audio: add scaletempo2 filter based on chromium

scaletempo2 is a new audio filter for playing back
audio at modified speed and is based on chromium
commit 51ed77e3f37a9a9b80d6d0a8259e84a8ca635259.
It sounds subjectively better than the existing
implementions scaletempo and rubberband.
This commit is contained in:
Dorian Rudolph 2020-07-25 18:02:58 +02:00 committed by wm4
parent b5368980a8
commit 785a2b1261
7 changed files with 1121 additions and 0 deletions

View File

@ -162,6 +162,28 @@ Available filters are:
Changing playback speed would change pitch, leaving audio tempo at Changing playback speed would change pitch, leaving audio tempo at
1.2x. 1.2x.
``scaletempo2[=option1:option2:...]``
Scales audio tempo without altering pitch.
The algorithm is ported from chromium and uses the
Waveform Similarity Overlap-and-add (WSOLA) method.
It seems to achieve a higher audio quality than scaletempo and rubberband.
By default, the ``search-interval`` and ``window-size`` parameters
have the same values as in chromium.
``min-speed=<speed>``
Mute audio if the playback speed is below ``<speed>``. (default: 0.25)
``max-speed=<speed>``
Mute audio if the playback speed is above ``<speed>``
and ``<speed> != 0``. (default: 4.0)
``search-interval=<amount>``
Length in milliseconds to search for best overlap position. (default: 30)
``window-size=<amount>``
Length in milliseconds of the overlap-and-add window. (default: 20)
``rubberband`` ``rubberband``
High quality pitch correction with librubberband. This can be used in place High quality pitch correction with librubberband. This can be used in place
of ``scaletempo``, and will be used to adjust audio pitch when playing of ``scaletempo``, and will be used to adjust audio pitch when playing

