Rather than the linear cd/m^2 units, these (relative) logarithmic units
lend themselves much better to actually detecting scene changes,
especially since the scene averaging was changed to also work
logarithmically.
In theory our "eye adaptation" algorithm works in both ways, both
darkening bright scenes and brightening dark scenes. But I've always
just prevented the latter with a hard clamp, since I wanted to avoid
blowing up dark scenes into looking funny (and full of noise).
But allowing a tiny bit of over-exposure might be a good thing. I won't
change the default just yet (better let users test), but a moderate
value of 1.2 might be better than the current 1.0 limit. Needs testing
especially on dark scenes.
The previous approach of using an FIR with tunable hard threshold for
scene changes had several problems:
- the FIR involved annoying hard-coded buffer sizes, high VRAM usage,
and the FIR sum was prone to numerical overflow which limited the
number of frames we could average over. We also totally redesign the
scene change detection.
- the hard scene change detection was prone to both false positives and
false negatives, each with their own (annoying) issues.
Scrap this entirely and switch to a dual approach of using a simple
single-pole IIR low pass filter to smooth out noise, while using a
softer scene change curve (with tunable low and high thresholds), based
on `smoothstep`. The IIR filter is extremely simple in its
implementation and has an arbitrarily user-tunable cutoff frequency,
while the smoothstep-based scene change curve provides a good, tunable
tradeoff between adaptation speed and stability - without exhibiting
either of the traditional issues associated with the hard cutoff.
Another way to think about the new options is that the "low threshold"
provides a margin of error within which we don't care about small
fluctuations in the scene (which will therefore be smoothed out by the
IIR filter).
Instead of desaturating towards luma, we desaturate towards the
per-channel tone mapped version. This essentially proves a smooth
roll-off towards the "hollywood"-style (non-chromatic) tone mapping
algorithm, which works better for bright content, while continuing to
use the "linear" style (chromatic) tone mapping algorithm for primarily
in-gamut content.
We also split up the desaturation algorithm into strength and exponent,
which allows users to use less aggressive desaturation settings without
affecting the overall curve.
Too many broken hardware decoders. Noticed wrong decoding of a video
file encoded with x262 on RX Vega when using VAAPI (Mesa 18.3.2).
Looks fine with swdec and a cheap hardware BD player.
Reverts 017f3d0674
This option has been deprecated upstream for a long time, probably
doesn't even work anymore, and won't work moving forwards as we replace
the vulkan code by libplacebo wrappers.
I haven't removed the option completely yet since in theory we could
still add support for e.g. a native glslang wrapper in the future. But
most likely the future of this code is deletion.
As an aside, fix an issue where the man page didn't mention d3d11.
This commit bumps the libmpv version to 1.102
drm-osd-plane -> drm-draw-plane
drm-video-plane -> drm-drmprime-video-plane
drm-osd-size -> drm-draw-surface-size
"draw plane", as in the plane that OpenGL draws to, whether it be
video + OSD or just OSD.
"drmprime video plane", as in the plane used for hwdec video imported
via drmprime.
"draw surface size", as in the size of the surface used for the draw plane
The new names are invariant whether or not hwdec_drmprime_drm is being
used or not. The original naming was very confusing, as when doing
regular rendering (swdec or vaapi) the video would be displayed on the
"OSD plane", and the "Video plane" would remain unused.
Add general primary/overlay plane option to drm-osd-plane-id and
drm-video-plane-id, so that the user can just request any usable
primary or overlay plane for either of these two options. This should
be somewhat more user-friendly (especially as neither of these two
options currently have a useful help function), as usually you would
only be interested in the type of the plane, and not exactly which
plane gets picked.
Despite their place in the tree, hwdecs can be loaded and used just
fine by the vulkan GPU backend.
In this change we add Vulkan interop support to the cuda/nvdec hwdec.
The overall process is mostly straight forward, so the main observation
here is that I had to implement it using an intermediate Vulkan buffer
because the direct VkImage usage is blocked by a bug in the nvidia
driver. When that gets fixed, I will revist this.
Nevertheless, the intermediate buffer copy is very cheap as it's all
device memory from start to finish. Overall CPU utilisiation is pretty
much the same as with the OpenGL GPU backend.
Note that we cannot use a single intermediate buffer - rather there
is a pool of them. This is done because the cuda memcpys are not
explicitly synchronised with the texture uploads.
In the basic case, this doesn't matter because the hwdec is not
asked to map and copy the next frame until after the previous one
is rendered. In the interpolation case, we need extra future frames
available immediately, so we'll be asked to map/copy those frames
and vulkan will be asked to render them. So far, harmless right? No.
All the vulkan rendering, including the upload steps, are batched
together and end up running very asynchronously from the CUDA copies.
The end result is that all the copies happen one after another, and
only then do the uploads happen, which means all textures are uploaded
the same, final, frame data. Whoops. Unsurprisingly this results in
the jerky motion because every 3/4 frames are identical.
