mirror of https://github.com/mpv-player/mpv
Speed optimizations (runs twise as fast) and bugfix (wrong cutoff frequency buffer over run noise and garbeled output when wrong input format)
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@8764 b3059339-0415-0410-9bf9-f77b7e298cf2
This commit is contained in:
parent
c4f3964dad
commit
8845dd707c
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
This is an ao2 plugin to do simple decoding of matrixed surround
|
||||
This is an libaf filter to do simple decoding of matrixed surround
|
||||
sound. This will provide a (basic) surround-sound effect from
|
||||
audio encoded for Dolby Surround, Pro Logic etc.
|
||||
|
||||
|
@ -21,19 +21,17 @@
|
|||
*/
|
||||
|
||||
/* The principle: Make rear channels by extracting anti-phase data
|
||||
from the front channels, delay by 20msec and feed to rear in anti-phase
|
||||
from the front channels, delay by 20ms and feed to rear in anti-phase
|
||||
*/
|
||||
|
||||
|
||||
// SPLITREAR: Define to decode two distinct rear channels -
|
||||
// this doesn't work so well in practice because
|
||||
// separation in a passive matrix is not high.
|
||||
// C (dialogue) to Ls and Rs 14dB or so -
|
||||
// so dialogue leaks to the rear.
|
||||
// Still - give it a try and send feedback.
|
||||
// comment this define for old behaviour of a single
|
||||
// surround sent to rear in anti-phase
|
||||
#define SPLITREAR
|
||||
/* SPLITREAR: Define to decode two distinct rear channels - this
|
||||
doesn't work so well in practice because separation in a passive
|
||||
matrix is not high. C (dialogue) to Ls and Rs 14dB or so - so
|
||||
dialogue leaks to the rear. Still - give it a try and send
|
||||
feedback. Comment this define for old behavior of a single
|
||||
surround sent to rear in anti-phase */
|
||||
#define SPLITREAR 1
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
@ -43,66 +41,106 @@
|
|||
#include "af.h"
|
||||
#include "dsp.h"
|
||||
|
||||
#define L 32 // Length of fir filter
|
||||
#define LD 65536 // Length of delay buffer
|
||||
|
||||
// 32 Tap fir filter loop unrolled
|
||||
#define FIR(x,w,y) \
|
||||
y = ( w[0] *x[0] +w[1] *x[1] +w[2] *x[2] +w[3] *x[3] \
|
||||
+ w[4] *x[4] +w[5] *x[5] +w[6] *x[6] +w[7] *x[7] \
|
||||
+ w[8] *x[8] +w[9] *x[9] +w[10]*x[10]+w[11]*x[11] \
|
||||
+ w[12]*x[12]+w[13]*x[13]+w[14]*x[14]+w[15]*x[15] \
|
||||
+ w[16]*x[16]+w[17]*x[17]+w[18]*x[18]+w[19]*x[19] \
|
||||
+ w[20]*x[20]+w[21]*x[21]+w[22]*x[22]+w[23]*x[23] \
|
||||
+ w[24]*x[24]+w[25]*x[25]+w[26]*x[26]+w[27]*x[27] \
|
||||
+ w[28]*x[28]+w[29]*x[29]+w[30]*x[30]+w[31]*x[31])
|
||||
|
||||
// Add to circular queue macro + update index
|
||||
#ifdef SPLITREAR
|
||||
#define ADDQUE(qi,rq,lq,r,l)\
|
||||
lq[qi]=lq[qi+L]=(l);\
|
||||
rq[qi]=rq[qi+L]=(r);\
|
||||
qi=(qi-1)&(L-1);
|
||||
#else
|
||||
#define ADDQUE(qi,lq,l)\
|
||||
lq[qi]=lq[qi+L]=(l);\
|
||||
qi=(qi-1)&(L-1);
|
||||
#endif
|
||||
|
||||
// Macro for updating queue index in delay queues
|
||||
#define UPDATEQI(qi) qi=(qi+1)&(LD-1)
|
||||
|
||||
// instance data
|
||||
typedef struct af_surround_s
|
||||
{
|
||||
float msecs; // Rear channel delay in milliseconds
|
||||
float* Ls_delaybuf; // circular buffer to be used for delaying Ls audio
|
||||
float* Rs_delaybuf; // circular buffer to be used for delaying Rs audio
|
||||