View File

@ -0,0 +1,246 @@
#include "audio/aframe.h"
#include "audio/filter/af_scaletempo2_internals.h"
#include "audio/format.h"
#include "common/common.h"
#include "filters/f_autoconvert.h"
#include "filters/filter_internal.h"
#include "filters/user_filters.h"
#include "options/m_option.h"
struct priv {
struct mp_scaletempo2 data;
struct mp_pin *in_pin;
struct mp_aframe *cur_format;
struct mp_aframe_pool *out_pool;
bool sent_final;
struct mp_aframe *pending;
bool initialized;
double frame_delay;
float speed;
};
static bool init_scaletempo2(struct mp_filter *f);
static void reset(struct mp_filter *f);
static void process(struct mp_filter *f)
{
struct priv *p = f->priv;
if (!mp_pin_in_needs_data(f->ppins[1]))
return;
while (!p->initialized || !p->pending ||
!mp_scaletempo2_frames_available(&p->data))
{
bool eof = false;
if (!p->pending || !mp_aframe_get_size(p->pending)) {
struct mp_frame frame = mp_pin_out_read(p->in_pin);
if (frame.type == MP_FRAME_AUDIO) {
TA_FREEP(&p->pending);
p->pending = frame.data;
} else if (frame.type == MP_FRAME_EOF) {
eof = true;
} else if (frame.type) {
MP_ERR(f, "unexpected frame type\n");
goto error;
} else {
return; // no new data yet
}
}
assert(p->pending || eof);
if (!p->initialized) {
if (!p->pending) {
mp_pin_in_write(f->ppins[1], MP_EOF_FRAME);
return;
}
if (!init_scaletempo2(f))
goto error;
}
bool format_change =
p->pending && !mp_aframe_config_equals(p->pending, p->cur_format);
bool final = format_change || eof;
if (p->pending && !format_change && !p->sent_final) {
int frame_size = mp_aframe_get_size(p->pending);
uint8_t **planes = mp_aframe_get_data_ro(p->pending);
int read = mp_scaletempo2_fill_input_buffer(&p->data,
planes, frame_size, final);
p->frame_delay += read;
mp_aframe_skip_samples(p->pending, read);
}
p->sent_final |= final;
if (mp_scaletempo2_frames_available(&p->data)) {
if (eof) {
mp_pin_out_repeat_eof(p->in_pin); // drain more next time
}
} else if (final) {
p->initialized = false;
p->sent_final = false;
if (eof) {
mp_pin_in_write(f->ppins[1], MP_EOF_FRAME);
return;
} else if (format_change) {
// go on with proper reinit on the next iteration
p->initialized = false;
p->sent_final = false;
}
}
}
assert(p->pending);
if (mp_scaletempo2_frames_available(&p->data)) {
struct mp_aframe *out = mp_aframe_new_ref(p->cur_format);
int out_samples = p->data.ola_hop_size;
if (mp_aframe_pool_allocate(p->out_pool, out, out_samples) < 0) {
talloc_free(out);
goto error;
}
mp_aframe_copy_attributes(out, p->pending);
uint8_t **planes = mp_aframe_get_data_rw(out);
assert(planes);
assert(mp_aframe_get_planes(out) == p->data.channels);
out_samples = mp_scaletempo2_fill_buffer(&p->data,
(float**)planes, out_samples, p->speed);
double pts = mp_aframe_get_pts(p->pending);
p->frame_delay -= out_samples * p->speed;
if (pts != MP_NOPTS_VALUE) {
double delay = p->frame_delay / mp_aframe_get_effective_rate(out);
mp_aframe_set_pts(out, pts - delay);
}
mp_aframe_set_size(out, out_samples);
mp_aframe_mul_speed(out, p->speed);
mp_pin_in_write(f->ppins[1], MAKE_FRAME(MP_FRAME_AUDIO, out));
}
return;
error:
mp_filter_internal_mark_failed(f);
}
static bool init_scaletempo2(struct mp_filter *f)
{
struct priv *p = f->priv;
assert(p->pending);
if (mp_aframe_get_format(p->pending) != AF_FORMAT_FLOATP)
return false;
mp_aframe_reset(p->cur_format);
p->initialized = true;
p->sent_final = false;
p->frame_delay = 0;
p->speed = 1;
mp_aframe_config_copy(p->cur_format, p->pending);
mp_scaletempo2_init(&p->data, mp_aframe_get_channels(p->pending),
mp_aframe_get_rate(p->pending));
return true;
}
static bool command(struct mp_filter *f, struct mp_filter_command *cmd)
{
struct priv *p = f->priv;
switch (cmd->type) {
case MP_FILTER_COMMAND_SET_SPEED:
p->speed = cmd->speed;
return true;
}
return false;
}
static void reset(struct mp_filter *f)
{
struct priv *p = f->priv;
mp_scaletempo2_reset(&p->data);
p->frame_delay = 0;
p->initialized = false;
TA_FREEP(&p->pending);
}
static void destroy(struct mp_filter *f)
{
struct priv *p = f->priv;
mp_scaletempo2_destroy(&p->data);
talloc_free(p->pending);
}
static const struct mp_filter_info af_scaletempo2_filter = {
.name = "scaletempo2",
.priv_size = sizeof(struct priv),
.process = process,
.command = command,
.reset = reset,
.destroy = destroy,
};
static struct mp_filter *af_scaletempo2_create(
struct mp_filter *parent, void *options)
{
struct mp_filter *f = mp_filter_create(parent, &af_scaletempo2_filter);
if (!f) {
talloc_free(options);
return NULL;
}
mp_filter_add_pin(f, MP_PIN_IN, "in");
mp_filter_add_pin(f, MP_PIN_OUT, "out");
struct priv *p = f->priv;
p->data.opts = talloc_steal(p, options);
p->speed = 1.0;
p->cur_format = talloc_steal(p, mp_aframe_create());
p->out_pool = mp_aframe_pool_create(p);
p->pending = NULL;
p->initialized = false;
struct mp_autoconvert *conv = mp_autoconvert_create(f);
if (!conv)
abort();
mp_autoconvert_add_afmt(conv, AF_FORMAT_FLOATP);
mp_pin_connect(conv->f->pins[0], f->ppins[0]);
p->in_pin = conv->f->pins[1];
return f;
}
#define OPT_BASE_STRUCT struct mp_scaletempo2_opts
const struct mp_user_filter_entry af_scaletempo2 = {
.desc = {
.description = "Scale audio tempo while maintaining pitch"
" (filter ported from chromium)",
.name = "scaletempo2",
.priv_size = sizeof(OPT_BASE_STRUCT),
.priv_defaults = &(const OPT_BASE_STRUCT) {
.min_playback_rate = 0.25,
.max_playback_rate = 4.0,
.ola_window_size_ms = 20,
.wsola_search_interval_ms = 30,
},
.options = (const struct m_option[]) {
{"search-interval",
OPT_FLOAT(wsola_search_interval_ms), M_RANGE(1, 1000)},
{"window-size",
OPT_FLOAT(ola_window_size_ms), M_RANGE(1, 1000)},
{"min-speed",
OPT_FLOAT(min_playback_rate), M_RANGE(0, FLT_MAX)},
{"max-speed",
OPT_FLOAT(max_playback_rate), M_RANGE(0, FLT_MAX)},
{0}
}
},
.create = af_scaletempo2_create,
};

