For hwaccel formats, mp_image will merely point to a hardware surface
handle. In these cases, the mp_image_params.imgfmt field describes the
format insufficiently, because it mostly only describes the type of the
hardware format, not its underlying format.
Introduce hw_subfmt to describe the underlying format. It makes sense to
use it with most hwaccels, though for now it will be used with the
following commit only.
MPlayer traditionally always used the display aspect ratio, e.g. 16:9,
while FFmpeg uses the sample (aka pixel) aspect ratio.
Both have a bunch of advantages and disadvantages. Actually, it seems
using sample aspect ratio is generally nicer. The main reason for the
change is making mpv closer to how FFmpeg works in order to make life
easier. It's also nice that everything uses integer fractions instead
of floats now (except --video-aspect option/property).
Note that there is at least 1 user-visible change: vf_dsize now does
not set the display size, only the display aspect ratio. This is
because the image_params d_w/d_h fields did not just set the display
aspect, but also the size (except in encoding mode).
The vf_format suboption is replaced with --video-output-levels (a global
option and property). In particular, the parameter is removed from
mp_image_params. The mechanism is moved to the "video equalizer", which
also handles common video output customization like brightness and
contrast controls.
The new code is slightly cleaner, and the top-level option is slightly
more user-friendly than as vf_format sub-option.
Make the GPU memcpy from the dxva2 code generally useful to other parts
of the player.
We need to check at configure time whether SSE intrinsics work at all.
(At least in this form, they won't work on clang, for example. It also
won't work on non-x86.)
Introduce a mp_image_copy_gpu(), and make the dxva2 code use it. Do some
awkward stuff to share the existing code used by mp_image_copy(). I'm
hoping that FFmpeg will sooner or later provide a function like this, so
we can remove most of this again. (There is a patch, bit it's stuck in
limbo since forever.)
All this is used by the following commit.
mpv had refcounted frames before libav*, so we were not using
libavutil's facilities. Change this and drop our own code.
Since AVFrames are not actually refcounted, and only the image data
they reference, the semantics change a bit. This affects mainly
mp_image_pool, which was operating on whole images instead of buffers.
While we could work on AVBufferRefs instead (and use AVBufferPool),
this doesn't work for use with hardware decoding, which doesn't
map cleanly to FFmpeg's reference counting. But it worked out. One
weird consequence is that we still need our custom image data
allocation function (for normal image data), because AVFrame's uses
multiple buffers.
There also seems to be a timing-dependent problem with vaapi (the
pool appears to be "leaking" surfaces). I don't know if this is a new
problem, or whether the code changes just happened to cause it more
often. Raising the number of reserved surfaces seemed to fix it, but
since it appears to be timing dependent, and I couldn't find anything
wrong with the code, I'm just going to assume it's not a new bug.
MP_IMGFIELD_TOP/MP_IMGFIELD_BOTTOM were completely unused, and
MP_IMGFIELD_ORDERED was always set (even though vf_vdpaupp.c strangely
checked for the latter).
Because gcc (and clang) is a goddamn PITA and unnecessarily warns if
the universal initializer for structs is used (like mp_image x = {})
and the first member of the struct is also a struct, move the w/h
fields to the top.
They are redundant. They were used by draw_bmp.c only, and only in a
special code path that 1. used fixed image formats, and 2. had image
sized perfectly aligned to chroma boundaries (so computing the chroma
width/height is trivial).
There's literally no reason why these functions have to be inline (they
might be performance critical, but then the function call overhead isn't
going to matter at all).
Uninline them and move them to mp_image.c. Drop the header file and fix
all uses of it.
Breaks vo_opengl by default. I'm hot able to fix this myself, because I
have no clue about the overcomplicated color management logic. Also,
whilethis is apparently caused by commit fbacd5, the following commits
all depend on it, so revert them too.
This reverts the following commits:
e141caa97d653b0dd529729c8b3f64fbacd5de31Fixes#1636.
We have MP_CSP_TRC defined, but it wasn't being used by practically
anything. This commit adds missing conversion logic, adds it to
mp_image, and moves the auto-guessing logic to where it should be, in
mp_image_params_guess_csp (and out of vo_opengl).
Note that this also fixes a minor bug: csp_prim was not being copied
between mp_image structs if the format was not YUV in both cases, but
this is wrong - the primaries are always relevant.
This deals with subsampled YUV video that has odd sizes, for example a
5x5 image with 4:2:0 subsampling.
It would be easy to handle if we actually passed separate texture
coordinates for each plane to the shader, but as of now the luma
coordinates are implicitly rescaled to chroma one. If luma and chroma
sizes don't match up, and this is not handled, you'd get a chroma shift
by 1 pixel.
The existing hack worked, but broke separable scaling. This was exposed
by a recent commit which switched to GL_NEAREST sampling for FBOs. The
rendering was accidentally scaled by 1 pixel, because the FBO size used
the original video size, while textures_sizes[0] was set to the padded
texture size (i.e. one pixel larger).
It could be fixed by setting the padded texture size only on the first
shader. But somehow that is annoying, so do something else. Don't pad
textures anymore, and rescale the chroma coordinates in the shader
instead.
Seems like this somehow doesn't work with rectangle textures (and
introduces a chroma shift), but since it's only used when doing VDA
hardware decoding, and the bug occurs only with unaligned video sizes, I
don't care much.