int delaybuf_len; // delaybuf buffer length in samples
|
||||
int delaybuf_rpos; // offset in buffer where we are reading
|
||||
int delaybuf_wpos; // offset in buffer where we are writing
|
||||
float filter_coefs_surround[32]; // FIR filter coefficients for surround sound 7kHz lowpass
|
||||
} af_surround_t;
|
||||
float lq[2*L]; // Circular queue for filtering left rear channel
|
||||
float rq[2*L]; // Circular queue for filtering right rear channel
|
||||
float w[L]; // FIR filter coefficients for surround sound 7kHz low-pass
|
||||
float* dr; // Delay queue right rear channel
|
||||
float* dl; // Delay queue left rear channel
|
||||
float d; // Delay time
|
||||
int i; // Position in circular buffer
|
||||
int wi; // Write index for delay queue
|
||||
int ri; // Read index for delay queue
|
||||
}af_surround_t;
|
||||
|
||||
// Initialization and runtime control
|
||||
static int control(struct af_instance_s* af, int cmd, void* arg)
|
||||
{
|
||||
af_surround_t *instance=af->setup;
|
||||
af_surround_t *s = af->setup;
|
||||
switch(cmd){
|
||||
case AF_CONTROL_REINIT:{
|
||||
float cutoff;
|
||||
float fc;
|
||||
af->data->rate = ((af_data_t*)arg)->rate;
|
||||
af->data->nch = ((af_data_t*)arg)->nch*2;
|
||||
af->data->format = ((af_data_t*)arg)->format;
|
||||
af->data->bps = ((af_data_t*)arg)->bps;
|
||||
af_msg(AF_MSG_DEBUG0, "[surround]: rear delay=%0.2fms.\n", instance->msecs);
|
||||
af->data->format = AF_FORMAT_F | AF_FORMAT_NE;
|
||||
af->data->bps = 4;
|
||||
|
||||
if (af->data->nch != 4){
|
||||
af_msg(AF_MSG_ERROR,"Only Stereo input is supported, filter disabled.\n");
|
||||
af_msg(AF_MSG_ERROR,"[surround] Only stereo input is supported.\n");
|
||||
return AF_DETACH;
|
||||
}
|
||||
// Figure out buffer space (in int16_ts) needed for the 15msec delay
|
||||
// Extra 31 samples allow for lowpass filter delay (taps-1)
|
||||
// Double size to make virtual ringbuffer easier
|
||||
instance->delaybuf_len = ((af->data->rate * instance->msecs / 1000)+31)*2;
|
||||
// Free old buffers
|
||||
if (instance->Ls_delaybuf != NULL)
|
||||
free(instance->Ls_delaybuf);
|
||||
if (instance->Rs_delaybuf != NULL)
|
||||
free(instance->Rs_delaybuf);
|
||||
// Allocate new buffers
|
||||
instance->Ls_delaybuf=(void*)calloc(instance->delaybuf_len,sizeof(*instance->Ls_delaybuf));
|
||||
instance->Rs_delaybuf=(void*)calloc(instance->delaybuf_len,sizeof(*instance->Rs_delaybuf));
|
||||
af_msg(AF_MSG_DEBUG1, "Delay buffers are %d samples each.\n", instance->delaybuf_len);
|
||||
instance->delaybuf_wpos = 0;
|
||||
instance->delaybuf_rpos = 32; // compensate for fir delay
|
||||
// Surround filer coefficients
|
||||
cutoff = af->data->rate/7000;
|
||||
if (-1 == design_fir(32, instance->filter_coefs_surround, &cutoff, LP|KAISER, 10.0)) {
|
||||
af_msg(AF_MSG_ERROR,"[surround] Unable to design prototype filter.\n");
|
||||
fc = 2.0 * 7000.0/(float)af->data->rate;
|
||||
if (-1 == design_fir(L, s->w, &fc, LP|HAMMING, 0)){
|
||||
af_msg(AF_MSG_ERROR,"[surround] Unable to design low-pass filter.\n");
|
||||
return AF_ERROR;
|
||||
}
|
||||
|
||||
// Free previous delay queues
|
||||
if(s->dl)
|
||||
free(s->dl);
|
||||
if(s->dr)
|
||||
free(s->dr);
|
||||
// Allocate new delay queues
|
||||
s->dl = calloc(LD,af->data->bps);
|
||||
s->dr = calloc(LD,af->data->bps);
|
||||
if((NULL == s->dl) || (NULL == s->dr))
|
||||