View File

@ -0,0 +1,728 @@
#include <float.h>
#include <math.h>
#include "audio/chmap.h"
#include "audio/filter/af_scaletempo2_internals.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Algorithm overview (from chromium):
// Waveform Similarity Overlap-and-add (WSOLA).
//
// One WSOLA iteration
//
// 1) Extract |target_block| as input frames at indices
// [|target_block_index|, |target_block_index| + |ola_window_size|).
// Note that |target_block| is the "natural" continuation of the output.
//
// 2) Extract |search_block| as input frames at indices
// [|search_block_index|,
// |search_block_index| + |num_candidate_blocks| + |ola_window_size|).
//
// 3) Find a block within the |search_block| that is most similar
// to |target_block|. Let |optimal_index| be the index of such block and
// write it to |optimal_block|.
//
// 4) Update:
// |optimal_block| = |transition_window| * |target_block| +
// (1 - |transition_window|) * |optimal_block|.
//
// 5) Overlap-and-add |optimal_block| to the |wsola_output|.
//
// 6) Update:write
struct interval {
int lo;
int hi;
};
static bool in_interval(int n, struct interval q)
{
return n >= q.lo && n <= q.hi;
}
static float **realloc_2d(float **p, int x, int y)
{
float **array = realloc(p, sizeof(float*) * x + sizeof(float) * x * y);
float* data = (float*) (array + x);
for (int i = 0; i < x; ++i) {
array[i] = data + i * y;
}
return array;
}
static void zero_2d(float **a, int x, int y)
{
memset(a + x, 0, sizeof(float) * x * y);
}
static void zero_2d_partial(float **a, int x, int y)
{
for (int i = 0; i < x; ++i) {
memset(a[i], 0, sizeof(float) * y);
}
}
// Energies of sliding windows of channels are interleaved.
// The number windows is |input_frames| - (|frames_per_window| - 1), hence,
// the method assumes |energy| must be, at least, of size
// (|input_frames| - (|frames_per_window| - 1)) * |channels|.
static void multi_channel_moving_block_energies(
float **input, int input_frames, int channels,
int frames_per_block, float *energy)
{
int num_blocks = input_frames - (frames_per_block - 1);
for (int k = 0; k < channels; ++k) {
const float* input_channel = input[k];
energy[k] = 0;
// First block of channel |k|.
for (int m = 0; m < frames_per_block; ++m) {
energy[k] += input_channel[m] * input_channel[m];
}
const float* slide_out = input_channel;
const float* slide_in = input_channel + frames_per_block;
for (int n = 1; n < num_blocks; ++n, ++slide_in, ++slide_out) {
energy[k + n * channels] = energy[k + (n - 1) * channels]
- *slide_out * *slide_out + *slide_in * *slide_in;
}
}
}
static float multi_channel_similarity_measure(
const float* dot_prod_a_b,
const float* energy_a, const float* energy_b,
int channels)
{
const float epsilon = 1e-12f;
float similarity_measure = 0.0f;
for (int n = 0; n < channels; ++n) {
similarity_measure += dot_prod_a_b[n]
/ sqrtf(energy_a[n] * energy_b[n] + epsilon);
}
return similarity_measure;
}
// Dot-product of channels of two AudioBus. For each AudioBus an offset is
// given. |dot_product[k]| is the dot-product of channel |k|. The caller should
// allocate sufficient space for |dot_product|.
static void multi_channel_dot_product(
float **a, int frame_offset_a,
float **b, int frame_offset_b,
int channels,
int num_frames, float *dot_product)
{
assert(frame_offset_a >= 0);
assert(frame_offset_b >= 0);
memset(dot_product, 0, sizeof(*dot_product) * channels);
for (int k = 0; k < channels; ++k) {
const float* ch_a = a[k] + frame_offset_a;
const float* ch_b = b[k] + frame_offset_b;
for (int n = 0; n < num_frames; ++n) {
dot_product[k] += *ch_a++ * *ch_b++;
}
}
}
// Fit the curve f(x) = a * x^2 + b * x + c such that
// f(-1) = y[0]
// f(0) = y[1]
// f(1) = y[2]
// and return the maximum, assuming that y[0] <= y[1] >= y[2].
static void quadratic_interpolation(
const float* y_values, float* extremum, float* extremum_value)
{
float a = 0.5f * (y_values[2] + y_values[0]) - y_values[1];
float b = 0.5f * (y_values[2] - y_values[0]);
float c = y_values[1];
if (a == 0.f) {
// The coordinates are colinear (within floating-point error).
*extremum = 0;
*extremum_value = y_values[1];
} else {
*extremum = -b / (2.f * a);
*extremum_value = a * (*extremum) * (*extremum) + b * (*extremum) + c;
}
}
// Search a subset of all candid blocks. The search is performed every
// |decimation| frames. This reduces complexity by a factor of about
// 1 / |decimation|. A cubic interpolation is used to have a better estimate of
// the best match.
static int decimated_search(
int decimation, struct interval exclude_interval,
float **target_block, int target_block_frames,
float **search_segment, int search_segment_frames,
int channels,
