since i was going to fix the include order of stdatomic, might as well
sort the surrouding includes in accordance with the project's coding
style.
some headers can sometime require specific include order. standard
library headers usually don't. but mpv might "hack into" the standard
headers (e.g pthreads) so that complicates things a bit more.
hopefully nothing breaks. if it does, the style guide is to blame.
replace it with <stdatomic.h> and replace the mp_atomic_* typedefs with
explicit _Atomic qualified types.
also add missing config.h includes on some files.
Pull AOs work off of a callback that relies on mpv's internal timer. So
like with the related video changes, convert all of these to nanoseconds
instead. In many cases, the underlying audio API does actually provide
nanosecond resolution as well.
It is now the AO's responsibility to handle period size alignment. The
ao->period_size alignment field is unused as of the recent audio
refactor commit. Remove it.
It turns out that ao_alsa shows extremely inefficient behavior as a
consequence of the removal of period size aligned writes in the
mentioned refactor commit. This is because it could get into a state
where it repeatedly wrote single samples (as small as 1 sample), and
starved the rest of the player as a consequence. Too bad. Explicitly
align the size in ao_alsa. Other AOs, which need this, should do the
same.
One reason why it broke so badly with ao_alsa was that it retried the
write() even if all reported space could be written. So stop doing that
too. Retry the write only if we somehow wrote less.
I'm not sure about ao_pulse.
This replaces the two buffers (ao_chain.ao_buffer in the core, and
buffer_state.buffers in the AO) with a single queue. Instead of having a
byte based buffer, the queue is simply a list of audio frames, as output
by the decoder. This should make dataflow simpler and reduce copying.
It also attempts to simplify fill_audio_out_buffers(), the function I
always hated most, because it's full of subtle and buggy logic.
Unfortunately, I got assaulted by corner cases, dumb features (attempt
at seamless looping, really?), and other crap, so it got pretty
complicated again. fill_audio_out_buffers() is still full of subtle and
buggy logic. Maybe it got worse. On the other hand, maybe there really
is some progress. Who knows.
Originally, the data flow parts was meant to be in f_output_chain, but
due to tricky interactions with the playloop code, it's now in the dummy
filter in audio.c.
At least this improves the way the audio PTS is passed to the encoder in
encoding mode. Now it attempts to pass frames directly, along with the
pts, which should minimize timestamp problems. But to be honest, encoder
mode is one big kludge that shouldn't exist in this way.
This commit should be considered pre-alpha code. There are lots of bugs
still hiding.
Instead of the relatively subtle underflow handling, simply signal
whether the stream is in a playing state. Should make it more robust.
Should affect ao_alsa and ao_pulse only (and ao_openal, but it's
broken).
For ao_pulse, I'm just guessing. How the hell do you query whether a
stream is playing? Who knows. Seems to work, judging from very
superficial testing.
This affects "pull" AOs only: ao_alsa, ao_pulse, ao_openal, ao_pcm,
ao_lavc. There are changes to the other AOs too, but that's only about
renaming ao_driver.resume to ao_driver.start.
ao_openal is broken because I didn't manage to fix it, so it exits with
an error message. If you want it, why don't _you_ put effort into it? I
see no reason to waste my own precious lifetime over this (I realize the
irony).
ao_alsa loses the poll() mechanism, but it was mostly broken and didn't
really do what it was supposed to. There doesn't seem to be anything in
the ALSA API to watch the playback status without polling (unless you
want to use raw UNIX signals).
No idea if ao_pulse is correct, or whether it's subtly broken now. There
is no documentation, so I can't tell what is correct, without reverse
engineering the whole project. I recommend using ALSA.
This was supposed to be just a simple fix, but somehow it expanded scope
like a train wreck. Very high chance of regressions, but probably only
for the AOs listed above. The rest you can figure out from reading the
diff.
The recent change to the common code removed all calls to ->drain. It's
currently emulated via a timed sleep and polling ao_eof_reached(). That
is actually fallback code for AOs which lacked draining. I could just
readd the drain call, but it was a bad idea anyway. My plan to handle
this better is to require the AO to signal a underrun, even if
AOPLAY_FINAL_CHUNK is not set. Also reinstate not possibly waiting for
ao_lavc.c. ao_pcm.c did not have anything to handle this; whatever.
This is preparation to further cleanups (and eventually actual
improvements) of the audio output code.
