Replace all the check macros with function calls. Give them all the
same case and naming schema.
Drop af_fmt2bits(). Only af_fmt2bps() survives as af_fmt_to_bytes().
Introduce af_fmt_is_pcm(), and use it in situations that used
!AF_FORMAT_IS_SPECIAL. Nobody really knew what a "special" format
was. It simply meant "not PCM".
This commit adds notifications for hot plugging of devices. It also extends
the old behaviour of the `audio-out-detected-device` property which is now
backed by the hotplugging code. This allows clients to be notified when the
actual audio output device changes.
Maybe hotplugging should be supported for ao_coreaudio_exclusive too, but it's
device selection code is a bit fragile.
Not very important for the command line player; but GUI applications
will want to know about this.
This only adds the internal API; support for specific audio outputs
comes later.
This reuses the ao struct as context for the hotplug event listener,
similar to how the "old" device listing API did. This is probably a bit
unclean and confusing. One argument got reusing it is that otherwise
rewriting parts of ao_pulse would be required (because the PulseAudio
API requires so damn much boilerplate). Another is that --ao-defaults is
applied to the hotplug dummy ao struct, which automatically applies such
defaults even to the hotplug context.
Notification works through the property observation mechanism in the
client API. The notification chain is a bit complicated: the AO notifies
the player, which in turn notifies the clients, which in turn will
actually retrieve the device list. (It still has the advantage that it's
slightly cleaner, since the AO stuff doesn't need to know about client
API issues.)
The weird handling of atomic flags in ao.c is because we still don't
require real atomics from the compiler. Otherwise we'd just use atomic
bitwise operations.
This is a small oversight. The client name (as set on command line
options or, more importantly, the client API) was not set when listing
devices e.g. via the "audio-device-list" property.
Might or might not fix#1578.
Also adjust the log level for an unrelated message.
Before this commit, ao_null was used as last fallback. This doesn't make
too much sense. Why would you decode audio just to discard it? Let audio
initialization fail instead. This also handles the weird but possible
corner-case that ao_null might fail initializing, in which case e.g.
ao_pcm could be autoselected. (This happened once, and had to be fixed
manually.)
This removes the slightly duplicated code for picking the required AO
driver if --audio-device forces one. Now --audio-device reuses the same
code as --ao for this.
As a consequence, ao_alloc_pb() and ao_create() can be merged into
ao_init(). Although the ao_init() argument list, which is already pretty
big, grows by one, it's better than having all these similar sounding
functions around.
Actually, I just wanted to do the change the following commit will do,
but I found this code was more of a mess than it had to be.
dsound was set as default, because there were some hard to fix problems
with wasapi. These problems were probably fixed now, so let's try with
wasapi as default again.
This is what you would expect. Before this commit, each
ao_request_reload() call would just queue a reload command, and then
recreate the AO for the number of times the function was called.
Instead of sending a command, introduce some sort of event retrieval
mechanism. At least for the reload case, use atomics, because we're too
lazy to setup an extra mutex.
The main need I see for this is with libmpv - it would be confusing if
some application showed up as "mpv" on whateverthehell PulseAudio uses
it for (generally it does show up on various PA GUI tools).
Since the list associated with --audio-device is supposed to enable
simple user-selection, it doesn't make much sense to include overly
special things like ao_pcm or ao_null in the list. Specifically,
ao_pcm is harmful, because it will just dump all audio to a file
named audiodump.wav in the current working directory. The user can't
choose the filename (it can be customized, but not through this
option), and the working directory might be essentially random,
especially if this is used from a GUI.
Exclude "strange" entries. We reuse the fact that there's already a
simple list ordered by auto-probe priority in order to avoid having to
add an additional flag. This is also why coreaudio_exclusive was moved
above ao_null: ao_null ends auto-probing and marks the start of
"special" outputs, which don't show up on the device, but we want
coreaudio_exclusive to be selectable (I think).