const float *energy_target_block, const float *energy_candidate_blocks)
{
int num_candidate_blocks = search_segment_frames - (target_block_frames - 1);
float dot_prod [MP_NUM_CHANNELS];
float similarity[3]; // Three elements for cubic interpolation.
int n = 0;
multi_channel_dot_product(
target_block, 0,
search_segment, n,
channels,
target_block_frames, dot_prod);
similarity[0] = multi_channel_similarity_measure(
dot_prod, energy_target_block,
&energy_candidate_blocks[n * channels], channels);
// Set the starting point as optimal point.
float best_similarity = similarity[0];
int optimal_index = 0;
n += decimation;
if (n >= num_candidate_blocks) {
return 0;
}
multi_channel_dot_product(
target_block, 0,
search_segment, n,
channels,
target_block_frames, dot_prod);
similarity[1] = multi_channel_similarity_measure(
dot_prod, energy_target_block,
&energy_candidate_blocks[n * channels], channels);
n += decimation;
if (n >= num_candidate_blocks) {
// We cannot do any more sampling. Compare these two values and return the
// optimal index.
return similarity[1] > similarity[0] ? decimation : 0;
}
for (; n < num_candidate_blocks; n += decimation) {
multi_channel_dot_product(
target_block, 0,
search_segment, n,
channels,
target_block_frames, dot_prod);
similarity[2] = multi_channel_similarity_measure(
dot_prod, energy_target_block,
&energy_candidate_blocks[n * channels], channels);
if ((similarity[1] > similarity[0] && similarity[1] >= similarity[2]) ||
(similarity[1] >= similarity[0] && similarity[1] > similarity[2]))
{
// A local maximum is found. Do a cubic interpolation for a better
// estimate of candidate maximum.
float normalized_candidate_index;
float candidate_similarity;
quadratic_interpolation(similarity, &normalized_candidate_index,
&candidate_similarity);
int candidate_index = n - decimation
+ (int)(normalized_candidate_index * decimation + 0.5f);
if (candidate_similarity > best_similarity
&& !in_interval(candidate_index, exclude_interval)) {
optimal_index = candidate_index;
best_similarity = candidate_similarity;
}
} else if (n + decimation >= num_candidate_blocks &&
similarity[2] > best_similarity &&
!in_interval(n, exclude_interval))
{
// If this is the end-point and has a better similarity-measure than
// optimal, then we accept it as optimal point.
optimal_index = n;
best_similarity = similarity[2];
}
memmove(similarity, &similarity[1], 2 * sizeof(*similarity));
}
return optimal_index;
}
// Search [|low_limit|, |high_limit|] of |search_segment| to find a block that
// is most similar to |target_block|. |energy_target_block| is the energy of the
// |target_block|. |energy_candidate_blocks| is the energy of all blocks within
// |search_block|.
static int full_search(
int low_limit, int high_limit,
struct interval exclude_interval,
float **target_block, int target_block_frames,
float **search_block, int search_block_frames,
int channels,
const float* energy_target_block,
const float* energy_candidate_blocks)
{
// int block_size = target_block->frames;
float dot_prod [sizeof(float) * MP_NUM_CHANNELS];
float best_similarity = -FLT_MAX;//FLT_MIN;
int optimal_index = 0;
for (int n = low_limit; n <= high_limit; ++n) {
if (in_interval(n, exclude_interval)) {
continue;
}
multi_channel_dot_product(target_block, 0, search_block, n, channels,
target_block_frames, dot_prod);
float similarity = multi_channel_similarity_measure(
dot_prod, energy_target_block,
&energy_candidate_blocks[n * channels], channels);
if (similarity > best_similarity) {
best_similarity = similarity;
optimal_index = n;
}
}
return optimal_index;
}
// Find the index of the block, within |search_block|, that is most similar
// to |target_block|. Obviously, the returned index is w.r.t. |search_block|.
// |exclude_interval| is an interval that is excluded from the search.
static int compute_optimal_index(
float **search_block, int search_block_frames,
float **target_block, int target_block_frames,
float *energy_candidate_blocks,
int channels,
struct interval exclude_interval)
{
int num_candidate_blocks = search_block_frames - (target_block_frames - 1);
// This is a compromise between complexity reduction and search accuracy. I
// don't have a proof that down sample of order 5 is optimal.
// One can compute a decimation factor that minimizes complexity given
// the size of |search_block| and |target_block|. However, my experiments
// show the rate of missing the optimal index is significant.
// This value is chosen heuristically based on experiments.
const int search_decimation = 5;
float energy_target_block [MP_NUM_CHANNELS];
// energy_candidate_blocks must have at least size
// sizeof(float) * channels * num_candidate_blocks
