mpv/libfaad2/mdct.c

521 lines
15 KiB
C
Raw Normal View History

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** Initially modified for use with MPlayer by Arpad Gere<EFBFBD>ffy on 2003/08/30
** $Id: mdct.c,v 1.3 2004/06/02 22:59:03 diego Exp $
** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/
**/
/*
* Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
* and consists of three steps: pre-(I)FFT complex multiplication, complex
* (I)FFT, post-(I)FFT complex multiplication,
*
* As described in:
* P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
* Implementation of Filter Banks Based on 'Time Domain Aliasing
* Cancellation<EFBFBD>," IEEE Proc. on ICASSP<53>91, 1991, pp. 2209-2212.
*
*
* As of April 6th 2002 completely rewritten.
* This (I)MDCT can now be used for any data size n, where n is divisible by 8.
*
*/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#ifdef _WIN32_WCE
#define assert(x)
#else
#include <assert.h>
#endif
#include "cfft.h"
#include "mdct.h"
/* const_tab[]:
0: sqrt(2 / N)
1: cos(2 * PI / N)
2: sin(2 * PI / N)
3: cos(2 * PI * (1/8) / N)
4: sin(2 * PI * (1/8) / N)
*/
#ifdef FIXED_POINT
real_t const_tab[][5] =
{
{ /* 2048 */
COEF_CONST(1),
FRAC_CONST(0.99999529380957619),
FRAC_CONST(0.0030679567629659761),
FRAC_CONST(0.99999992646571789),
FRAC_CONST(0.00038349518757139556)
}, { /* 1920 */
COEF_CONST(/* sqrt(1024/960) */ 1.0327955589886444),
FRAC_CONST(0.99999464540169647),
FRAC_CONST(0.0032724865065266251),
FRAC_CONST(0.99999991633432805),
FRAC_CONST(0.00040906153202803459)
}, { /* 1024 */
COEF_CONST(1),
FRAC_CONST(0.99998117528260111),
FRAC_CONST(0.0061358846491544753),
FRAC_CONST(0.99999970586288223),
FRAC_CONST(0.00076699031874270449)
}, { /* 960 */
COEF_CONST(/* sqrt(512/480) */ 1.0327955589886444),
FRAC_CONST(0.99997858166412923),
FRAC_CONST(0.0065449379673518581),
FRAC_CONST(0.99999966533732598),
FRAC_CONST(0.00081812299560725323)
}, { /* 256 */
COEF_CONST(1),
FRAC_CONST(0.99969881869620425),
FRAC_CONST(0.024541228522912288),
FRAC_CONST(0.99999529380957619),
FRAC_CONST(0.0030679567629659761)
}, { /* 240 */
COEF_CONST(/* sqrt(256/240) */ 1.0327955589886444),
FRAC_CONST(0.99965732497555726),
FRAC_CONST(0.026176948307873149),
FRAC_CONST(0.99999464540169647),
FRAC_CONST(0.0032724865065266251)
}
#ifdef SSR_DEC
,{ /* 512 */
COEF_CONST(1),
FRAC_CONST(0.9999247018391445),
FRAC_CONST(0.012271538285719925),
FRAC_CONST(0.99999882345170188),
FRAC_CONST(0.0015339801862847655)
}, { /* 64 */
COEF_CONST(1),
FRAC_CONST(0.99518472667219693),
FRAC_CONST(0.098017140329560604),
FRAC_CONST(0.9999247018391445),
FRAC_CONST(0.012271538285719925)
}
#endif
};
#endif
#ifdef FIXED_POINT
static uint8_t map_N_to_idx(uint16_t N)
{
/* gives an index into const_tab above */
/* for normal AAC deocding (eg. no scalable profile) only */
/* index 0 and 4 will be used */
switch(N)
{
case 2048: return 0;
case 1920: return 1;
case 1024: return 2;
case 960: return 3;
case 256: return 4;
case 240: return 5;
#ifdef SSR_DEC
case 512: return 6;
case 64: return 7;
#endif
}
return 0;
}
#endif
mdct_info *faad_mdct_init(uint16_t N)
{
uint16_t k;
#ifdef FIXED_POINT
uint16_t N_idx;
real_t cangle, sangle, c, s, cold;
#endif
real_t scale;
mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info));
assert(N % 8 == 0);
mdct->N = N;
mdct->sincos = (complex_t*)faad_malloc(N/4*sizeof(complex_t));
#ifdef FIXED_POINT
N_idx = map_N_to_idx(N);
scale = const_tab[N_idx][0];
cangle = const_tab[N_idx][1];
sangle = const_tab[N_idx][2];
c = const_tab[N_idx][3];
s = const_tab[N_idx][4];
#else
scale = (real_t)sqrt(2.0 / (real_t)N);
#endif
/* (co)sine table build using recurrence relations */
/* this can also be done using static table lookup or */
/* some form of interpolation */
for (k = 0; k < N/4; k++)
{
#ifdef FIXED_POINT
RE(mdct->sincos[k]) = c; //MUL_C_C(c,scale);
IM(mdct->sincos[k]) = s; //MUL_C_C(s,scale);
cold = c;
