fast 4:2:2 jpeg encoder, based on libavcodec. - patch by Rik Snel <rsnel@cube.dyndns.org>

git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@4348 b3059339-0415-0410-9bf9-f77b7e298cf2
This commit is contained in:
arpi 2002-01-26 00:52:59 +00:00
parent 9f6e3a836a
commit 17c151cfc4
1 changed files with 899 additions and 0 deletions

899
libvo/jpeg_enc.c Normal file
View File

@ -0,0 +1,899 @@
/* Straightforward (to be) optimized JPEG encoder for the YUV422 format
* based on mjpeg code from ffmpeg.
*
* Copyright (c) 2002, Rik Snel
* Parts from ffmpeg Copyright (c) 2000, 2001 Gerard Lantau
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* For an excellent introduction to the JPEG format, see:
* http://www.ece.purdue.edu/~bourman/grad-labs/lab8/pdf/lab.pdf
*/
/* stuff from libavcodec/common.h */
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#ifdef USE_FASTMEMCPY
#include "fastmemcpy.h"
#endif
#include "../mp_msg.h"
#include "../libavcodec/common.h"
#include "../libavcodec/dsputil.h"
static int height, width, fields, cheap_upsample, qscale, bw = 0, first = 1;
/* from dsputils.c */
static DCTELEM **blck;
extern void (*av_fdct)(DCTELEM *b);
static UINT8 zr_zigzag_direct[64] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
/* bit output */
static PutBitContext pb;
/* from mpegvideo.c */
#define QMAT_SHIFT 25
#define QMAT_SHIFT_MMX 19
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
static unsigned int simple_mmx_permutation[64]={
0x00, 0x08, 0x01, 0x09, 0x04, 0x0C, 0x05, 0x0D,
0x10, 0x18, 0x11, 0x19, 0x14, 0x1C, 0x15, 0x1D,
0x02, 0x0A, 0x03, 0x0B, 0x06, 0x0E, 0x07, 0x0F,
0x12, 0x1A, 0x13, 0x1B, 0x16, 0x1E, 0x17, 0x1F,
0x20, 0x28, 0x21, 0x29, 0x24, 0x2C, 0x25, 0x2D,
0x30, 0x38, 0x31, 0x39, 0x34, 0x3C, 0x35, 0x3D,
0x22, 0x2A, 0x23, 0x2B, 0x26, 0x2E, 0x27, 0x2F,
0x32, 0x3A, 0x33, 0x3B, 0x36, 0x3E, 0x37, 0x3F,
};
#if 0
void block_permute(short int *block)
{
int tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
int i;
for(i=0;i<8;i++) {
tmp1 = block[1];
tmp2 = block[2];
tmp3 = block[3];
tmp4 = block[4];
tmp5 = block[5];
tmp6 = block[6];
block[1] = tmp2;
block[2] = tmp4;
block[3] = tmp6;
block[4] = tmp1;
block[5] = tmp3;
block[6] = tmp5;
block += 8;
}
}
#endif
static int q_intra_matrix[64];
static int dct_quantize(DCTELEM *block, int n,
int qscale)
{
int i, j, level, last_non_zero, q;
const int *qmat;
av_fdct (block);
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
//block_permute(block);
/*if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
q = q << 3;*/
q = 64;
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
i = 1;
last_non_zero = 0;
qmat = q_intra_matrix;
for(;i<64;i++) {
j = zr_zigzag_direct[i];
level = block[j];
level = level * qmat[j];
/* XXX: slight error for the low range. Test should be equivalent to
(level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 <<
(QMAT_SHIFT - 3)))
*/
if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) !=
level) {
level = level / (1 << (QMAT_SHIFT - 3));
/* XXX: currently, this code is not optimal. the range should be:
mpeg1: -255..255
mpeg2: -2048..2047
h263: -128..127
mpeg4: -2048..2047
*/
if (level > 255)
level = 255;
else if (level < -255)