af_msg(AF_MSG_FATAL,"[delay] Out of memory\n");
|
||||
|
||||
// Initialize delay queue index
|
||||
if(AF_OK != af_from_ms(1, &s->d, &s->wi, af->data->rate, 0.0, 1000.0))
|
||||
return AF_ERROR;
|
||||
printf("%i\n",s->wi);
|
||||
s->ri = 0;
|
||||
|
||||
if((af->data->format != ((af_data_t*)arg)->format) ||
|
||||
(af->data->bps != ((af_data_t*)arg)->bps)){
|
||||
((af_data_t*)arg)->format = af->data->format;
|
||||
((af_data_t*)arg)->bps = af->data->bps;
|
||||
return AF_FALSE;
|
||||
}
|
||||
return AF_OK;
|
||||
}
|
||||
case AF_CONTROL_COMMAND_LINE:{
|
||||
float d = 0;
|
||||
sscanf((char*)arg,"%f",&d);
|
||||
if (d<0){
|
||||
af_msg(AF_MSG_ERROR,"Error setting rear delay length in af_surround. Delay has to be positive.\n");
|
||||
if ((d < 0) || (d > 1000)){
|
||||
af_msg(AF_MSG_ERROR,"[surround] Invalid delay time, valid time values"
|
||||
" are 0ms to 1000ms current value is %0.3ms\n",d);
|
||||
return AF_ERROR;
|
||||
}
|
||||
instance->msecs=d;
|
||||
s->d = d;
|
||||
return AF_OK;
|
||||
}
|
||||
}
|
||||
|
@ -112,108 +150,100 @@ static int control(struct af_instance_s* af, int cmd, void* arg)
|
|||
// Deallocate memory
|
||||
static void uninit(struct af_instance_s* af)
|
||||
{
|
||||
af_surround_t *instance=af->setup;
|
||||
if(af->data->audio)
|
||||
free(af->data->audio);
|
||||
if(af->data)
|
||||
free(af->data);
|
||||
if(instance->Ls_delaybuf)
|
||||
free(instance->Ls_delaybuf);
|
||||
if(instance->Rs_delaybuf)
|
||||
free(instance->Rs_delaybuf);
|
||||
free(af->setup);
|
||||
if(af->setup)
|
||||
free(af->setup);
|
||||
}
|
||||
|
||||
// The beginnings of an active matrix...
|
||||
static double steering_matrix[][12] = {
|
||||
static float steering_matrix[][12] = {
|
||||
// LL RL LR RR LS RS
|
||||
// LLs RLs LRs RRs LC RC
|
||||
{.707, .0, .0, .707, .5, -.5,
|
||||
.5878, -.3928, .3928, -.5878, .5, .5},
|
||||
};
|
||||
|
||||
// Experimental moving average dominances
|
||||
// Experimental moving average dominance
|
||||
//static int amp_L = 0, amp_R = 0, amp_C = 0, amp_S = 0;
|
||||
|
||||
// Filter data through filter
|
||||
static af_data_t* play(struct af_instance_s* af, af_data_t* data){
|
||||
af_surround_t* instance = (af_surround_t*)af->setup;
|
||||
int16_t* in = data->audio;
|
||||
int16_t* out;
|
||||
int i, samples;
|
||||
double *matrix = steering_matrix[0]; // later we'll index based on detected dominance
|
||||
af_surround_t* s = (af_surround_t*)af->setup;
|
||||
float* m = steering_matrix[0];
|
||||
float* in = data->audio; // Input audio data
|
||||
float* out = NULL; // Output audio data
|
||||
float* end = in + data->len / sizeof(float); // Loop end
|
||||
int i = s->i; // Filter queue index
|
||||
int ri = s->ri; // Read index for delay queue
|
||||
int wi = s->wi; // Write index for delay queue
|
||||
|
||||
if (AF_OK != RESIZE_LOCAL_BUFFER(af, data))
|
||||
return NULL;
|
||||
|
||||
out = af->data->audio;
|
||||
|
||||
// fprintf(stderr, "pl_surround: play %d bytes, %d samples\n", ao_plugin_data.len, samples);
|
||||
while(in < end){
|
||||
/* Dominance:
|
||||
abs(in[0]) abs(in[1]);
|
||||
abs(in[0]+in[1]) abs(in[0]-in[1]);
|
||||
10 * log( abs(in[0]) / (abs(in[1])|1) );
|
||||
10 * log( abs(in[0]+in[1]) / (abs(in[0]-in[1])|1) ); */
|
||||
|
||||
samples = data->len / (data->nch * sizeof(int16_t));
|
||||
/* About volume balancing...