c = MUL_F(c,cangle) - MUL_F(s,sangle);
s = MUL_F(s,cangle) + MUL_F(cold,sangle);
#else
/* no recurrence, just sines */
RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N));
#endif
}
/* initialise fft */
mdct->cfft = cffti(N/4);
#ifdef PROFILE
mdct->cycles = 0;
mdct->fft_cycles = 0;
#endif
return mdct;
}
void faad_mdct_end(mdct_info *mdct)
{
if (mdct != NULL)
{
#ifdef PROFILE
printf("MDCT[%.4d]: %I64d cycles\n", mdct->N, mdct->cycles);
printf("CFFT[%.4d]: %I64d cycles\n", mdct->N/4, mdct->fft_cycles);
#endif
cfftu(mdct->cfft);
if (mdct->sincos) faad_free(mdct->sincos);
faad_free(mdct);
}
}
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
complex_t x;
ALIGN complex_t Z1[512];
complex_t *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
#ifdef PROFILE
int64_t count1, count2 = faad_get_ts();
#endif
/* pre-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
}
#ifdef PROFILE
count1 = faad_get_ts();
#endif
/* complex IFFT, any non-scaling FFT can be used here */
cfftb(mdct->cfft, Z1);
#ifdef PROFILE
count1 = faad_get_ts() - count1;
#endif
/* post-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
RE(x) = RE(Z1[k]);
IM(x) = IM(Z1[k]);
ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
}
/* reordering */
for (k = 0; k < N8; k+=2)
{
X_out[ 2*k] = IM(Z1[N8 + k]);
X_out[ 2 + 2*k] = IM(Z1[N8 + 1 + k]);
X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]);
X_out[ 3 + 2*k] = -RE(Z1[N8 - 2 - k]);
X_out[N4 + 2*k] = RE(Z1[ k]);
X_out[N4 + + 2 + 2*k] = RE(Z1[ 1 + k]);
X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]);
X_out[N4 + 3 + 2*k] = -IM(Z1[N4 - 2 - k]);
X_out[N2 + 2*k] = RE(Z1[N8 + k]);
X_out[N2 + + 2 + 2*k] = RE(Z1[N8 + 1 + k]);
X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]);
X_out[N2 + 3 + 2*k] = -IM(Z1[N8 - 2 - k]);
X_out[N2 + N4 + 2*k] = -IM(Z1[ k]);
X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[ 1 + k]);
X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]);
X_out[N2 + N4 + 3 + 2*k] = RE(Z1[N4 - 2 - k]);
}
#ifdef PROFILE
count2 = faad_get_ts() - count2;
mdct->fft_cycles += count1;
mdct->cycles += (count2 - count1);
#endif
}
#ifdef USE_SSE
void faad_imdct_sse(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
ALIGN complex_t Z1[512];
complex_t *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
#ifdef PROFILE
int64_t count1, count2 = faad_get_ts();
#endif
/* pre-IFFT complex multiplication */
for (k = 0; k < N4; k+=4)
{
__m128 m12, m13, m14, m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11;
__m128 n12, n13, n14, n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;
n12 = _mm_load_ps(&X_in[N2 - 2*k - 8]);
m12 = _mm_load_ps(&X_in[N2 - 2*k - 4]);
m13 = _mm_load_ps(&X_in[2*k]);
n13 = _mm_load_ps(&X_in[2*k + 4]);
m1 = _mm_load_ps(&RE(sincos[k]));
n1 = _mm_load_ps(&RE(sincos[k+2]));
m0 = _mm_shuffle_ps(m12, m13, _MM_SHUFFLE(2,0,1,3));
m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1));
m14 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(3,1,2,0));
n0 = _mm_shuffle_ps(n12, n13, _MM_SHUFFLE(2,0,1,3));
n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1));
n14 = _mm_shuffle_ps(n0, n0, _MM_SHUFFLE(3,1,2,0));
m3 = _mm_mul_ps(m14, m1);
n3 = _mm_mul_ps(n14, n1);
m4 = _mm_mul_ps(m14, m2);
n4 = _mm_mul_ps(n14, n2);
m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0));
n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0));
m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1));
n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1));
m7 = _mm_add_ps(m5, m6);
n7 = _mm_add_ps(n5, n6);
m8 = _mm_sub_ps(m5, m6);
n8 = _mm_sub_ps(n5, n6);
m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2));
n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2));
m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0));
n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0));
m11 = _mm_unpacklo_ps(m10, m9);
n11 = _mm_unpacklo_ps(n10, n9);
_mm_store_ps(&RE(Z1[k]), m11);
_mm_store_ps(&RE(Z1[k+2]), n11);
}
#ifdef PROFILE
count1 = faad_get_ts();
#endif
/* complex IFFT, any non-scaling FFT can be used here */
cfftb_sse(mdct->cfft, Z1);
#ifdef PROFILE
count1 = faad_get_ts() - count1;
#endif
/* post-IFFT complex multiplication */
for (k = 0; k < N4; k+=4)
{
__m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11;
__m128 n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;
m0 = _mm_load_ps(&RE(Z1[k]));
n0 = _mm_load_ps(&RE(Z1[k+2]));
m1 = _mm_load_ps(&RE(sincos[k]));
n1 = _mm_load_ps(&RE(sincos[k+2]));
m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1));
n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1));
m3 = _mm_mul_ps(m0, m1);
n3 = _mm_mul_ps(n0, n1);
m4 = _mm_mul_ps(m0, m2);
n4 = _mm_mul_ps(n0, n2);
m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0));
n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0));
m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1));
n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1));
m7 = _mm_add_ps(m5, m6);
n7 = _mm_add_ps(n5, n6);
m8 = _mm_sub_ps(m5, m6);
n8 = _mm_sub_ps(n5, n6);
m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2));
n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2));
m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0));
n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0));
m11 = _mm_unpacklo_ps(m10, m9);
n11 = _mm_unpacklo_ps(n10, n9);
_mm_store_ps(&RE(Z1[k]), m11);
_mm_store_ps(&RE(Z1[k+2]), n11);
}
/* reordering */
for (k = 0; k < N8; k+=2)
{
__m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m13;
__m128 n4, n5, n6, n7, n8, n9;
__m128 neg1 = _mm_set_ps(-1.0, 1.0, -1.0, 1.0);
__m128 neg2 = _mm_set_ps(-1.0, -1.0, -1.0, -1.0);
m0 = _mm_load_ps(&RE(Z1[k]));
m1 = _mm_load_ps(&RE(Z1[N8 - 2 - k]));
m2 = _mm_load_ps(&RE(Z1[N8 + k]));
m3 = _mm_load_ps(&RE(Z1[N4 - 2 - k]));
m10 = _mm_mul_ps(m0, neg1);
m11 = _mm_mul_ps(m1, neg2);
m13 = _mm_mul_ps(m3, neg1);
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(3,1,2,0));
n4 = _mm_shuffle_ps(m10, m10, _MM_SHUFFLE(3,1,2,0));
m4 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(3,1,2,0));
n5 = _mm_shuffle_ps(m13, m13, _MM_SHUFFLE(3,1,2,0));
m6 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(3,2,1,0));
n6 = _mm_shuffle_ps(n4, n5, _MM_SHUFFLE(3,2,1,0));
m7 = _mm_shuffle_ps(m5, m4, _MM_SHUFFLE(3,2,1,0));
n7 = _mm_shuffle_ps(n5, n4, _MM_SHUFFLE(3,2,1,0));
m8 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0,3,1,2));
n8 = _mm_shuffle_ps(n6, n6, _MM_SHUFFLE(2,1,3,0));
m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(2,1,3,0));
n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(0,3,1,2));
_mm_store_ps(&X_out[2*k], m8);
_mm_store_ps(&X_out[N4 + 2*k], n8);
_mm_store_ps(&X_out[N2 + 2*k], m9);
_mm_store_ps(&X_out[N2 + N4 + 2*k], n9);
}
#ifdef PROFILE
count2 = faad_get_ts() - count2;
mdct->fft_cycles += count1;
mdct->cycles += (count2 - count1);
#endif
}
#endif
#ifdef LTP_DEC
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
complex_t x;
ALIGN complex_t Z1[512];
complex_t *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
#ifndef FIXED_POINT
real_t scale = REAL_CONST(N);
#else
real_t scale = REAL_CONST(4.0/N);
#endif
/* pre-FFT complex multiplication */
for (k = 0; k < N8; k++)
{
uint16_t n = k << 1;
RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n];
ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
RE(x) = X_in[N2 - 1 - n] - X_in[ n];
IM(x) = X_in[N2 + n] + X_in[N - 1 - n];
ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
}
/* complex FFT, any non-scaling FFT can be used here */
cfftf(mdct->cfft, Z1);
/* post-FFT complex multiplication */
for (k = 0; k < N4; k++)
{
uint16_t n = k << 1;
ComplexMult(&RE(x), &IM(x),
RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
X_out[ n] = -RE(x);
X_out[N2 - 1 - n] = IM(x);
X_out[N2 + n] = -IM(x);
X_out[N - 1 - n] = RE(x);
}
}
#endif