Commit Graph

7 Commits

Author SHA1 Message Date
Dudemanguy 6158bb5be2 x11: avoid wasteful rendering when possible
Because wayland is a special snowflake, mpv wound up incorporating a lot
of logic into its render loop where visibilty checks are performed
before rendering anything (in the name of efficiency of course). Only
wayland actually uses this, but there's no reason why other backends
(x11 in this commit) can't be smarter. It's far easier on xorg since we
can just query _NET_WM_STATE_HIDDEN directly and not have to do silly
callback dances.

The function, vo_x11_check_net_wm_state_change, already tracks net wm
changes, including _NET_WM_STATE_HIDDEN. There is an already existing
window_hidden variable but that is actually just for checking if the
window was mapped and has nothing to do with this particular atom. mpv
also currently assumes that a _NET_WM_STATE_HIDDEN is exactly the same
as being minimized but according to the spec, that's not neccesarily
true (in practice, it's likely that these are the same though). Anyways,
just keep track of this state in a new variable (hidden) and use that
for determing if mpv should render or not.

There is one catch though: this cannot work if a display sync mode is
used. This is why the previous commit is needed. The display sync modes
in mpv require a blocking vsync implementation since its render loop is
directly driven by vsync. In xorg, if nothing is actually rendered, then
there's nothing for eglSwapBuffers (or FIFO for vulkan) to block on so
it returns immediately. This, of course, results in completely broken
video. We just need to check to make sure that we aren't in a display
sync mode before trying to be smart about rendering. Display sync is
power inefficient anyways, so no one is really being hurt here. As an
aside, this happens to work in wayland because there's basically a
custom (and ugly) vsync blocking function + timeout but that's off
topic.
2022-04-11 18:14:22 +00:00
dudemanguy ea4685b233 wayland: use callback flag + poll for buffer swap
The old way of using wayland in mpv relied on an external renderloop for
semi-accurate timings. This had multiple issues though. Display sync
would break whenever the window was hidden (since the frame callback
stopped being executed) which was really annoying. Also the entire
external renderloop logic was kind of fragile and didn't play well with
mpv's internal structure (i.e. using presentation time in that old
paradigm breaks stats.lua).

Basically the problem is that swap buffers blocks on wayland which is
crap whenever you hide the mpv window since it looks up the entire
player. So you have to make swap buffers not block, but this has a
different problem. Timings will be terrible if you use the unblocked
swap buffers call.

Based on some discussion in #wayland, the trick here is relatively
simple and works well enough for our purposes. Instead we basically
build a way to block with a timeout in the wayland buffer swap
functions.

A bool is set in the frame callback function that indicates whether or
not mpv is waiting for a frame to be displayed. In the actual buffer
swap function, we enter into a while loop waiting for this flag to be
set. At the same time, the wl_display is polled to block the thread and
wakeup if it receives any events from the compositor. This loop only
breaks if enough time has passed or if the frame callback bool is
received.

In the near future, it is better to set whether or not frame a frame has
been displayed in the presentation feedback. However as a first pass,
doing it in the frame callback is more than good enough.

The "downside" is that we render frames that aren't actually shown on
screen when the player is hidden (it seems like wayland people don't
like that). But who cares. Accurate timings are way more important. It's
probably not too hard to add that behavior back in the player though.
2019-10-10 17:41:19 +00:00
Philip Langdale b70ed35ba4 vo_gpu: hwdec_vaapi: Add Vulkan interop
This change introduces a vulkan interop path for the vaapi hwdec.
The basic principles are mostly the same as for EGL, with the
exported dma_buf being imported by Vukan. The biggest difference
is that we cannot reuse the texture as we do with OpenGL - there's
no way to rebind a VkImage to a different piece of memory, as far
as I can see. So, a new texture is created on each map call.

I did not bother implementing a code path for the old libva API as
I think it's safe to assume any system with a working vulkan driver
will have access to a newer libva.

Note that we are using separate layers for the vaapi surface, just
as is done for EGL. This is because libplacebo doesn't support
multiplane images.