Move it above ao_null, so that it can be selected during auto-probing
(even if it's only last). I see no reason why it should not be included,
and it makes the following commit slightly more elegant. (See
explanations there.)
Remove the unnecessary indirection through ao fields.
Also fix the inverted result of AOCONTROL_HAS_TEMP_VOLUME. Hopefully the
change is equivalent. But actually, it looks like the old code did it
wrong.
With --gapless-audio=no, changing from one file to the next apparently
made it hang, until the player was woken up by unrelated events like
input. The reason was that the AO doesn't notify the player of EOF
properly. the played was querying ao_eof_reached(), and then just went
to sleep, without anything waking it up.
Make it event-based: the AO wakes up the playloop if the EOF state
changes.
We could have fixed this in a simpler way by synchronously draining the
AO in these cases. But I think proper event handling is preferable.
Fixes: #1069
CC: @mpv-player/stable (perhaps)
Logic for this was missing from pull.c. For push.c it was missing if the
driver didn't support it. But even if the driver supported it (such as
with ao_alsa), strange behavior was observed by users. See issue #933.
Always check explicitly whether the AO is in paused mode, and if so,
don't drain.
Possibly fixes#933.
CC: @mpv-player/stable
The mplayer1/2/mpv CoreAudio audio output historically contained both usage
of AUHAL APIs (these go through the CoreAudio audio server) and the Device
based APIs (used only for output of compressed formats in exclusive mode).
The latter is a very unwieldy and low level API and pretty much forces us to
write a lot of code for little workr. Also with the widespread of HDMI, the
actual need for outputting compressed audio directly to the device is getting
lower (it was very useful with S/PDIF for bandwidth constraints not allowing
a number if channels transmitted in LPCM).
Considering how invasive it is (uses hog/exclusive mode), the new AO
(`ao_coreaudio_device`) is not going to be autoprobed but the user will have
to select it.
In most places where af_fmt2bits is called to get the bits/sample, the
result is immediately converted to bytes/sample. Avoid this by getting
bytes/sample directly by introducing af_fmt2bps.
For some reason, the buffered_audio variable was used to "cache" the
ao_get_delay() result. But I can't really see any reason why this should
be done, and it just seems to complicate everything.
One reason might be that the value should be checked only if the AO
buffers have been recently filled (as otherwise the delay could go low
and trigger an accidental EOF condition), but this didn't work anyway,
since buffered_audio is set from ao_get_delay() anyway at a later point
if it was unset. And in both cases, the value is used _after_ filling
the audio buffers anyway.
Simplify it. Also, move the audio EOF condition to a separate function.
(Note that ao_eof_reached() probably could/should whether the last
ao_play() call had AOPLAY_FINAL_CHUNK set to avoid accidental EOF on
underflows, but for now let's keep the code equivalent.)
Since the addition of the AO feed thread, 200ms of latency (MIN_BUFFER)
was added to all push-based AOs. This is not so nice, because even AOs
with relatively small buffering (e.g. ao_alsa on my system with ~170ms
of buffer size), the additional latency becomes noticable when e.g.
toggling mute with softvol.
Fix this by trying to keep not only 200ms minimum buffer, but also 200ms
maximum buffer. In other words, never buffer beyond 200ms in total. Do
this by estimating the AO's buffer fill status using get_space and the
initially known AO buffer size (the get_space return value on
initialization, before any audio was played). We limit the maximum
amount of data written to the soft buffer so that soft buffer size and
audio buffer size equal to 200ms (MIN_BUFFER).
To avoid weird problems with weird AOs, we buffer beyond MIN_BUFFER if
the AO's get_space requests more data than that, and as long as the soft
buffer is large enough.
Note that this is just a hack to improve the latency. When the audio
chain gains the ability to refilter data, this won't be needed anymore,
and instead we can introduce some sort of buffer replacement function in
order to update data in the soft buffer.