AOs are split into two classes: pull and push. Pull AOs let an audio
callback of the native audio API read from a ring buffer. Push AOs
expose a function that works similar to write(), and for which we start
a "feeder" thread. It seems making this split was beneficial, because of
the different data flow, and emulating the one or other in the AOs
directly would have created code duplication (all the "pull" AOs had
their own ring buffer implementation before it was cleaned up).
Unfortunately, both types had completely separate implementations (in
pull.c and push.c). The idea was that little can be shared anyway. But
that's very annoying now, because I want to change the API between AO
and player.
This commit attempts to merge them. I've moved everything from push.c to
pull.c, the trivial entrypoints from ao.c to pull.c, and attempted to
reconcile the differences. It's a mess, but at least there's only one
ring buffer within the AO code now. Everything should work mostly the
same. Pull AOs now always copy the audio data under a lock; before this
commit, all ring buffer access was lock-free (except for the decoder
wakeup callback, which acquired a mutex). In theory, this is "bad", and
people obsessed with lock-free stuff will hate me, but in practice
probably won't matter. The planned change will probably remove this
copying-under-lock again, but who knows when this will happen.
One change for the push AOs now makes it drop audio, where before only a
warning was logged. This is only in case of AOs or drivers which exhibit
unexpected (and now unsupported) behavior.
This is a risky change. Although it's completely trivial conceptually,
there are too many special cases. In addition, I barely tested it, and
I've messed with it in a half-motivated state over a longer time, barely
making any progress, and finishing it under a rush when I already should
have been asleep. Most things seem to work, and I made superficial tests
with alsa, sdl, and encode mode. This should cover most things, but
there are a lot of tricky things that received no coverage. All this
text means you should be prepared to roll back to an older commit and
report your problem.
AOs can report audio underruns, but only ao_alsa and ao_sdl (???)
currently do so. If the AO was marked as not reporting it, the cache
state was used to determine whether playback was interrupted due to slow
input.
This caused problems in some cases, such as video with very low video
frame rate: when a new frame is displayed, a new frame has to be
decoded, and since there it's so much further into the file (long frame
durations), the cache gets into an underrun state for a short moment,
even though both audio and video are playing fine. Enlarging the audio
buffer didn't help.
Fix this by making all AOs report underruns. If the AO driver does not
report underruns, fall back to using the buffer state.
pull.c behavior is slightly changed. Pull AOs are normally intended to
be used by pseudo-realtime audio APIs that fetch an audio buffer from
the API user via callback. I think it makes no sense to consider a
buffer underflow not an underrun in any situation, since we return
silence to the reader. (OK, maybe the reader could check the return
value? But let's not go there as long as there's no implementation.)
Remove the flag from ao_sdl.c, since it just worked via the generic
mechanism. Make the redundant underrun message verbose only.
push.c seems to log a redundant underflow message when resuming (because
somehow ao_play_data() is called when there's still no new data in the
buffer). But since ao_alsa does its own underrun reporting, and I only
use ao_alsa, I don't really care.
Also in all my tests, there seemed to be a rather high delay until the
underflow was logged (with audio only). I have no idea why this happened
and didn't try to debug this, but there's probably something wrong
somewhere.
This commit may cause random regressions.
See: #7440
If ao_add_events() is used, but all events flags are already set, then
we don't need to wakeup the core again.
Also, make the underrun message "exact" by avoiding the race condition
mentioned in the comment.
Avoiding redundant wakeups is not really worth the trouble, and it's
actually just a bonus in the change making the ao_underrun_event()
function return whether a new underrun was set, which is needed by the
following commit.
AOs can now call ao_underrun_event() (in any context) if an underrun has
happened. It will print a message.
This will be used in the following commits. But for now, audio.c only
clears the underrun bit, so that subsequent underruns still print the
warning message.
Since the underrun flag will be used in fragile ways by the playback
state machine, there is the "reports_underruns" field that signals
strong support for underrun reporting. (Otherwise, underrun events will
not be used by it.)
Until recently, ao_lavc and vo_lavc started encoding whenever the core
happened to send them data. Since audio and video are not initialized at
the same time, and the muxer was not necessarily opened when the first
encoder started to produce data, the resulting packets were put into a
queue. As soon as the muxer was opened, the queue was flushed.
Change this to make the core wait with sending data until all encoders
are initialized. This has the advantage that we don't need to queue up
the packets.
stdatomic.h defines no atomic_float typedef. We can't just use _Atomic
unconditionally, because we support compilers without C11 atomics. So
just create a custom atomic_float typedef in the wrapper, which uses
_Atomic in the C11 code path.