level = -255;
block[j] = level;
last_non_zero = i;
} else {
block[j] = 0;
}
}
return last_non_zero;
}
static int dct_quantize_mmx(DCTELEM *block, int n, int qscale)
{
int i, j, level, last_non_zero, q;
const int *qmat;
DCTELEM *b = block;
/*for (i = 0; i < 8; i++) {
printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2],
b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]);
}*/
av_fdct (block);
/*for (i = 0; i < 8; i++) {
printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2],
b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]);
}*/
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
//block_permute(block);
//if (n < 2)
q = 8;
/*else
q = 8;*/
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
i = 1;
last_non_zero = 0;
qmat = q_intra_matrix;
for(;i<64;i++) {
j = zr_zigzag_direct[i];
level = block[j];
level = level * qmat[j];
/* XXX: slight error for the low range. Test should be equivalent to
(level <= -(1 << (QMAT_SHIFT_MMX - 3)) || level >= (1 <<
(QMAT_SHIFT_MMX - 3)))
*/
if (((level << (31 - (QMAT_SHIFT_MMX - 3))) >> (31 - (QMAT_SHIFT_MMX - 3))) !=
level) {
level = level / (1 << (QMAT_SHIFT_MMX - 3));
/* XXX: currently, this code is not optimal. the range should be:
mpeg1: -255..255
mpeg2: -2048..2047
h263: -128..127
mpeg4: -2048..2047
* jpeg: -1024..1023 11 bit */
if (level > 1023)
level = 1023;
else if (level < -1024)
level = -1024;
block[j] = level;
last_non_zero = i;
} else {
block[j] = 0;
}
}
/*for (i = 0; i < 8; i++) {
printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2],
b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]);
}*/
return last_non_zero;
}
static void convert_matrix(int *qmat, const unsigned short *quant_matrix,
int qscale)
{
int i;
if (av_fdct == jpeg_fdct_ifast) {
for(i=0;i<64;i++) {
/* 16 <= qscale * quant_matrix[i] <= 7905 */
/* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
qmat[i] = (int)(((unsigned long long)1 << (QMAT_SHIFT + 11)) /
(aanscales[i] * qscale * quant_matrix[i]));
}
} else {
for(i=0;i<64;i++) {
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
So 16 <= qscale * quant_matrix[i] <= 7905
so (1 << QMAT_SHIFT) / 16 >= qmat[i] >= (1 << QMAT_SHIFT) / 7905
*/
qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]);
}
}
}
#define SOF0 0xC0
#define SOI 0xD8
#define EOI 0xD9
#define DQT 0xDB
#define DHT 0xC4
#define SOS 0xDA
/* this is almost the quantisation table, used for luminance and chrominance */
/*short int zr_default_intra_matrix[64] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};*/
/*
short int default_intra_matrix[64] = {
8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
*/
extern short int default_intra_matrix[64];
static short int intra_matrix[64];
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
/* IMPORTANT: these are only valid for 8-bit data precision! */
static const unsigned char bits_dc_luminance[17] =
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
static const unsigned char val_dc_luminance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
#if 0
static const unsigned char bits_dc_chrominance[17] =
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
static const unsigned char val_dc_chrominance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