This change does not include format negotiation because no driver
implements the vk_ext_image_drm_format_modifier extension that
would be required to do that. In practice, the two formats we care
about (nv12, p010) work correctly, so we are not blocked. A separate
change had to be made in libplacebo to filter out non-fatal validation
errors related to surface sizes due to the lack of format negotiation.
2019-07-08 01:57:02 +02:00
Niklas Haas 7006d6752d vo_gpu: vulkan: use libplacebo instead
This commit rips out the entire mpv vulkan implementation in favor of
exposing lightweight wrappers on top of libplacebo instead, which
provides much of the same except in a more up-to-date and polished form.

This (finally) unifies the code base between mpv and libplacebo, which
is something I've been hoping to do for a long time.

Note: The ra_pl wrappers are abstract enough from the actual libplacebo
device type that we can in theory re-use them for other devices like
d3d11 or even opengl in the future, so I moved them to a separate
directory for the time being. However, the rest of the code is still
vulkan-specific, so I've kept the "vulkan" naming and file paths, rather
than introducing a new `--gpu-api` type. (Which would have been ended up
with significantly more code duplicaiton)

Plus, the code and functionality is similar enough that for most users
this should just be a straight-up drop-in replacement.

Note: This commit excludes some changes; specifically, the updates to
context_win and hwdec_cuda are deferred to separate commits for
authorship reasons.
2019-04-21 23:55:22 +03:00
wm4 7cfae5adce vo_gpu: semi-fix --gpu-context/--gpu-api options and help output
This was confusing at best. Change it to output the actual choices.
(Seems like in the end it's always me who has to clean up other people's
bullshit.)

Context names were not unique - but they should be, so fix it. The whole
point of the original --opengl-backend option was to side-step the
tricky auto-detection, so you know exactly what you get. The goal of
this commit is to make --gpu-context work the same way. Fix the
non-unique names by appending "vk" to the names.

Keep in mind that this was not suitable for slecting the "UI" backend
anyway, since "x11" would force GLX, whereas people on not-NVIDIA
actually want "x11egl". Users trying to use --gpu-context=x11 to force
the X11 backend would always end up with GLX, which would at least break
VAAPI hardware decoding for them. Basically the idea that this option
could select the "UI" type is completely broken - it selects an
implementation, which implies a UI. Selecting the UI type This would
require a separate mechanism. (Although in theory this separate
mechanism could be part of the --gpu-context option - in any case,
someone would have to implement it.)

To achieve help output that can actually be understood, just duplicate
the code. Most of that code is duplicated anyway, and trying to share
just the list code with the result of making the output unreadable
doesn't make too much sense. If we wanted to save code/effort, we could
just remove the help output altogether.

--gpu-api has non-unique entries, and it would be nice to group them
(e.g. list all OpenGL capable contexts with "opengl"), but C makes this
simple idea too much of a pain, so don't do it.

Also remove a stray tab from the android entry on the manpage.
2017-10-16 10:57:51 +02:00
Rostislav Pehlivanov ed345ffc2f vo_gpu: vulkan: add support for wayland 2017-09-26 17:25:35 +02:00
Niklas Haas 91f23c7067 vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!

Current problems / limitations / improvement opportunities:

1. The swapchain/flipping code violates the vulkan spec, by assuming
   that the presentation queue will be bounded (in cases where rendering
   is significantly faster than vsync). But apparently, there's simply
   no better way to do this right now, to the point where even the
   stupid cube.c examples from LunarG etc. do it wrong.
   (cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)

2. The memory allocator could be improved. (This is a universal
   constant)

3. Could explore using push descriptors instead of descriptor sets,
   especially since we expect to switch descriptors semi-often for some
   passes (like interpolation). Probably won't make a difference, but
   the synchronization overhead might be a factor. Who knows.

4. Parallelism across frames / async transfer is not well-defined, we
   either need to use a better semaphore / command buffer strategy or a
   resource pooling layer to safely handle cross-frame parallelism.
   (That said, I gave resource pooling a try and was not happy with the
   result at all - so I'm still exploring the semaphore strategy)

5. We aggressively use pipeline barriers where events would offer a much
   more fine-grained synchronization mechanism. As a result of this, we
   might be suffering from GPU bubbles due to too-short dependencies on
   objects. (That said, I'm also exploring the use of semaphores as a an
   ordering tactic which would allow cross-frame time slicing in theory)

Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.

NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).

The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2017-09-26 17:25:35 +02:00