|
||||
Surround encoding does the following:
|
||||
Lt=L+.707*C+.707*S, Rt=R+.707*C-.707*S
|
||||
So S should be extracted as:
|
||||
(Lt-Rt)
|
||||
But we are splitting the S to two output channels, so we
|
||||
must take 3dB off as we split it:
|
||||
Ls=Rs=.707*(Lt-Rt)
|
||||
Trouble is, Lt could be +1, Rt -1, so possibility that S will
|
||||
overflow. So to avoid that, we cut L/R by 3dB (*.707), and S by
|
||||
6dB (/2). This keeps the overall balance, but guarantees no
|
||||
overflow. */
|
||||
|
||||
// Testing - place a 1kHz tone on Lt and Rt in anti-phase: should decode in S
|
||||
//sinewave(in, samples, pl_surround.input_channels, 1000, 0.0, pl_surround.rate);
|
||||
//sinewave(&in[1], samples, pl_surround.input_channels, 1000, PI, pl_surround.rate);
|
||||
// Output front left and right
|
||||
out[0] = m[0]*in[0] + m[1]*in[1];
|
||||
out[1] = m[2]*in[0] + m[3]*in[1];
|
||||
|
||||
for (i=0; i<samples; i++) {
|
||||
// Low-pass output @ 7kHz
|
||||
FIR((&s->lq[i]), s->w, s->dl[wi]);
|
||||
|
||||
// Dominance:
|
||||
//abs(in[0]) abs(in[1]);
|
||||
//abs(in[0]+in[1]) abs(in[0]-in[1]);
|
||||
//10 * log( abs(in[0]) / (abs(in[1])|1) );
|
||||
//10 * log( abs(in[0]+in[1]) / (abs(in[0]-in[1])|1) );
|
||||
// Delay output by d ms
|
||||
out[2] = s->dl[ri];
|
||||
|
||||
// About volume balancing...
|
||||
// Surround encoding does the following:
|
||||
// Lt=L+.707*C+.707*S, Rt=R+.707*C-.707*S
|
||||
// So S should be extracted as:
|
||||
// (Lt-Rt)
|
||||
// But we are splitting the S to two output channels, so we
|
||||
// must take 3dB off as we split it:
|
||||
// Ls=Rs=.707*(Lt-Rt)
|
||||
// Trouble is, Lt could be +32767, Rt -32768, so possibility that S will
|
||||
// overflow. So to avoid that, we cut L/R by 3dB (*.707), and S by 6dB (/2).
|
||||
// this keeps the overall balance, but guarantees no overflow.