#endif
static const unsigned char bits_ac_luminance[17] =
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
static const unsigned char val_ac_luminance[] =
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
#if 0
static const unsigned char bits_ac_chrominance[17] =
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
static const unsigned char val_ac_chrominance[] =
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
#endif
static unsigned char huff_size_dc_luminance[12];
static unsigned short huff_code_dc_luminance[12];
#if 0
unsigned char huff_size_dc_chrominance[12];
unsigned short huff_code_dc_chrominance[12];
#endif
static unsigned char huff_size_ac_luminance[256];
static unsigned short huff_code_ac_luminance[256];
#if 0
unsigned char huff_size_ac_chrominance[256];
unsigned short huff_code_ac_chrominance[256];
#endif
static int last_dc[3];
static int block_last_index[4];
/* isn't this function nicer than the one in the libjpeg ? */
static void build_huffman_codes(unsigned char *huff_size,
unsigned short *huff_code, const unsigned char *bits_table,
const unsigned char *val_table)
{
int i, j, k,nb, code, sym;
code = 0;
k = 0;
for(i=1;i<=16;i++) {
nb = bits_table[i];
for(j=0;j<nb;j++) {
sym = val_table[k++];
huff_size[sym] = i;
huff_code[sym] = code;
code++;
}
code <<= 1;
}
}
static int zr_mjpeg_init()
{
/* build all the huffman tables */
build_huffman_codes(huff_size_dc_luminance, huff_code_dc_luminance,
bits_dc_luminance, val_dc_luminance);
//build_huffman_codes(huff_size_dc_chrominance, huff_code_dc_chrominance,
// bits_dc_chrominance, val_dc_chrominance);
build_huffman_codes(huff_size_ac_luminance, huff_code_ac_luminance,
bits_ac_luminance, val_ac_luminance);
//build_huffman_codes(huff_size_ac_chrominance, huff_code_ac_chrominance,
// bits_ac_chrominance, val_ac_chrominance);
return 0;
}
static void zr_mjpeg_close()
{
}
static inline void put_marker(PutBitContext *p, int code)
{
put_bits(p, 8, 0xff);
put_bits(p, 8, code);
}
/* table_class: 0 = DC coef, 1 = AC coefs */
static int put_huffman_table(int table_class, int table_id,
const unsigned char *bits_table,
const unsigned char *value_table)
{
PutBitContext *p = &pb;
int n, i;
put_bits(p, 4, table_class);
put_bits(p, 4, table_id);
n = 0;
for(i=1;i<=16;i++) {
n += bits_table[i];
put_bits(p, 8, bits_table[i]);
}
for(i=0;i<n;i++)
put_bits(p, 8, value_table[i]);
return n + 17;
}
static void jpeg_qtable_header()
{
PutBitContext *p = &pb;
int i, j, size;
/* quant matrixes */
put_marker(p, DQT);
put_bits(p, 16, 2 + 1 * (1 + 64));
put_bits(p, 4, 0); /* 8 bit precision */
put_bits(p, 4, 0); /* table 0 */
for(i=0;i<64;i++) {
j = zr_zigzag_direct[i];
put_bits(p, 8, intra_matrix[j]);
}
}
static void jpeg_htable_header() {
PutBitContext *p = &pb;
int i, j, size;
unsigned char *ptr;
/* huffman table */
put_marker(p, DHT);
flush_put_bits(p);
ptr = p->buf_ptr;
put_bits(p, 16, 0); /* patched later */
size = 2;
size += put_huffman_table(0, 0, bits_dc_luminance, val_dc_luminance);
// size += put_huffman_table(0, 1, bits_dc_chrominance, val_dc_chrominance);
ptr[0] = size >> 8;
ptr[1] = size;
put_marker(p, DHT);
flush_put_bits(p);
