There were subtle and minor race conditions in the pull.c code, and AOs
using it (jack, portaudio, sdl, wasapi). Attempt to remove these.
There was at least a race condition in the ao_reset() implementation:
mp_ring_reset() was called concurrently to the audio callback. While the
ringbuffer uses atomics to allow concurrent access, the reset function
wasn't concurrency-safe (and can't easily be made to).
Fix this by stopping the audio callback before doing a reset. After
that, we can do anything without needing synchronization. The callback
is resumed when resuming playback at a later point.
Don't call driver->pause, and make driver->resume and driver->reset
start/stop the audio callback. In the initial state, the audio callback
must be disabled.
JackAudio of course is different. Maybe there is no way to suspend the
audio callback without "disconnecting" it (what jack_deactivate() would
do), so I'm not trying my luck, and implemented a really bad hack doing
active waiting until we get the audio callback into a state where it
won't interfere. Once the callback goes from AO_STATE_WAIT to NONE, we
can be sure that the callback doesn't access the ringbuffer or anything
else anymore. Since both sched_yield() and pthread_yield() apparently
are not always available, use mp_sleep_us(1) to avoid burning CPU during
active waiting.
The ao_jack.c change also removes a race condition: apparently we didn't
initialize _all_ ao fields before starting the audio callback.
In ao_wasapi.c, I'm not sure whether reset really waits for the audio
callback to return. Kovensky says it's not guaranteed, so disable the
reset callback - for now the behavior of ao_wasapi.c is like with
ao_jack.c, and active waiting is used to deal with the audio callback.
In most places where af_fmt2bits is called to get the bits/sample, the
result is immediately converted to bytes/sample. Avoid this by getting
bytes/sample directly by introducing af_fmt2bps.
Until now, this was always conflated with uninit. This was ugly, and
also many AOs emulated this manually (or just ignored it). Make draining
an explicit operation, so AOs which support it can provide it, and for
all others generic code will emulate it.
For ao_wasapi, we keep it simple and basically disable the internal
draining implementation (maybe it should be restored later).
Tested on Linux only.
Same deal as with the previous commit. We don't lose any functionality,
except for waiting "properly" on audio end, instead of waiting using the
delay estimate.
We want to move the AO to its own thread. There's no technical reason
for making the ao struct opaque to do this. But it helps us sleep at
night, because we can control access to shared state better.
Since m_option.h and options.h are extremely often included, a lot of
files have to be changed.
Moving path.c/h to options/ is a bit questionable, but since this is
mainly about access to config files (which are also handled in
options/), it's probably ok.
This comes with two internal AO API changes:
1. ao_driver.play now can take non-interleaved audio. For this purpose,
the data pointer is changed to void **data, where data[0] corresponds to
the pointer in the old API. Also, the len argument as well as the return
value are now in samples, not bytes. "Sample" in this context means the
unit of the smallest possible audio frame, i.e. sample_size * channels.
2. ao_driver.get_space now returns samples instead of bytes. (Similar to
the play function.)
Change all AOs to use the new API.
The AO API as exposed to the rest of the player still uses the old API.
It's emulated in ao.c. This is purely to split the commits changing all
AOs and the commits adding actual support for outputting N-I audio.
No AO can handle these, so it would be a problem if they get added
later, and non-interleaved formats get accepted erroneously. Let them
gracefully fall back to other formats.
Most AOs actually would fall back, but to an unrelated formats. This is
covered by this commit too, and if possible they should pick the
interleaved variant if a non-interleaved format is requested.
Use the new MP_ macros for some AOs instead of mp_msg.
Not all AOs are converted, and some only partially. In some cases, some
additional cosmetic changes are made.
Make all AOs use what has been introduced in the previous commit.
Note that even AOs which can handle all possible layouts (like ao_null)
use the new functions. This might be important if in the future
ao_select_champ() possibly honors global user options about downmixing
and so on.
This actually breaks audio for 5/6/8 channels. There's no reordering
done yet. The actual reordering will be done inside of af_lavrresample
and has to be made part of the format negotiation.
Finish renaming directories and moving files. Adjust all include
statements to make the previous commit compile.
The two commits are separate, because git is bad at tracking renames
and content changes at the same time.
Also take this as an opportunity to remove the separation between
"common" and "mplayer" sources in the Makefile. ("common" used to be
shared between mplayer and mencoder.)
Tis drops the silly lib prefixes, and attempts to organize the tree in
a more logical way. Make the top-level directory less cluttered as
well.
Renames the following directories:
libaf -> audio/filter
libao2 -> audio/out
libvo -> video/out
libmpdemux -> demux
Split libmpcodecs:
vf* -> video/filter
vd*, dec_video.* -> video/decode
mp_image*, img_format*, ... -> video/
ad*, dec_audio.* -> audio/decode
libaf/format.* is moved to audio/ - this is similar to how mp_image.*
is located in video/.
Move most top-level .c/.h files to core. (talloc.c/.h is left on top-
level, because it's external.) Park some of the more annoying files
in compat/. Some of these are relicts from the time mplayer used
ffmpeg internals.
sub/ is not split, because it's too much of a mess (subtitle code is
mixed with OSD display and rendering).
Maybe the organization of core is not ideal: it mixes playback core
(like mplayer.c) and utility helpers (like bstr.c/h). Should the need
arise, the playback core will be moved somewhere else, while core
contains all helper and common code.