This does what af_volume used to do. Since we couldn't relicense it,
just rewrite it. Since we don't have a new filter mechanism yet, and the
libavfilter is too inconvenient, do applying the volume gain in ao.c
directly. This is done before handling the audio data to the driver.
Since push.c runs a separate thread, and pull.c is called asynchronously
from the audio driver's thread, the volume value needs to be
synchronized. There's no existing central mutex, so do some shit with
atomics. Since there's no atomic_float type predefined (which is at
least needed when using the legacy wrapper), do some nonsense about
reinterpret casting the float value to an int for the purpose of atomic
access. Not sure if using memcpy() is undefined behavior, but for now I
don't care.
The advantage of not using a filter is lower complexity (no filter auto
insertion), and lower latency (gain processing is done after our
internal audio buffer of at least 200ms).
Disavdantages include inability to use native volume control _before_
other filters with custom filter chains, and the need to add new
processing for each new sample type.
Since this doesn't reuse any of the old GPL code, nor does indirectly
rely on it, volume and replaygain handling now works in LGPL mode.
How to process the gain is inspired by libavfilter's af_volume (LGPL).
In particular, we use exactly the same rounding, and we quantize
processing for integer sample types by 256 steps. Some of libavfilter's
copyright may or may not apply, but I think not, and it's the same
license anyway.
I plan to remove the S24 sample formats in mpv. It seems like we should
still support this _somehow_ in AOs though. So the idea is to convert
the data to more obscure representations (that would not be useful for
filtering etc. anyway) within the AO.
This commit adds helper to enable this. ao_convert_fmt is meant to
provide mechanisms for this, rather than a generic audio format
description (as the latter leads only to overly generic misery). The
conversion also supports only cases which we think will be needed at
all.
The main advantage of this approach is that we get S24 out of sight,
and that we could support other crazy formats (like S20). The main
disadvantage is that usually S32 will be selected (if both S32 and S24
are available), and there's no user control to force S24. That doesn't
really matter though, and at worst makes testing harder or will lead
to unpleasant arguments with audiophiles (they'd be wrong anyway).
ao_convert_fmt.pad_lsb is ignored, although if we ever find a case in
which playing S32 with data in the LSBs breaks when playing it as padded
24 bit format. (For example, WAVEFORMATEXTENSIBLE recommends setting the
unused bits to 0 if wValidBitsPerSample implies LSB padding.)
Before this change, AOs could have internal alignment, and play() would
not consume the trailing data if the size passed to it is not aligned.
Change this to require AOs to report their alignment (via period_size),
and make sure to always send aligned data.
The buffer reported by get_space() now always has to be correct and
reliable. If play() does not consume all data provided (which is bounded
by get_space()), an error is printed.
This is preparation for potential further AO changes.
I casually checked alsa/lavc/null/pcm, the other AOs might or might not
work.
All contributors of the current code have agreed. ao.c requires a
"driver" entry for each audio output - we assume that if someone who
didn't agree to LGPL added a line, it's fine for ao.c to be LGPL
anyway. If the affected audio output is not disabled at compilation
time, the resulting binary will be GPL anyway, and ootherwise the
code is not included.
The audio output code itself was inspired or partially copied from
libao in 7a2eec4b59 (thus why MPlayer's audio code is named libao2).
Just to be sure we got permission from Aaron Holtzman, Jack Moffitt, and
Stan Seibert, who according to libao's SVN history and README are the
initial author. (Something similar was done for libvo, although the
commit relicensing it forgot to mention it.)
242aa6ebd40: anders mostly disagreed with the LGPL relicensing, but we
got permission for this particular commit.
0ef8e555735: nick could not be reached, but the include statement was
removed again anyway.
879e05a7c17: iive agreed to LGPL v3+ only, but this line of code was
removed anyway, so ao_null.c can be LGPL v2.1+.
9dd8f241ac2: patch author could not be reached, but the corresponding
code (old slave mode interface) was completely removed later.
Long planned. Leads to some sanity.
There still are some rather gross things. Especially g_groups is ugly,
and a hack that can hopefully be removed. (There is a plan for it, but
whether it's implemented depends on how much energy is left.)
Currently, calling mp_input_wakeup() will wake up the core thread (also
called the playloop). This seems odd, but currently the core indeed
calls mp_input_wait() when it has nothing more to do. It's done this way
because MPlayer used input_ctx as central "mainloop".
This is probably going to change. Remove direct calls to this function,
and replace it with mp_wakeup_core() calls. ao and vo are changed to use
opaque callbacks and not use input_ctx for this purpose. Other code
already uses opaque callbacks, or has legitimate reasons to use
input_ctx directly (such as sending actual user input).