ptr = p->buf_ptr;
put_bits(p, 16, 0); /* patched later */
size = 2;
size += put_huffman_table(1, 0, bits_ac_luminance, val_ac_luminance);
// size += put_huffman_table(1, 1, bits_ac_chrominance, val_ac_chrominance);
ptr[0] = size >> 8;
ptr[1] = size;
}
static void zr_mjpeg_picture_header()
{
put_marker(&pb, SOI);
if (first) {
jpeg_qtable_header();
jpeg_htable_header();
first = 0;
}
put_marker(&pb, SOF0);
put_bits(&pb, 16, 17);
put_bits(&pb, 8, 8); /* 8 bits/component */
put_bits(&pb, 16, height);
put_bits(&pb, 16, width);
put_bits(&pb, 8, 3); /* 3 components */
/* Y component */
put_bits(&pb, 8, 0); /* component number */
put_bits(&pb, 4, 2); /* H factor */
put_bits(&pb, 4, 1); /* V factor */
put_bits(&pb, 8, 0); /* select matrix */
/* Cb component */
put_bits(&pb, 8, 1); /* component number */
put_bits(&pb, 4, 1); /* H factor */
put_bits(&pb, 4, 1); /* V factor */
put_bits(&pb, 8, 0); /* select matrix */
/* Cr component */
put_bits(&pb, 8, 2); /* component number */
put_bits(&pb, 4, 1); /* H factor */
put_bits(&pb, 4, 1); /* V factor */
put_bits(&pb, 8, 0); /* select matrix */
/* scan header */
put_marker(&pb, SOS);
put_bits(&pb, 16, 12); /* length */
put_bits(&pb, 8, 3); /* 3 components */
/* Y component */
put_bits(&pb, 8, 0); /* index */
put_bits(&pb, 4, 0); /* DC huffman table index */
put_bits(&pb, 4, 0); /* AC huffman table index */
/* Cb component */
put_bits(&pb, 8, 1); /* index */
put_bits(&pb, 4, 0); /* DC huffman table index */
put_bits(&pb, 4, 0); /* AC huffman table index */
/* Cr component */
put_bits(&pb, 8, 2); /* index */
put_bits(&pb, 4, 0); /* DC huffman table index */
put_bits(&pb, 4, 0); /* AC huffman table index */
put_bits(&pb, 8, 0); /* Ss (not used) */
put_bits(&pb, 8, 63); /* Se (not used) */
put_bits(&pb, 8, 0); /* (not used) */
}
static void zr_flush_buffer(PutBitContext *s)
{
int size;
if (s->write_data) {
size = s->buf_ptr - s->buf;
if (size > 0)
s->write_data(s->opaque, s->buf, size);
s->buf_ptr = s->buf;
s->data_out_size += size;
}
}
/* pad the end of the output stream with ones */
static void zr_jflush_put_bits(PutBitContext *s)
{
unsigned int b;
s->bit_buf |= ~1U >> s->bit_cnt; /* set all the unused bits to one */
while (s->bit_cnt > 0) {
b = s->bit_buf >> 24;
*s->buf_ptr++ = b;
if (b == 0xff)
*s->buf_ptr++ = 0;
s->bit_buf<<=8;
s->bit_cnt-=8;
}
zr_flush_buffer(s);
s->bit_cnt=0;
s->bit_buf=0;
}
static void zr_mjpeg_picture_trailer()
{
zr_jflush_put_bits(&pb);
put_marker(&pb, EOI);
}
static inline void encode_dc(int val, unsigned char *huff_size,
unsigned short *huff_code)
{
int mant, nbits;
if (val == 0) {
// printf("dc val=0 ");
jput_bits(&pb, huff_size[0], huff_code[0]);
//printf("dc encoding %d %d\n", huff_size[0], huff_code[0]);
} else {
mant = val;
if (val < 0) {
val = -val;
mant--;
}
/* compute the log (XXX: optimize) */
nbits = 0;
while (val != 0) {
val = val >> 1;
nbits++;
}
/*nbits = av_log2(val);*/
//printf("dc ");
jput_bits(&pb, huff_size[nbits], huff_code[nbits]);
//printf("dc encoding %d %d\n", huff_size[nbits], huff_code[nbits]);
//printf("dc ");
jput_bits(&pb, nbits, mant & ((1 << nbits) - 1));
//printf("dc encoding %d %d\n", huff_size[nbits], huff_code[nbits]);
}
}