// Energy of all candid frames.
multi_channel_moving_block_energies(
search_block,
search_block_frames,
channels,
target_block_frames,
energy_candidate_blocks);
// Energy of target frame.
multi_channel_dot_product(
target_block, 0,
target_block, 0,
channels,
target_block_frames, energy_target_block);
int optimal_index = decimated_search(
search_decimation, exclude_interval,
target_block, target_block_frames,
search_block, search_block_frames,
channels,
energy_target_block,
energy_candidate_blocks);
int lim_low = MPMAX(0, optimal_index - search_decimation);
int lim_high = MPMIN(num_candidate_blocks - 1,
optimal_index + search_decimation);
return full_search(
lim_low, lim_high, exclude_interval,
target_block, target_block_frames,
search_block, search_block_frames,
channels,
energy_target_block, energy_candidate_blocks);
}
static void peek_buffer(struct mp_scaletempo2 *p,
int frames, int read_offset, int write_offset, float **dest)
{
assert(p->input_buffer_frames >= frames);
for (int i = 0; i < p->channels; ++i) {
memcpy(dest[i] + write_offset,
p->input_buffer[i] + read_offset,
frames * sizeof(float));
}
}
static void seek_buffer(struct mp_scaletempo2 *p, int frames)
{
assert(p->input_buffer_frames >= frames);
p->input_buffer_frames -= frames;
for (int i = 0; i < p->channels; ++i) {
memmove(p->input_buffer[i], p->input_buffer[i] + frames,
p->input_buffer_frames * sizeof(float));
}
}
static void read_buffer(struct mp_scaletempo2 *p, int frames, float **dest)
{
peek_buffer(p, frames, 0, 0, dest);
seek_buffer(p, frames);
}
static int write_completed_frames_to(struct mp_scaletempo2 *p,
int requested_frames, int dest_offset, float **dest)
{
int rendered_frames = MPMIN(p->num_complete_frames, requested_frames);
if (rendered_frames == 0)
return 0; // There is nothing to read from |wsola_output|, return.
for (int i = 0; i < p->channels; ++i) {
memcpy(dest[i] + dest_offset, p->wsola_output[i],
rendered_frames * sizeof(float));
}
// Remove the frames which are read.
int frames_to_move = p->wsola_output_size - rendered_frames;
for (int k = 0; k < p->channels; ++k) {
float *ch = p->wsola_output[k];
memmove(ch, &ch[rendered_frames], sizeof(*ch) * frames_to_move);
}
p->num_complete_frames -= rendered_frames;
return rendered_frames;
}
static bool can_perform_wsola(struct mp_scaletempo2 *p)
{
const int search_block_size = p->num_candidate_blocks
+ (p->ola_window_size - 1);
return p->target_block_index + p->ola_window_size <= p->input_buffer_frames
&& p->search_block_index + search_block_size <= p->input_buffer_frames;
}
// number of frames needed until a wsola iteration can be performed
static int frames_needed(struct mp_scaletempo2 *p)
{
return MPMAX(0, MPMAX(
p->target_block_index + p->ola_window_size - p->input_buffer_frames,
p->search_block_index + p->search_block_size - p->input_buffer_frames));
}
int mp_scaletempo2_fill_input_buffer(struct mp_scaletempo2 *p,
uint8_t **planes, int frame_size, bool final)
{
int needed = frames_needed(p);
int read = MPMIN(needed, frame_size);
int total_fill = final ? needed : read;
if (total_fill == 0) return 0;
assert(total_fill + p->input_buffer_frames <= p->input_buffer_size);
for (int i = 0; i < p->channels; ++i) {
memcpy(p->input_buffer[i] + p->input_buffer_frames,
planes[i], read * sizeof(float));
for (int j = read; j < total_fill; ++j) {
p->input_buffer[p->input_buffer_frames + j] = 0;
}
}
p->input_buffer_frames += total_fill;
return read;
}
static bool target_is_within_search_region(struct mp_scaletempo2 *p)
{
const int search_block_size = p->num_candidate_blocks + (p->ola_window_size - 1);
return p->target_block_index >= p->search_block_index
&& p->target_block_index + p->ola_window_size
<= p->search_block_index + search_block_size;
}
static void peek_audio_with_zero_prepend(struct mp_scaletempo2 *p,
int read_offset_frames, float **dest, int dest_frames)
{
assert(read_offset_frames + dest_frames <= p->input_buffer_frames);
int write_offset = 0;
int num_frames_to_read = dest_frames;
if (read_offset_frames < 0) {
int num_zero_frames_appended = MPMIN(
-read_offset_frames, num_frames_to_read);
read_offset_frames = 0;
num_frames_to_read -= num_zero_frames_appended;
write_offset = num_zero_frames_appended;
zero_2d_partial(dest, p->channels, num_zero_frames_appended);
}
peek_buffer(p, num_frames_to_read, read_offset_frames, write_offset, dest);
}
static void get_optimal_block(struct mp_scaletempo2 *p)
{
int optimal_index = 0;
// An interval around last optimal block which is excluded from the search.
// This is to reduce the buzzy sound. The number 160 is rather arbitrary and
// derived heuristically.
const int exclude_interval_length_frames = 160;
if (target_is_within_search_region(p)) {