I decided that it's too much work to convert all the VO/AOs to the new
option system manually at once. So here's a shitty hack instead, which
achieves almost the same thing. (The only user-visible difference is
that e.g. --vo=name:help will list the sub-options normally, instead of
showing them as deprecation placeholders. Also, the sub-option parser
will verify each option normally, instead of deferring to the global
option parser.)
Another advantage is that once we drop the deprecated options,
converting the remaining things will be easier, because we obviously
don't need to add the compatibility hacks.
Using this mechanism is separate in the next commit to keep the diff
noise down.
Instead of requiring each VO or AO to manually add members to MPOpts and
the global option table, make it possible to register them automatically
via vo_driver/ao_driver.global_opts members. This avoids modifying
options.c/options.h every time, including having to duplicate the exact
ifdeffery used to enable a driver.
This commit adds an --audio-channel=auto-safe mode, and makes it the
default. This mode behaves like "auto" with most AOs, except with
ao_alsa. The intention is to allow multichannel output by default on
sane APIs. ALSA is not sane as in it's so low level that it will e.g.
configure any layout over HDMI, even if the connected A/V receiver does
not support it. The HDMI fuckup is of course not ALSA's fault, but other
audio APIs normally isolate applications from dealing with this and
require the user to globally configure the correct output layout.
This will help with other AOs too. ao_lavc (encoding) is changed to the
new semantics as well, because it used to force stereo (perhaps because
encoding mode is supposed to produce safe files for crap devices?).
Exclusive mode output on Windows might need to be adjusted accordingly,
as it grants the same kind of low level access as ALSA (requires more
research).
In addition to the things mentioned above, the --audio-channels option
is extended to accept a set of channel layouts. This is supposed to be
the correct way to configure mpv ALSA multichannel output. You need to
put a list of channel layouts that your A/V receiver supports.
Not very important for the command line player; but GUI applications
will want to know about this.
This only adds the internal API; support for specific audio outputs
comes later.
This reuses the ao struct as context for the hotplug event listener,
similar to how the "old" device listing API did. This is probably a bit
unclean and confusing. One argument got reusing it is that otherwise
rewriting parts of ao_pulse would be required (because the PulseAudio
API requires so damn much boilerplate). Another is that --ao-defaults is
applied to the hotplug dummy ao struct, which automatically applies such
defaults even to the hotplug context.
Notification works through the property observation mechanism in the
client API. The notification chain is a bit complicated: the AO notifies
the player, which in turn notifies the clients, which in turn will
actually retrieve the device list. (It still has the advantage that it's
slightly cleaner, since the AO stuff doesn't need to know about client
API issues.)
The weird handling of atomic flags in ao.c is because we still don't
require real atomics from the compiler. Otherwise we'd just use atomic
bitwise operations.
This is what you would expect. Before this commit, each
ao_request_reload() call would just queue a reload command, and then
recreate the AO for the number of times the function was called.
Instead of sending a command, introduce some sort of event retrieval
mechanism. At least for the reload case, use atomics, because we're too
lazy to setup an extra mutex.
The main need I see for this is with libmpv - it would be confusing if
some application showed up as "mpv" on whateverthehell PulseAudio uses
it for (generally it does show up on various PA GUI tools).
Since the internal AO driver API has no proper way to determine EOF, we
need to guess by querying get_delay. But some AOs (e.g. ao_pulse with
no-latency-hacks set) may never reach 0, maybe because they naively add
the latency to the buffer level. In this case our heuristic can break.
Fix by always using the delay to estimate the EOF time. It's not even
that important - it's mostly used to avoid blocking draining. So this
should be ok.
CC: @mpv-player/stable (maybe)
Remove the unnecessary indirection through ao fields.
Also fix the inverted result of AOCONTROL_HAS_TEMP_VOLUME. Hopefully the
change is equivalent. But actually, it looks like the old code did it
wrong.
With --gapless-audio=no, changing from one file to the next apparently
made it hang, until the player was woken up by unrelated events like
input. The reason was that the AO doesn't notify the player of EOF
properly. the played was querying ao_eof_reached(), and then just went
to sleep, without anything waking it up.
Make it event-based: the AO wakes up the playloop if the EOF state
changes.
We could have fixed this in a simpler way by synchronously draining the
AO in these cases. But I think proper event handling is preferable.
Fixes: #1069
CC: @mpv-player/stable (perhaps)