static void encode_block(DCTELEM *b, int n)
{
int mant, nbits, code, i, j;
int component, dc, run, last_index, val;
unsigned char *huff_size_ac;
unsigned short *huff_code_ac;
/* DC coef */
component = (n <= 1 ? 0 : n - 2 + 1);
dc = b[0]; /* overflow is impossible */
/*for (i = 0; i < 8; i++) {
printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2],
b[8*i+3], b[8*i+4], b[8+i*5], b[8+i*6], b[8+i*7]);
}*/
val = dc - last_dc[component];
//if (n < 2) {
encode_dc(val, huff_size_dc_luminance, huff_code_dc_luminance);
huff_size_ac = huff_size_ac_luminance;
huff_code_ac = huff_code_ac_luminance;
//} else {
// encode_dc(val, huff_size_dc_chrominance, huff_code_dc_chrominance);
// huff_size_ac = huff_size_ac_chrominance;
// huff_code_ac = huff_code_ac_chrominance;
//}
last_dc[component] = dc;
/* AC coefs */
run = 0;
last_index = block_last_index[n];
for(i=1;i<=last_index;i++) {
j = zr_zigzag_direct[i];
val = b[j];
if (val == 0) {
run++;
} else {
while (run >= 16) {
//printf("ac 16 white ");
jput_bits(&pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
run -= 16;
}
mant = val;
if (val < 0) {
val = -val;
mant--;
}
/* compute the log (XXX: optimize) */
nbits = 0;
while (val != 0) {
val = val >> 1;
nbits++;
}
code = (run << 4) | nbits;
//printf("ac ");
jput_bits(&pb, huff_size_ac[code], huff_code_ac[code]);
//printf("ac ");
jput_bits(&pb, nbits, mant & ((1 << nbits) - 1));
run = 0;
}
}
/* output EOB only if not already 64 values */
if (last_index < 63 || run != 0) {
//printf("ac EOB ");
jput_bits(&pb, huff_size_ac[0], huff_code_ac[0]);
}
}
static void zr_mjpeg_encode_mb(DCTELEM **bla)
{
encode_block(*(bla), 0);
encode_block(*(bla+1), 1);
if (bw) {
jput_bits(&pb, 12, 512+128+8+2); /* 2 times code for 'no color'
* 001010001010 */
} else {
encode_block(*(bla+2), 2);
encode_block(*(bla+3), 3);
}
}
static int mb_width, mb_height, mb_x, mb_y;
static unsigned char *y_data, *u_data, *v_data;
static int y_ps, u_ps, v_ps, y_rs, u_rs, v_rs;
static char code[256*1024]; // 256kb!
/* this function can take all kinds of YUV colorspaces
* YV12, YVYU, UYVY. The necesary parameters must be set up by te caller
* y_ps means "y pixel size", y_rs means "y row size".
* For YUYV, for example, is u = y + 1, v = y + 3, y_ps = 2, u_ps = 4
* v_ps = 4, y_rs = u_rs = v_rs.
*
* The data is straightened out at the moment it is put in DCT
* blocks, there are therefore no spurious memcopies involved */
/* Notice that w must be a multiple of 16 and h must be a multiple of
* fields*8 */
/* We produce YUV422 jpegs, the colors must be subsampled horizontally,
* if the colors are also subsampled vertically, then this function
* performs cheap upsampling (better solution will be: a DCT that is
* optimized in the case that every two rows are the same) */
/* cu = 0 means 'No cheap upsampling'
* cu = 1 means 'perform cheap upsampling' */
void mjpeg_encoder_init(int w, int h,
unsigned char* y, int y_psize, int y_rsize,
unsigned char* u, int u_psize, int u_rsize,
unsigned char* v, int v_psize, int v_rsize,
int f, int cu, int q, int b) {
int i;
mp_msg(MSGT_VO, MSGL_V, "JPEnc init: %dx%d %p %d %d %p %d %d %p %d %d\n",
w, h, y, y_psize, y_rsize,
u, u_psize, u_rsize,
v, v_psize, v_rsize);
