @mpv-player/stable (perhaps)
It seems hrtf works in 48khz only - and if that wasn't the input, the
filter just exited with an error. Make it request the 48khz instead. The
player will insert a resampling filter.
Not sure why it wasn't done like this in the first place.
The audio/video sync code in player/audio.c calls ao_reset() each time
audio decoding is entered, but the player is paused, and there would be
more than 1 sample to skip to make audio start match with video start.
This caused a wakeup feedback loop with push.c.
CC: @mpv-player/stable
bstr.c doesn't really deserve its own directory, and compat had just
a few files, most of which may as well be in osdep. There isn't really
any justification for these extra directories, so get rid of them.
The compat/libav.h was empty - just delete it. We changed our approach
to API compatibility, and will likely not need it anymore.
The original intention was probably to avoid unnecessarily high numbers
of wakeups. Change it to wait at most 25% of buffer time instead of 75%
until refilling. Might help with the dsound problems in issue #1024, but
I don't know if success is guaranteed.
Reduce from 1000ms to 100ms. Since there is an audio thread updating AOs
quickly enough now, requesting such a large buffer size makes no sense
anymore.
Use OPT_KEYVALUELIST() for all places where AVOptions are directly set
from mpv command line options. This allows escaping values, better
diagnostics (also no more "pal"), and somehow reduces code size.
Remove the old crappy option parser (av_opts.c).
Some ALSA plugins take non-interleaved audio, but treat it as
interleaved, which results in various funny bugs. Users keep hitting
this issue, and it just doesn't seem worth the trouble.
CC: @mpv-player/stable
It probably happens relatively often that the first packet (or even the
first N packets) of a stream will fail to decode, but decoding will
eventually succeed at a later point. Before commit 261506e3, this was
handled by an explicit retry loop (although this was also for other
purposes), but with then was changed to abort on the first error. This
makes it impossible to decode some audio streams.
Change this so that errors are ignored for the first 50 packets, which
should make it equivalent to the old code.
This commit makes audio decoding non-blocking. If e.g. the network is
too slow the playloop will just go to sleep, instead of blocking until
enough data is available.
For video, this was already done with commit 7083f88c. For audio, it's
unfortunately much more complicated, because the audio decoder was used
in a blocking manner. Large changes are required to get around this.
The whole playback restart mechanism must be turned into a statemachine,
especially since it has close interactions with video restart. Lots of
video code is thus also changed.
(For the record, I don't think switching this code to threads would
make this conceptually easier: the code would still have to deal with
external input while blocked, so these in-between states do get visible
[and thus need to be handled] anyway. On the other hand, it certainly
should be possible to modularize this code a bit better.)
This will probably cause a bunch of regressions.
Add an option that enables using native PulseAudio auto-updated timing
information, instead of the manual calculations added in mplayer2 times.
You can use --ao=pulse:no-latency-hacks to enable the new code. The code
is almost the same as the code that was removed with commit de435ed5,
but I didn't readd some bits I didn't understand. Likewise, the option
will disable the code added with that commit.
In my tests this seemed to work well, though the A/V sync display looks
funny when seeking.
The default is still the old behavior.
See issue #959.
This was needed by very old (0.9) versions only. Get rid of it.
Unfortunately, I can't cross-check with the original bug report, since
the bug URL leads to this:
Internal Server Error
TracError: IOError: [Errno 2] No such file or directory: '/home/lennart/svn/trac/pulseaudio/VERSION'
ao_null is used to stop autoprobing (if all AOs before fail to init).
After it come things like ao_pcm, which should never be automatically
selected.
Remove a certain theoretically possible failure case, and force "some"
fallback.
mp_make_wakeup_pipe() always fails on win32. If this call fails on Linux
(and e.g. ao_alsa is used), this will probably burn CPU since poll()
won't work on the invalid file descriptor, but whatever, the failure
case is obscure enough.
Accidentally broken in b6af44d3. For ad_lavc (and in general), the PTS
was not updated correctly when filtering only parts of audio frames,
and for ad_mpg123 and ad_spdif the PTS was additionally offset by the
frame size.
This could lead to incorrect time display, and possibly broken A/V sync.
Execute the format change based on whether we logically detected EOF
(after filters), instead of when the decode buffer was drained. It's
slightly cleaner. (The requirement of len>0 existed before.)
Don't return an EOF code if there's still buffered data.
Also, don't call demux_stream_eof() in the playloop. There's probably
nothing wrong with it, but it's cleaner not to use it.
Also give AD_EOF its own value, so that a decoding error doesn't drain
audio by causing an EOF condition.
Move a function call, which does not change semantics.
Write the extra buffer sample count in a more straight-forward way; the
old code was not meaningful in any way (anymore).
It's true that the decoder can successfully decode, but return no data
(for various reasons). We don't need to handle this specially, though.
We just let the decoder decode some more data. This doesn't increase the
danger of an endless loop either, because audio_decode() already calls
this function until enough is decoded.
This commit mainly moves the initial decoding of data (done to probe the
audio format) to generic code. This will make it easier to make audio
decoding non-blocking in a later commit.
This commit also changes how decoders return data: instead of having
them write the data into a prepared buffer, they return a reference to
an internal buffer (by setting dec_audio.decoded). This makes it
significantly easier to handle audio format changes, since the decoders
don't really need to care anymore.
If the decoder didn't set a samplerate, it was initialized from the
container samplerate.
This probably didn't make much sense, because it's passed to the
decoder on initialization (so it could definitely use it). It's an
artifact from commit 66a9eb57 (which removed some Matroska-specific non-
sense), and I've never seen it actually happen since it was made into a
warning. Just get rid of it.