Fixes#1523.
This inserts an automatic conversion filter if a Matroska file is marked
as 3D (StereoMode element). The basic idea is similar to video rotation
and colorspace handling: the 3D mode is added as a property to the video
params. Depending on this property, a video filter can be inserted.
As of this commit, extending mp_image_params is actually completely
unnecessary - but the idea is that it will make it easier to integrate
with VOs supporting stereo 3D mogrification. Although vo_opengl does
support some stereo rendering, it didn't support the mode my sample file
used, so I'll leave that part for later.
Not that most mappings from Matroska mode to vf_stereo3d mode are
probably wrong, and some are missing.
Assuming that Matroska modes, and vf_stereo3d in modes, and out modes
are all the same might be an oversimplification - we'll see.
See issue #1045.
This add support for reading primary information from lavc, categorized
into BT.601-525, BT.601-625, BT.709 and BT.2020; and passes it on to the
vo. In vo_opengl, we always generate the 3dlut against the wider BT.2020
and transform our source into this colorspace in the shader.
Make sure every video filter has valid parameters for input and output.
(This also ensures we don't take possibly invalid decoder output, or
feed invalid decodr/filter output to VOs.)
Also, the updated image size check now (almost) works like the
corresponding check in FFmpeg.
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
Commit 5e4e248 added a mp_image_params field to mp_image, and moved many
parameters to that struct. display_w/h was left redundant with
mp_image_params.d_w/d_h. These fields were supposed to be always in
sync, but it seems some code forgot to do this correctly, such as
vf_fix_img_params() or mp_image_copy_attributes(). This led to the
problem in github issue #756, because display_w/_h could become
incorrect.
It turns out that most code didn't use the old fields anyway. Just
remove them. Note that mp_image_params.d_w/d_h are supposed to be always
valid, so the additional checks for 0 shouldn't be needed. Remove these
checks as well.
Fixes#756.
Image formats used to be FourCCs, so unsigned int was better. But now
it's annoying and the only difference is that unsigned int is more to
type than int.
In my opinion, config.h inclusions should be kept to a minimum. MPlayer
code really liked including config.h everywhere, though, even in often
used header files. Try to reduce this.
This time it broke because I didn't actually test compiling vo_vaapi.c,
and it was using a macro from mp_image.h, which implicitly assumed
FFALIGN was available. Screw that too, and copy the definition of
ffmpeg's FFALIGN to MP_ALIGN_UP, and move these macros to mp_comnon.h.
Until now, video output levels (obscure feature, like using TV screens
that require RGB output in limited range, similar to YUY) still required
handling of VOCTRL_SET_YUV_COLORSPACE. Simplify this, and use the new
mp_image_params code. This gets rid of some code. VOCTRL_SET_YUV_COLORSPACE
is not needed at all anymore in VOs that use the reconfig callback. The
result of VOCTRL_GET_YUV_COLORSPACE is now used only used for the
colormatrix related properties (basically, for display on OSD). For
other VOs, VOCTRL_SET_YUV_COLORSPACE will be sent only once after config
instead of twice.
This splits the monolithic mp_image_swscale() function into a bunch of
functions and a context struct. This means it's possible to set
arbitrary parameters (e.g. even obscure ones without getting in the
way), and you don't have to create the context on every call.
This code is preparation for removing duplicated libswscale API usage
from other parts of the code.
Use the video decoder chroma location flags and render chroma locations
other than centered. Until now, we've always used the intuitive and
obvious centered chroma location, but H.264 uses something else.
FFmpeg provides a small overview in libavcodec/avcodec.h:
-----------
/**
* X X 3 4 X X are luma samples,
* 1 2 1-6 are possible chroma positions
* X X 5 6 X 0 is undefined/unknown position
*/
enum AVChromaLocation{
AVCHROMA_LOC_UNSPECIFIED = 0,
AVCHROMA_LOC_LEFT = 1, ///< mpeg2/4, h264 default
AVCHROMA_LOC_CENTER = 2, ///< mpeg1, jpeg, h263
AVCHROMA_LOC_TOPLEFT = 3, ///< DV
AVCHROMA_LOC_TOP = 4,
AVCHROMA_LOC_BOTTOMLEFT = 5,
AVCHROMA_LOC_BOTTOM = 6,
AVCHROMA_LOC_NB , ///< Not part of ABI
};
-----------
The visual difference is literally minimal, but since videophiles
apparently consider this detail as quality mark of a video renderer,
support it anyway. We don't bother with chroma locations other than
centered and left, though.
Not sure about correctness, but it's probably ok.
The filter chain and the video ouputs have config() functions. They are
strictly limited to transfering the video size and format. Other
parameters (like color levels) have to be transferred separately.
Improve upon this by introducing a separate set of reconfig() functions,
which use mp_image_params to carry format parameters. This struct
contains all image format related parameters from config(), plus
additional parameters such as colorspace.
Change vf_rotate to use it, as well as vo_opengl. vf_rotate is just
an example/test case, but vo_opengl will need it later.
The intention is also to get rid of VOCTRL_SET_YUV_COLORSPACE. This
information is now handed to the VOs via reconfig(). The getter,
VOCTRL_GET_YUV_COLORSPACE, will still be needed though.