optimal_index = p->target_block_index;
peek_audio_with_zero_prepend(p,
optimal_index, p->optimal_block, p->ola_window_size);
} else {
peek_audio_with_zero_prepend(p,
p->target_block_index, p->target_block, p->ola_window_size);
peek_audio_with_zero_prepend(p,
p->search_block_index, p->search_block, p->search_block_size);
int last_optimal = p->target_block_index
- p->ola_hop_size - p->search_block_index;
struct interval exclude_iterval = {
.lo = last_optimal - exclude_interval_length_frames / 2,
.hi = last_optimal + exclude_interval_length_frames / 2
};
// |optimal_index| is in frames and it is relative to the beginning of the
// |search_block|.
optimal_index = compute_optimal_index(
p->search_block, p->search_block_size,
p->target_block, p->ola_window_size,
p->energy_candidate_blocks,
p->channels,
exclude_iterval);
// Translate |index| w.r.t. the beginning of |audio_buffer| and extract the
// optimal block.
optimal_index += p->search_block_index;
peek_audio_with_zero_prepend(p,
optimal_index, p->optimal_block, p->ola_window_size);
// Make a transition from target block to the optimal block if different.
// Target block has the best continuation to the current output.
// Optimal block is the most similar block to the target, however, it might
// introduce some discontinuity when over-lap-added. Therefore, we combine
// them for a smoother transition. The length of transition window is twice
// as that of the optimal-block which makes it like a weighting function
// where target-block has higher weight close to zero (weight of 1 at index
// 0) and lower weight close the end.
for (int k = 0; k < p->channels; ++k) {
float* ch_opt = p->optimal_block[k];
float* ch_target = p->target_block[k];
for (int n = 0; n < p->ola_window_size; ++n) {
ch_opt[n] = ch_opt[n] * p->transition_window[n]
+ ch_target[n] * p->transition_window[p->ola_window_size + n];
}
}
}
// Next target is one hop ahead of the current optimal.
p->target_block_index = optimal_index + p->ola_hop_size;
}
static void update_output_time(struct mp_scaletempo2 *p,
float playback_rate, double time_change)
{
p->output_time += time_change;
// Center of the search region, in frames.
int search_block_center_index = (int)(p->output_time * playback_rate + 0.5);
p->search_block_index = search_block_center_index
- p->search_block_center_offset;
}
static void remove_old_input_frames(struct mp_scaletempo2 *p, float playback_rate)
{
const int earliest_used_index = MPMIN(
p->target_block_index, p->search_block_index);
if (earliest_used_index <= 0)
return; // Nothing to remove.
// Remove frames from input and adjust indices accordingly.
seek_buffer(p, earliest_used_index);
p->target_block_index -= earliest_used_index;
// Adjust output index.
double output_time_change = ((double) earliest_used_index) / playback_rate;
assert(p->output_time >= output_time_change);
update_output_time(p, playback_rate, -output_time_change);
}
static bool run_one_wsola_iteration(struct mp_scaletempo2 *p, float playback_rate)
{
if (!can_perform_wsola(p)){
return false;
}
get_optimal_block(p);
// Overlap-and-add.
for (int k = 0; k < p->channels; ++k) {
float* ch_opt_frame = p->optimal_block[k];
float* ch_output = p->wsola_output[k] + p->num_complete_frames;
for (int n = 0; n < p->ola_hop_size; ++n) {
ch_output[n] = ch_output[n] * p->ola_window[p->ola_hop_size + n] +
ch_opt_frame[n] * p->ola_window[n];
}
// Copy the second half to the output.
memcpy(&ch_output[p->ola_hop_size], &ch_opt_frame[p->ola_hop_size],
sizeof(*ch_opt_frame) * p->ola_hop_size);
}
p->num_complete_frames += p->ola_hop_size;
update_output_time(p, playback_rate, p->ola_hop_size);
remove_old_input_frames(p, playback_rate);
return true;
}
int mp_scaletempo2_fill_buffer(struct mp_scaletempo2 *p,
float **dest, int dest_size, float playback_rate)
{
if (playback_rate == 0) return 0;
// Optimize the muted case to issue a single clear instead of performing
// the full crossfade and clearing each crossfaded frame.
if (playback_rate < p->opts->min_playback_rate
|| (playback_rate > p->opts->max_playback_rate
&& p->opts->max_playback_rate > 0))
{
int frames_to_render = MPMIN(dest_size,
(int) (p->input_buffer_frames / playback_rate));
// Compute accurate number of frames to actually skip in the source data.
// Includes the leftover partial frame from last request. However, we can
// only skip over complete frames, so a partial frame may remain for next
// time.
p->muted_partial_frame += frames_to_render * playback_rate;
int seek_frames = (int) (p->muted_partial_frame);
zero_2d_partial(dest, p->channels, frames_to_render);
seek_buffer(p, seek_frames);
// Determine the partial frame that remains to be skipped for next call. If
