Commit Graph

4 Commits

Author SHA1 Message Date
Philip Langdale 59478b0059 hwtransfer: implement support for hw->hw format conversion
Historically, we have not attempted to support hw->hw format conversion
in the autoconvert logic. If a user needed to do these kinds of
conversions, they needed to manually insert the hw format's conversion
filter manually (eg: scale_vaapi).

This was usually fine because the general rule is that any format
supported by the hardware can be used as well as any other. ie: You
would only need to do conversion if you have a specific goal in mind.

However, we now have two situations where we can find ourselves with a
hardware format being produced by a decoder that cannot be accepted by
a VO via hwdec-interop:
 * dmabuf-wayland can only accept formats that the Wayland compositor
   accepts. In the case of GNOME, it can only accept a handful of RGB
   formats.
 * When decoding via VAAPI on Intel hardware, some of the more unusual
   video encodings (4:2:2, 10bit 4:4:4) lead to packed frame formats
   which gpu-next cannot handle, causing rendering to fail.

In both these cases (at least when using VAAPI with dmabuf-wayland), if
we could detect the failure case and insert a `scale_vaapi` filter, we
could get successful output automatically. For `hwdec=drm`, there is
currently no conversion filter, so dmabuf-wayland is still out of luck
there.

The basic approach to implementing this is to detect the case where we
are evaluating a hardware format where the VO can accept the hardware
format itself, but may not accept the underlying sw format. In the
current code, we bypass autoconvert as soon as we see the hardware
format is compatible.

My first observation was that we actually have logic in autoconvert to
detect when the input sw format is not in the list of allowed sw
formats passed into the autoconverter. Unfortunately, we never populate
this list, and the way you would expect to do that is vo-query-format
returning sw format information, which it does not. We could define an
extended vo-query-format-2, but we'd still need to implement the
probing logic to fill it in.

On the other hand, we already have the probing logic in the hwupload
filter - and most recently I used that logic to implement conversion
on upload. So if we could leverage that, we could both detect when
hw->hw conversion is required, and pick the best target format.

This exercise is then primarily one of detecting when we are in this
case and letting that code run in a useful way. The hwupload filter is
a bit awkward to work with today, and so I refactored a bunch of the
set up code to actually make it more encapsulated. Now, instead of the
caller instantiating it and then triggering the probe, we probe on
creation and instantiate the correct underlying filter (hwupload vs
conversion) automatically.
2023-08-26 10:07:55 -07:00
wm4 63bf362d11 f_hwtransfer: move format fields to private struct
A user can barely do anything useful with it, and there are no users
which access these anyway, so private is better.
2020-01-12 01:47:42 +01:00
wm4 49f9146fe4 f_hwtransfer: add a mp_hwdownload filter
This just wraps the mp_image_hw_download() function as a filter and adds
some minor caching/error logging. (Shame that it needs to much
boilerplate, I guess.)

Will be used by the following commit. Wrapping it as filter seemed more
convenient than other choices.
2019-10-02 21:14:58 +02:00
wm4 76276c9210 video: rewrite filtering glue code
Get rid of the old vf.c code. Replace it with a generic filtering
framework, which can potentially handle more than just --vf. At least
reimplementing --af with this code is planned.

This changes some --vf semantics (including runtime behavior and the
"vf" command). The most important ones are listed in interface-changes.

vf_convert.c is renamed to f_swscale.c. It is now an internal filter
that can not be inserted by the user manually.

f_lavfi.c is a refactor of player/lavfi.c. The latter will be removed
once --lavfi-complex is reimplemented on top of f_lavfi.c. (which is
conceptually easy, but a big mess due to the data flow changes).

The existing filters are all changed heavily. The data flow of the new
filter framework is different. Especially EOF handling changes - EOF is
now a "frame" rather than a state, and must be passed through exactly
once.

Another major thing is that all filters must support dynamic format
changes. The filter reconfig() function goes away. (This sounds complex,
but since all filters need to handle EOF draining anyway, they can use
the same code, and it removes the mess with reconfig() having to predict
the output format, which completely breaks with libavfilter anyway.)

In addition, there is no automatic format negotiation or conversion.
libavfilter's primitive and insufficient API simply doesn't allow us to
do this in a reasonable way. Instead, filters can use f_autoconvert as
sub-filter, and tell it which formats they support. This filter will in
turn add actual conversion filters, such as f_swscale, to perform
necessary format changes.

vf_vapoursynth.c uses the same basic principle of operation as before,
but with worryingly different details in data flow. Still appears to
work.

The hardware deint filters (vf_vavpp.c, vf_d3d11vpp.c, vf_vdpaupp.c) are
heavily changed. Fortunately, they all used refqueue.c, which is for
sharing the data flow logic (especially for managing future/past
surfaces and such). It turns out it can be used to factor out most of
the data flow. Some of these filters accepted software input. Instead of
having ad-hoc upload code in each filter, surface upload is now
delegated to f_autoconvert, which can use f_hwupload to perform this.

Exporting VO capabilities is still a big mess (mp_stream_info stuff).

The D3D11 code drops the redundant image formats, and all code uses the
hw_subfmt (sw_format in FFmpeg) instead. Although that too seems to be a
big mess for now.

f_async_queue is unused.
2018-01-30 03:10:27 -08:00