y_data = y; u_data = u; v_data = v;
y_ps = y_psize; u_ps = u_psize; v_ps = v_psize;
y_rs = y_rsize*f;
u_rs = u_rsize*f;
v_rs = v_rsize*f;
width = w;
height = h/f;
fields = f;
qscale = q;
cheap_upsample = cu;
mb_width = width/16;
mb_height = height/8;
bw = b;
zr_mjpeg_init();
i = 0;
intra_matrix[0] = default_intra_matrix[0];
for (i = 1; i < 64; i++) {
intra_matrix[i] = (default_intra_matrix[i]*qscale) >> 3;
}
if (
#ifdef HAVE_MMX
av_fdct != fdct_mmx &&
#endif
av_fdct != jpeg_fdct_ifast) {
/* libavcodec is probably not yet initialized */
av_fdct = jpeg_fdct_ifast;
#ifdef HAVE_MMX
dsputil_init_mmx();
#endif
}
convert_matrix(q_intra_matrix, intra_matrix, 8);
blck = malloc(4*sizeof(DCTELEM*));
blck[0] = malloc(64*sizeof(DCTELEM));
blck[1] = malloc(64*sizeof(DCTELEM));
blck[2] = malloc(64*sizeof(DCTELEM));
blck[3] = malloc(64*sizeof(DCTELEM));
}
int mjpeg_encode_frame(char *bufr, int field) {
int i, j, k, l;
short int *dest;
unsigned char *source;
/* initialize the buffer */
if (field == 1) {
y_data += y_rs/2;
u_data += u_rs/2;
v_data += v_rs/2;
}
init_put_bits(&pb, bufr, 1024*256, NULL, NULL);
zr_mjpeg_picture_header();
last_dc[0] = 128; last_dc[1] = 128; last_dc[2] = 128;
mb_x = 0;
mb_y = 0;
for (mb_y = 0; mb_y < mb_height; mb_y++) {
for (mb_x = 0; mb_x < mb_width; mb_x++) {
//printf("Processing macroblock mb_x=%d, mb_y=%d, mb_width=%d, mb_height=%d, size=%d\n", mb_x, mb_y, mb_width, mb_height, pb.buf_ptr - pb.buf);
/* fill 2 Y macroblocks and one U and one V */
source = mb_y * 8 * y_rs + 16 * y_ps * mb_x + y_data;
dest = blck[0];
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*y_ps];
}
dest += 8;
source += y_rs;
}
source = mb_y * 8 * y_rs + (16*mb_x + 8)*y_ps + y_data;
dest = blck[1];
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*y_ps];
}
dest += 8;
source += y_rs;
}
if (!bw) {
if (cheap_upsample) {
source = mb_y*4*u_rs + 8*mb_x*u_ps + u_data;
dest = blck[2];
for (i = 0; i < 4; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*u_ps];
dest[j+8] = source[j*u_ps];
}
dest += 16;
source += u_rs;
}
source = mb_y*4*v_rs + 8*mb_x*v_ps + v_data;
dest = blck[3];
for (i = 0; i < 4; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*v_ps];
dest[j+8] = source[j*v_ps];
}
dest += 16;
source += u_rs;
}
} else {
source = mb_y*8*u_rs + 8*mb_x*u_ps + u_data;
dest = blck[2];
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*u_ps];
}
dest += 8;
source += u_rs;
}
source = mb_y*8*v_rs + 8*mb_x*v_ps + v_data;
dest = blck[3];
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
dest[j] = source[j*v_ps];
}
dest += 8;
source += u_rs;
}
}
}
/* so, **blck is filled now... */
for(i = 0; i < 2; i++) {
if (av_fdct == jpeg_fdct_ifast)
block_last_index[i] =
dct_quantize(blck[i],
i, qscale);
else
block_last_index[i] =
dct_quantize_mmx(blck[i],
i, qscale);
}
if (!bw) {
for(i = 2; i < 4; i++) {
if (av_fdct == jpeg_fdct_ifast)
block_last_index[i] =
dct_quantize(blck[i],
i, qscale);
else
block_last_index[i] =
dct_quantize_mmx(blck[i],
i, qscale);
}
}
zr_mjpeg_encode_mb(blck);
}
}
emms_c();
zr_mjpeg_picture_trailer();
flush_put_bits(&pb);
zr_mjpeg_close();
if (field == 1) {
y_data -= y_rs/2;
u_data -= u_rs/2;
v_data -= v_rs/2;
}
return pb.buf_ptr - pb.buf;
}