// the user switches back to playing, it may be off time by this partial
// frame, which would be undetectable. If they subsequently switch to
// another playback rate that mutes, the code will attempt to line up the
// frames again.
p->muted_partial_frame -= seek_frames;
return frames_to_render;
}
int slower_step = (int) ceilf(p->ola_window_size * playback_rate);
int faster_step = (int) ceilf(p->ola_window_size / playback_rate);
// Optimize the most common |playback_rate| ~= 1 case to use a single copy
// instead of copying frame by frame.
if (p->ola_window_size <= faster_step && slower_step >= p->ola_window_size) {
int frames_to_copy = MPMIN(dest_size, p->input_buffer_frames);
read_buffer(p, frames_to_copy, dest);
return frames_to_copy;
}
int rendered_frames = 0;
do {
rendered_frames += write_completed_frames_to(p,
dest_size - rendered_frames, rendered_frames, dest);
} while (rendered_frames < dest_size
&& run_one_wsola_iteration(p, playback_rate));
return rendered_frames;
}
bool mp_scaletempo2_frames_available(struct mp_scaletempo2 *p)
{
return can_perform_wsola(p) || p->num_complete_frames > 0;
}
void mp_scaletempo2_destroy(struct mp_scaletempo2 *p)
{
free(p->ola_window);
free(p->transition_window);
free(p->wsola_output);
free(p->optimal_block);
free(p->search_block);
free(p->target_block);
free(p->input_buffer);
free(p->energy_candidate_blocks);
}
void mp_scaletempo2_reset(struct mp_scaletempo2 *p)
{
p->input_buffer_frames = 0;
p->output_time = 0.0;
p->search_block_index = 0;
p->target_block_index = 0;
// Clear the queue of decoded packets.
zero_2d(p->wsola_output, p->channels, p->wsola_output_size);
p->num_complete_frames = 0;
}
// Return a "periodic" Hann window. This is the first L samples of an L+1
// Hann window. It is perfect reconstruction for overlap-and-add.
static void get_symmetric_hanning_window(int window_length, float* window)
{
const float scale = 2.0f * M_PI / window_length;
for (int n = 0; n < window_length; ++n)
window[n] = 0.5f * (1.0f - cosf(n * scale));
}
void mp_scaletempo2_init(struct mp_scaletempo2 *p, int channels, int rate)
{
p->muted_partial_frame = 0;
p->output_time = 0;
p->search_block_center_offset = 0;
p->search_block_index = 0;
p->num_complete_frames = 0;
p->channels = channels;
p->samples_per_second = rate;
p->num_candidate_blocks = (int)(p->opts->wsola_search_interval_ms
* p->samples_per_second / 1000);
p->ola_window_size = (int)(p->opts->ola_window_size_ms
* p->samples_per_second / 1000);
// Make sure window size in an even number.
p->ola_window_size += p->ola_window_size & 1;
p->ola_hop_size = p->ola_window_size / 2;
// |num_candidate_blocks| / 2 is the offset of the center of the search
// block to the center of the first (left most) candidate block. The offset
// of the center of a candidate block to its left most point is
// |ola_window_size| / 2 - 1. Note that |ola_window_size| is even and in
// our convention the center belongs to the left half, so we need to subtract
// one frame to get the correct offset.
//
// Search Block
// <------------------------------------------->
//
// |ola_window_size| / 2 - 1
// <----
//
// |num_candidate_blocks| / 2
// <----------------
// center
// X----X----------------X---------------X-----X
// <----------> <---------->
// Candidate ... Candidate
// 1, ... |num_candidate_blocks|
p->search_block_center_offset = p->num_candidate_blocks / 2
+ (p->ola_window_size / 2 - 1);
p->ola_window = realloc(p->ola_window, sizeof(float) * p->ola_window_size);
get_symmetric_hanning_window(p->ola_window_size, p->ola_window);
p->transition_window = realloc(p->transition_window,
sizeof(float) * p->ola_window_size * 2);
get_symmetric_hanning_window(2 * p->ola_window_size, p->transition_window);
p->wsola_output_size = p->ola_window_size + p->ola_hop_size;
p->wsola_output = realloc_2d(p->wsola_output, p->channels, p->wsola_output_size);
// Initialize for overlap-and-add of the first block.
zero_2d(p->wsola_output, p->channels, p->wsola_output_size);
// Auxiliary containers.
p->optimal_block = realloc_2d(p->optimal_block, p->channels, p->ola_window_size);
p->search_block_size = p->num_candidate_blocks + (p->ola_window_size - 1);
p->search_block = realloc_2d(p->search_block, p->channels, p->search_block_size);
p->target_block = realloc_2d(p->target_block, p->channels, p->ola_window_size);
p->input_buffer_size = 4 * MPMAX(p->ola_window_size, p->search_block_size);
p->input_buffer = realloc_2d(p->input_buffer, p->channels, p->input_buffer_size);
p->input_buffer_frames = 0;
p->energy_candidate_blocks = realloc(p->energy_candidate_blocks,
sizeof(float) * p->channels * p->num_candidate_blocks);
}

View File

@ -0,0 +1,121 @@
// This filter was ported from Chromium
// (https://chromium.googlesource.com/chromium/chromium/+/51ed77e3f37a9a9b80d6d0a8259e84a8ca635259/media/filters/audio_renderer_algorithm.cc)
//
// Copyright 2015 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "common/common.h"
struct mp_scaletempo2_opts {
// Max/min supported playback rates for fast/slow audio. Audio outside of these
// ranges are muted.
// Audio at these speeds would sound better under a frequency domain algorithm.
float min_playback_rate;
float max_playback_rate;
// Overlap-and-add window size in milliseconds.
float ola_window_size_ms;
// Size of search interval in milliseconds. The search interval is
// [-delta delta] around |output_index| * |playback_rate|. So the search
// interval is 2 * delta.
float wsola_search_interval_ms;
};
struct mp_scaletempo2 {
struct mp_scaletempo2_opts *opts;
// Number of channels in audio stream.
int channels;
// Sample rate of audio stream.
int samples_per_second;
// If muted, keep track of partial frames that should have been skipped over.
double muted_partial_frame;
// Book keeping of the current time of generated audio, in frames. This
// should be appropriately updated when out samples are generated, regardless
// of whether we push samples out when fill_buffer() is called or we store
// audio in |wsola_output| for the subsequent calls to fill_buffer().
// Furthermore, if samples from |audio_buffer| are evicted then this
// member variable should be updated based on |playback_rate|.
// Note that this member should be updated ONLY by calling update_output_time(),
// so that |search_block_index| is update accordingly.
double output_time;
// The offset of the center frame of |search_block| w.r.t. its first frame.
int search_block_center_offset;
// Index of the beginning of the |search_block|, in frames.
int search_block_index;
// Number of Blocks to search to find the most similar one to the target
// frame.
int num_candidate_blocks;
// Index of the beginning of the target block, counted in frames.
int target_block_index;
// Overlap-and-add window size in frames.
int ola_window_size;
// The hop size of overlap-and-add in frames. This implementation assumes 50%
// overlap-and-add.
int ola_hop_size;
// Number of frames in |wsola_output| that overlap-and-add is completed for
// them and can be copied to output if fill_buffer() is called. It also
// specifies the index where the next WSOLA window has to overlap-and-add.
int num_complete_frames;
// Overlap-and-add window.
float *ola_window;
// Transition window, used to update |optimal_block| by a weighted sum of
// |optimal_block| and |target_block|.
float *transition_window;
// This stores a part of the output that is created but couldn't be rendered.
// Output is generated frame-by-frame which at some point might exceed the
// number of requested samples. Furthermore, due to overlap-and-add,
// the last half-window of the output is incomplete, which is stored in this
// buffer.
float **wsola_output;
int wsola_output_size;
// Auxiliary variables to avoid allocation in every iteration.
// Stores the optimal block in every iteration. This is the most
// similar block to |target_block| within |search_block| and it is
// overlap-and-added to |wsola_output|.
float **optimal_block;
// A block of data that search is performed over to find the |optimal_block|.
float **search_block;
int search_block_size;
// Stores the target block, denoted as |target| above. |search_block| is
// searched for a block (|optimal_block|) that is most similar to
// |target_block|.
float **target_block;
// Buffered audio data.
float **input_buffer;
int input_buffer_size;
int input_buffer_frames;
float *energy_candidate_blocks;
};
void mp_scaletempo2_destroy(struct mp_scaletempo2 *p);
void mp_scaletempo2_reset(struct mp_scaletempo2 *p);
void mp_scaletempo2_init(struct mp_scaletempo2 *p, int channels, int rate);
int mp_scaletempo2_fill_input_buffer(struct mp_scaletempo2 *p,
uint8_t **planes, int frame_size, bool final);
int mp_scaletempo2_fill_buffer(struct mp_scaletempo2 *p,
float **dest, int dest_size, float playback_rate);
bool mp_scaletempo2_frames_available(struct mp_scaletempo2 *p);

View File

@ -34,6 +34,7 @@ const struct mp_user_filter_entry *af_list[] = {
&af_lavfi, &af_lavfi,
&af_lavfi_bridge, &af_lavfi_bridge,
&af_scaletempo, &af_scaletempo,
&af_scaletempo2,
&af_format, &af_format,
#if HAVE_RUBBERBAND #if HAVE_RUBBERBAND
&af_rubberband, &af_rubberband,

View File

@ -21,6 +21,7 @@ struct mp_filter *mp_create_user_filter(struct mp_filter *parent,
extern const struct mp_user_filter_entry af_lavfi; extern const struct mp_user_filter_entry af_lavfi;
extern const struct mp_user_filter_entry af_lavfi_bridge; extern const struct mp_user_filter_entry af_lavfi_bridge;
extern const struct mp_user_filter_entry af_scaletempo; extern const struct mp_user_filter_entry af_scaletempo;
extern const struct mp_user_filter_entry af_scaletempo2;
extern const struct mp_user_filter_entry af_format; extern const struct mp_user_filter_entry af_format;
extern const struct mp_user_filter_entry af_rubberband; extern const struct mp_user_filter_entry af_rubberband;
extern const struct mp_user_filter_entry af_lavcac3enc; extern const struct mp_user_filter_entry af_lavcac3enc;

View File

@ -225,6 +225,8 @@ def build(ctx):
( "audio/filter/af_lavcac3enc.c" ), ( "audio/filter/af_lavcac3enc.c" ),
( "audio/filter/af_rubberband.c", "rubberband" ), ( "audio/filter/af_rubberband.c", "rubberband" ),
( "audio/filter/af_scaletempo.c" ), ( "audio/filter/af_scaletempo.c" ),
( "audio/filter/af_scaletempo2.c" ),
( "audio/filter/af_scaletempo2_internals.c" ),
( "audio/fmt-conversion.c" ), ( "audio/fmt-conversion.c" ),
( "audio/format.c" ), ( "audio/format.c" ),
( "audio/out/ao.c" ), ( "audio/out/ao.c" ),