The buffer pool ensures that we do not overwrite a buffer that is
still waiting to be uploaded. The ra_buf_pool implementation
automatically checks if existing buffers are available for use and
only creates a new one if it really has to. It's hard to say for sure
what the maximum number of buffers might be but we believe it won't
be so large as to make this strategy unusable. The highest I've seen
is 12 when using interpolation with tscale=bicubic.
A future optimisation here is to synchronise the CUDA copies with
respect to the vulkan uploads. This can be done with shared semaphores
that would ensure the copy of the second frames only happens after the
upload of the first frame, and so on. This isn't trivial to implement
as I'd have to first adjust the hwdec code to use asynchronous cuda;
without that, there's no way to use the semaphore for synchronisation.
This should result in fewer intermediate buffers being required.
Since linear downscaling makes sense to handle independently from
linear/sigmoid upscaling, we split this option up. Now,
linear-downscaling is its own option that only controls linearization
when downscaling and nothing more. Likewise, linear-upscaling /
sigmoid-upscaling are two mutually exclusive options (the latter
overriding the former) that apply only to upscaling and no longer
implicitly enable linear light downscaling as well.
The old behavior was very confusing, as evidenced by issues such
as #6213. The current behavior should make much more sense, and only
minimally breaks backwards compatibility (since using linear-scaling
directly was very uncommon - most users got this for free as part of
gpu-hq and relied only on that).
Closes#6213.
Someone on IRC pointed out that the default stats bindings weren't
documented in the interactive control section of the manual, so
let's add them with a short mention and a reference to the STATS
section of the manual.
by default the pixel format creation falls back to software renderer
when everything fails. this is mostly needed for VMs. additionally one
can directly request an sw renderer or exclude it entirely.
duration is parsed as an integer, and the default value is used if ```-1``` is passed. Passing ```-``` as described here causes a parameter value error.
The player fully restarts playback when the edition or disk title is
changed. Before this, the player tried to reinitialized playback
partially. For example, it did not print a new "Playing: <file>"
message, and did not send playback end to libmpv users (scripts or
applications).
This playback restart code was a bit messy and could have unforeseen
interactions with various state. There have been bugs before. Since it's
a mostly cosmetic thing for an obscure feature, just change it to a full
restart. This works well, though since it may have consequences for
scripts or client API users, mention it in interface-changes.rst.
The only effective difference is that the former explicitly checks
whether the JSON value type is string, and errors out if not. The rest
is exactly the same (mpv_set_property_string is mpv_set_property with
MPV_FORMAT_STRING).
It seems silly to keep this, so just remove it.
With the advent of actual HDR devices, my real measured ICC profile has
an "infinite" contrast, since the display is completely off on pure
black inputs. 100k:1 might not be enough, so let's just bump it up to
1m:1 to be safe.
Also, improve the logging in the case that the detected contrast is too
high by default.
With the internal change from stringlist to keyvaluelist, these
sub-options stop working. I don't really care enough to bring them
back. (Order doesn't matter, -del always seemed annoying.)
We are currently using primary / overlay planes drm objects, assuming that primary plane is osd and overlay plane is video.
This commit is doing two things :
- replace the primary / overlay planes members with osd and video planes member without the assumption
- Add two more options to determine which one of the primary / overlay is associated to osd / video.
- It will default osd to overlay and video to primary if unspecified
That new API was introduced and allows to have several native resources.
Thisuses that mechanisma for drm resources rather than the deprecated
opengl-cb structs.
This patch therefore add two structs that can be used with the drm atomic interop.
- mpv_opengl_drm_params : which will hold all the drm handles
- mpv_opengl_drm_osd_size : which will hold osd layer size
This commit adds a drm-osd-size=WxH parameter to commandline which
allows to define the OSD plane dimension. OSD can be upscaled to
screen resolution when having OSD at video resolution is too heavy.
This is especially useful for UHD modes on embedded devices where
the GPU cannot handle UHD modes at a decent framerate.
Instead of using an internal counter to keep track of the value that was
set last, attempt to find the current value of the property/option in
the value list, and then set the next value in the list.
There are some potential problems. If a property refuses to accept a
specific value, the cycle-values command will fail, and start from the
same position again. It can't know that it's supposed to skip the next
value. The same can happen to properties which behave "strangely", such
as the "aspect" property, which will return the current aspect if you
write "-1" to it. As a consequence, cycle-values can appear to get
"stuck".
I still think the new behavior is what users expect more, and which is
generally more useful. We won't restore the ability to get the old
behavior, unless we decide to revert this commit entirely.
Fixes#5772, and hopefully other complaints.
The main change is that we wait with opening the muxer ("writing
headers") until we have data from all streams. This fixes race
conditions at init due to broken assumptions in the old code.
This also changes a lot of other stuff. I found and fixed a few API
violations (often things for which better mechanisms were invented, and
the old ones are not valid anymore). I try to get away from the public
mutex and shared fields in encode_lavc_context. For now it's still
needed for some timestamp-related fields, but most are gone. It also
removes some bad code duplication between audio and video paths.