|
||||
|
||||
// output front left and right
|
||||
out[0] = matrix[0]*in[0] + matrix[1]*in[1];
|
||||
out[1] = matrix[2]*in[0] + matrix[3]*in[1];
|
||||
// output Ls and Rs - from 20msec ago, lowpass filtered @ 7kHz
|
||||
out[2] = fir(32, instance->filter_coefs_surround,
|
||||
&instance->Ls_delaybuf[instance->delaybuf_rpos +
|
||||
instance->delaybuf_len/2]);
|
||||
#ifdef SPLITREAR
|
||||
out[3] = fir(32, instance->filter_coefs_surround,
|
||||
&instance->Rs_delaybuf[instance->delaybuf_rpos +
|
||||
instance->delaybuf_len/2]);
|
||||
// Low-pass output @ 7kHz
|
||||
FIR((&s->rq[i]), s->w, s->dr[wi]);
|
||||
|
||||
// Delay output by d ms
|
||||
out[3] = s->dr[ri];
|
||||
#else
|
||||
out[3] = -out[2];
|
||||
#endif
|
||||
// calculate and save surround for 20msecs time
|
||||
|
||||
// Update delay queues indexes
|
||||
UPDATEQI(ri);
|
||||
UPDATEQI(wi);
|
||||
|
||||
// Calculate and save surround in circular queue
|
||||
#ifdef SPLITREAR
|
||||
instance->Ls_delaybuf[instance->delaybuf_wpos] =
|
||||
instance->Ls_delaybuf[instance->delaybuf_wpos + instance->delaybuf_len/2] =
|
||||
matrix[6]*in[0] + matrix[7]*in[1];
|
||||
instance->Rs_delaybuf[instance->delaybuf_wpos] =
|
||||
instance->Rs_delaybuf[instance->delaybuf_wpos++ + instance->delaybuf_len/2] =
|
||||
matrix[8]*in[0] + matrix[9]*in[1];
|
||||
ADDQUE(i, s->rq, s->lq, m[6]*in[0]+m[7]*in[1], m[8]*in[0]+m[9]*in[1]);
|
||||
#else
|
||||
instance->Ls_delaybuf[instance->delaybuf_wpos] =
|
||||
instance->Ls_delaybuf[instance->delaybuf_wpos++ + instance->delaybuf_len/2] =
|
||||
matrix[4]*in[0] + matrix[5]*in[1];
|
||||
ADDQUE(i, s->lq, m[4]*in[0]+m[5]*in[1]);
|
||||
#endif
|
||||
instance->delaybuf_rpos++;
|
||||
instance->delaybuf_wpos %= instance->delaybuf_len/2;
|
||||
instance->delaybuf_rpos %= instance->delaybuf_len/2;
|
||||
|
||||
// next samples...
|
||||
in = &in[data->nch]; out = &out[af->data->nch];
|
||||
// Next sample...
|
||||
in = &in[data->nch];
|
||||
out = &out[af->data->nch];
|
||||
}
|
||||
|
||||
// Show some state
|
||||
//printf("\npl_surround: delaybuf_pos=%d, samples=%d\r\033[A", pl_surround.delaybuf_pos, samples);
|
||||
|
||||
// Save indexes
|
||||
s->i = i; s->ri = ri; s->wi = wi;
|
||||
|
||||
// Set output data
|
||||
data->audio = af->data->audio;
|
||||
data->len = (data->len*af->mul.n)/af->mul.d;
|
||||
|
@ -223,17 +253,16 @@ static af_data_t* play(struct af_instance_s* af, af_data_t* data){
|
|||
}
|
||||
|
||||
static int open(af_instance_t* af){
|
||||
af_surround_t *pl_surround;
|
||||
af->control=control;
|
||||
af->uninit=uninit;
|
||||
af->play=play;
|
||||
af->mul.n=2;
|
||||
af->mul.d=1;
|
||||
af->data=calloc(1,sizeof(af_data_t));
|
||||
af->setup=pl_surround=calloc(1,sizeof(af_surround_t));
|
||||
pl_surround->msecs=20;
|
||||
af->setup=calloc(1,sizeof(af_surround_t));
|
||||
if(af->data == NULL || af->setup == NULL)
|
||||
return AF_ERROR;
|
||||
((af_surround_t*)af->setup)->d = 20;
|
||||
return AF_OK;
|
||||
}
|
||||
|
||||
|
@ -243,6 +272,6 @@ af_info_t af_info_surround =
|
|||
"surround",
|
||||
"Steve Davies <steve@daviesfam.org>",
|
||||
"",
|
||||
AF_FLAGS_REENTRANT,
|
||||
AF_FLAGS_NOT_REENTRANT,
|
||||
open
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue