mpv/video/img_format.c

826 lines
29 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
video: decouple internal pixel formats from FourCCs mplayer's video chain traditionally used FourCCs for pixel formats. For example, it used IMGFMT_YV12 for 4:2:0 YUV, which was defined to the string 'YV12' interpreted as unsigned int. Additionally, it used to encode information into the numeric values of some formats. The RGB formats had their bit depth and endian encoded into the least significant byte. Extended planar formats (420P10 etc.) had chroma shift, endian, and component bit depth encoded. (This has been removed in recent commits.) Replace the FourCC mess with a simple enum. Remove all the redundant formats like YV12/I420/IYUV. Replace some image format names by something more intuitive, most importantly IMGFMT_YV12 -> IMGFMT_420P. Add img_fourcc.h, which contains the old IDs for code that actually uses FourCCs. Change the way demuxers, that output raw video, identify the video format: they set either MP_FOURCC_RAWVIDEO or MP_FOURCC_IMGFMT to request the rawvideo decoder, and sh_video->imgfmt specifies the pixel format. Like the previous hack, this is supposed to avoid the need for a complete codecs.cfg entry per format, or other lookup tables. (Note that the RGB raw video FourCCs mostly rely on ffmpeg's mappings for NUT raw video, but this is still considered better than adding a raw video decoder - even if trivial, it would be full of annoying lookup tables.) The TV code has not been tested. Some corrective changes regarding endian and other image format flags creep in.
2012-12-23 19:03:30 +00:00
#include <string.h>
#include <libavcodec/avcodec.h>
#include <libavutil/imgutils.h>
#include <libavutil/pixfmt.h>
#include <libavutil/pixdesc.h>
#include "video/img_format.h"
#include "video/mp_image.h"
#include "video/fmt-conversion.h"
struct mp_imgfmt_entry {
const char *name;
// Valid if flags!=0.
// This can be incomplete, and missing fields are filled in:
// - sets num_planes and bpp[], derived from comps[] (rounds to bytes)
// - sets MP_IMGFLAG_GRAY, derived from comps[]
// - sets MP_IMGFLAG_ALPHA, derived from comps[]
// - sets align_x/y if 0, derived from chroma shift
// - sets xs[]/ys[] always, derived from num_planes/chroma_shift
// - sets MP_IMGFLAG_HAS_COMPS|MP_IMGFLAG_NE if num_planes>0
// - sets MP_IMGFLAG_TYPE_UINT if no other type set
// - sets id to mp_imgfmt_list[] implied format
struct mp_imgfmt_desc desc;
};
#define FRINGE_GBRP(def, dname, b) \
[def - IMGFMT_CUST_BASE] = { \
.name = dname, \
.desc = { .flags = MP_IMGFLAG_COLOR_RGB, \
.comps = { {2, 0, 8, (b) - 8}, {0, 0, 8, (b) - 8}, \
{1, 0, 8, (b) - 8}, }, }}
#define FLOAT_YUV(def, dname, xs, ys, a) \
[def - IMGFMT_CUST_BASE] = { \
.name = dname, \
.desc = { .flags = MP_IMGFLAG_COLOR_YUV | MP_IMGFLAG_TYPE_FLOAT, \
.chroma_xs = xs, .chroma_ys = ys, \
.comps = { {0, 0, 32}, {1, 0, 32}, {2, 0, 32}, \
{3 * (a), 0, 32 * (a)} }, }}
static const struct mp_imgfmt_entry mp_imgfmt_list[] = {
// not in ffmpeg
[IMGFMT_VDPAU_OUTPUT - IMGFMT_CUST_BASE] = {
.name = "vdpau_output",
.desc = {
.flags = MP_IMGFLAG_NE | MP_IMGFLAG_RGB | MP_IMGFLAG_HWACCEL,
},
},
[IMGFMT_RGB30 - IMGFMT_CUST_BASE] = {
.name = "rgb30",
.desc = {
.flags = MP_IMGFLAG_RGB,
.comps = { {0, 20, 10}, {0, 10, 10}, {0, 0, 10} },
},
},
[IMGFMT_YAP8 - IMGFMT_CUST_BASE] = {
.name = "yap8",
.desc = {
.flags = MP_IMGFLAG_COLOR_YUV,
.comps = { {0, 0, 8}, {0}, {0}, {1, 0, 8} },
},
},
[IMGFMT_YAP16 - IMGFMT_CUST_BASE] = {
.name = "yap16",
.desc = {
.flags = MP_IMGFLAG_COLOR_YUV,
.comps = { {0, 0, 16}, {0}, {0}, {1, 0, 16} },
},
},
[IMGFMT_Y1 - IMGFMT_CUST_BASE] = {
.name = "y1",
.desc = {
.flags = MP_IMGFLAG_COLOR_RGB,
.comps = { {0, 0, 8, -7} },
},
},
[IMGFMT_YAPF - IMGFMT_CUST_BASE] = {
.name = "grayaf32", // try to mimic ffmpeg naming convention
.desc = {
.flags = MP_IMGFLAG_COLOR_YUV | MP_IMGFLAG_TYPE_FLOAT,
.comps = { {0, 0, 32}, {0}, {0}, {1, 0, 32} },
},
},
FLOAT_YUV(IMGFMT_444PF, "yuv444pf", 0, 0, 0),
FLOAT_YUV(IMGFMT_444APF, "yuva444pf", 0, 0, 1),
FLOAT_YUV(IMGFMT_420PF, "yuv420pf", 1, 1, 0),
FLOAT_YUV(IMGFMT_420APF, "yuva420pf", 1, 1, 1),
FLOAT_YUV(IMGFMT_422PF, "yuv422pf", 1, 0, 0),
FLOAT_YUV(IMGFMT_422APF, "yuva422pf", 1, 0, 1),
FLOAT_YUV(IMGFMT_440PF, "yuv440pf", 0, 1, 0),
FLOAT_YUV(IMGFMT_440APF, "yuva440pf", 0, 1, 1),
FLOAT_YUV(IMGFMT_410PF, "yuv410pf", 2, 2, 0),
FLOAT_YUV(IMGFMT_410APF, "yuva410pf", 2, 2, 1),
FLOAT_YUV(IMGFMT_411PF, "yuv411pf", 2, 0, 0),
FLOAT_YUV(IMGFMT_411APF, "yuva411pf", 2, 0, 1),
FRINGE_GBRP(IMGFMT_GBRP1, "gbrp1", 1),
FRINGE_GBRP(IMGFMT_GBRP2, "gbrp2", 2),
FRINGE_GBRP(IMGFMT_GBRP3, "gbrp3", 3),
FRINGE_GBRP(IMGFMT_GBRP4, "gbrp4", 4),
FRINGE_GBRP(IMGFMT_GBRP5, "gbrp5", 5),
FRINGE_GBRP(IMGFMT_GBRP6, "gbrp6", 6),
// in FFmpeg, but FFmpeg names have an annoying "_vld" suffix
[IMGFMT_VIDEOTOOLBOX - IMGFMT_CUST_BASE] = {
.name = "videotoolbox",
},
[IMGFMT_VAAPI - IMGFMT_CUST_BASE] = {
.name = "vaapi",
},
};
static const struct mp_imgfmt_entry *get_mp_desc(int imgfmt)
{
if (imgfmt < IMGFMT_CUST_BASE)
return NULL;
int index = imgfmt - IMGFMT_CUST_BASE;
if (index >= MP_ARRAY_SIZE(mp_imgfmt_list))
return NULL;
const struct mp_imgfmt_entry *e = &mp_imgfmt_list[index];
return e->name ? e : NULL;
}
char **mp_imgfmt_name_list(void)
{
int count = IMGFMT_END - IMGFMT_START;
char **list = talloc_zero_array(NULL, char *, count + 1);
int num = 0;
for (int n = IMGFMT_START; n < IMGFMT_END; n++) {
const char *name = mp_imgfmt_to_name(n);
if (strcmp(name, "unknown") != 0)
list[num++] = talloc_strdup(list, name);
}
return list;
}
2017-06-18 11:58:42 +00:00
int mp_imgfmt_from_name(bstr name)
{
if (bstr_equals0(name, "none"))
return 0;
for (int n = 0; n < MP_ARRAY_SIZE(mp_imgfmt_list); n++) {
const struct mp_imgfmt_entry *p = &mp_imgfmt_list[n];
if (p->name && bstr_equals0(name, p->name))
return IMGFMT_CUST_BASE + n;
}
return pixfmt2imgfmt(av_get_pix_fmt(mp_tprintf(80, "%.*s", BSTR_P(name))));
}
char *mp_imgfmt_to_name_buf(char *buf, size_t buf_size, int fmt)
{
const struct mp_imgfmt_entry *p = get_mp_desc(fmt);
const char *name = p ? p->name : NULL;
if (!name) {
const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(imgfmt2pixfmt(fmt));
if (pixdesc)
name = pixdesc->name;
}
if (!name)
name = "unknown";
snprintf(buf, buf_size, "%s", name);
int len = strlen(buf);
if (len > 2 && buf[len - 2] == MP_SELECT_LE_BE('l', 'b') && buf[len - 1] == 'e')
buf[len - 2] = '\0';
return buf;
}
static void fill_pixdesc_layout(struct mp_imgfmt_desc *desc,
enum AVPixelFormat fmt,
const AVPixFmtDescriptor *pd)
{
if (pd->flags & AV_PIX_FMT_FLAG_PAL ||
pd->flags & AV_PIX_FMT_FLAG_HWACCEL)
goto fail;
bool has_alpha = pd->flags & AV_PIX_FMT_FLAG_ALPHA;
if (pd->nb_components != 1 + has_alpha &&
pd->nb_components != 3 + has_alpha)
goto fail;
// Very convenient: we assume we're always on little endian, and FFmpeg
// explicitly marks big endian formats => don't need to guess whether a
// format is little endian, or not affected by byte order.
bool is_be = pd->flags & AV_PIX_FMT_FLAG_BE;
bool is_ne = MP_SELECT_LE_BE(false, true) == is_be;
// Packed sub-sampled YUV is very... special.
bool is_packed_ss_yuv = pd->log2_chroma_w && !pd->log2_chroma_h &&
pd->comp[1].plane == 0 && pd->comp[2].plane == 0 &&
pd->nb_components == 3;
if (is_packed_ss_yuv)
desc->bpp[0] = pd->comp[1].step * 8;
// Determine if there are any byte overlaps => relevant for determining
// access unit for endian, since pixdesc does not expose this, and assumes
// a weird model where you do separate memory fetches for each component.
bool any_shared_bytes = !!(pd->flags & AV_PIX_FMT_FLAG_BITSTREAM);
for (int c = 0; c < pd->nb_components; c++) {
for (int i = 0; i < c; i++) {
const AVComponentDescriptor *d1 = &pd->comp[c];
const AVComponentDescriptor *d2 = &pd->comp[i];
if (d1->plane == d2->plane) {
if (d1->offset + (d1->depth + 7) / 8u > d2->offset &&
d2->offset + (d2->depth + 7) / 8u > d1->offset)
any_shared_bytes = true;
}
}
}
int el_bits = (pd->flags & AV_PIX_FMT_FLAG_BITSTREAM) ? 1 : 8;
for (int c = 0; c < pd->nb_components; c++) {
const AVComponentDescriptor *d = &pd->comp[c];
if (d->plane >= MP_MAX_PLANES)
goto fail;
desc->num_planes = MPMAX(desc->num_planes, d->plane + 1);
int plane_bits = desc->bpp[d->plane];
int c_bits = d->step * el_bits;
// The first component wins, because either all components result in
// the same value, or luma wins (luma always comes before chroma).
if (plane_bits) {
if (c_bits > plane_bits)
goto fail; // inconsistent
} else {
desc->bpp[d->plane] = plane_bits = c_bits;
}
int shift = d->shift;
// What the fuck: for some inexplicable reason, MONOB uses shift=7
// in pixdesc, which is basically out of bounds. Pixdesc bug?
// Make it behave like MONOW. (No, the bit-order is not different.)
if (fmt == AV_PIX_FMT_MONOBLACK)
shift = 0;
int offset = d->offset * el_bits;
// The pixdesc logic for reading and endian swapping is as follows
// (reverse engineered from av_read_image_line2()):
// - determine a word size that will include the component fully;
// this includes the "active" bits and the amount "shifted" away
// (for example shift=7/depth=18 => 32 bit word reading [31:0])
// - the same format can use different word sizes (e.g. bgr565: the R
// component at offset 0 is read as 8 bit; BG is read as 16 bits)
// - if BE flag is set, swap the word before proceeding
// - extract via shift and mask derived by depth
int word = mp_round_next_power_of_2(MPMAX(d->depth + shift, 8));
// The purpose of this is unknown. It's an absurdity fished out of
// av_read_image_line2()'s implementation. It seems technically
// unnecessary, and provides no information. On the other hand, it
// compensates for seemingly bogus packed integer pixdescs; this
// is "why" some formats use d->offset = -1.
if (is_be && el_bits == 8 && word == 8)
offset += 8;
// Pixdesc's model sometimes requires accesses with varying word-sizes,
// as seen in bgr565 and other formats. Also, it makes you read some
// formats with multiple endian-dependent accesses, where accessing a
// larger unit would make more sense. (Consider X2RGB10BE, for which
// pixdesc wants you to perform 3 * 2 byte accesses, and swap each of
// the read 16 bit words. What you really want is to swap the entire 4
// byte thing, and then extract the components with bit shifts).
// This is complete bullshit, so we transform it into word swaps before
// further processing. Care needs to be taken to not change formats like
// P010 or YA16 (prefer component accesses for them; P010 isn't even
// representable, because endian_shift is for all planes).
// As a heuristic, assume that if any components share a byte, the whole
// pixel is read as a single memory access and endian swapped at once.
int access_size = 8;
if (plane_bits > 8) {
if (any_shared_bytes) {
access_size = plane_bits;
if (is_be && word != access_size) {
// Before: offset = 8*byte_offset (with word bits of data)
// After: offset = bit_offset into swapped endian_size word
offset = access_size - word - offset;
}
} else {
access_size = word;
}
}
int endian_size = (access_size && !is_ne) ? access_size : 8;
int endian_shift = mp_log2(endian_size) - 3;
if (!MP_IS_POWER_OF_2(endian_size) || endian_shift < 0 || endian_shift > 3)
goto fail;
if (desc->endian_shift && desc->endian_shift != endian_shift)
goto fail;
desc->endian_shift = endian_shift;
// We always use bit offsets; this doesn't lose any information,
// and pixdesc is merely more redundant.
offset += shift;
if (offset < 0 || offset >= (1 << 6))
goto fail;
if (offset + d->depth > plane_bits)
goto fail;
if (d->depth < 0 || d->depth >= (1 << 6))
goto fail;
desc->comps[c] = (struct mp_imgfmt_comp_desc){
.plane = d->plane,
.offset = offset,
.size = d->depth,
};
}
for (int p = 0; p < desc->num_planes; p++) {
if (!desc->bpp[p])
goto fail; // plane doesn't exist
}
// What the fuck: this is probably a pixdesc bug, so fix it.
if (fmt == AV_PIX_FMT_RGB8) {
desc->comps[2] = (struct mp_imgfmt_comp_desc){0, 0, 2};
desc->comps[1] = (struct mp_imgfmt_comp_desc){0, 2, 3};
desc->comps[0] = (struct mp_imgfmt_comp_desc){0, 5, 3};
}
// Overlap test. If any shared bits are happening, this is not a format we
// can represent (or it's something like Bayer: components in the same bits,
// but different alternating lines).
bool any_shared_bits = false;
for (int c = 0; c < pd->nb_components; c++) {
for (int i = 0; i < c; i++) {
struct mp_imgfmt_comp_desc *c1 = &desc->comps[c];
struct mp_imgfmt_comp_desc *c2 = &desc->comps[i];
if (c1->plane == c2->plane) {
if (c1->offset + c1->size > c2->offset &&
c2->offset + c2->size > c1->offset)
any_shared_bits = true;
}
}
}
if (any_shared_bits) {
for (int c = 0; c < pd->nb_components; c++)
desc->comps[c] = (struct mp_imgfmt_comp_desc){0};
}
// Many important formats have padding within an access word. For example
// yuv420p10 has the upper 6 bit cleared to 0; P010 has the lower 6 bits
// cleared to 0. Pixdesc cannot represent that these bits are 0. There are
// other formats where padding is not guaranteed to be 0, but they are
// described in the same way.
// Apply a heuristic that is supposed to identify formats which use
// guaranteed 0 padding. This could fail, but nobody said this pixdesc crap
// is robust.
for (int c = 0; c < pd->nb_components; c++) {
struct mp_imgfmt_comp_desc *cd = &desc->comps[c];
// Note: rgb444 would defeat our heuristic if we checked only per comp.
// also, exclude "bitstream" formats due to monow/monob
int fsize = MP_ALIGN_UP(cd->size, 8);
if (!any_shared_bytes && el_bits == 8 && fsize != cd->size &&
fsize - cd->size <= (1 << 3))
{
if (!(cd->offset % 8u)) {
cd->pad = -(fsize - cd->size);
cd->size = fsize;
} else if (!((cd->offset + cd->size) % 8u)) {
cd->pad = fsize - cd->size;
cd->size = fsize;
cd->offset = MP_ALIGN_DOWN(cd->offset, 8);
}
}
}
// The alpha component always has ID 4 (index 3) in our representation, so
// move the alpha component to there.
if (has_alpha && pd->nb_components < 4) {
desc->comps[3] = desc->comps[pd->nb_components - 1];
desc->comps[pd->nb_components - 1] = (struct mp_imgfmt_comp_desc){0};
}
if (is_packed_ss_yuv) {
desc->flags |= MP_IMGFLAG_PACKED_SS_YUV;
desc->bpp[0] /= 1 << pd->log2_chroma_w;
} else if (!any_shared_bits) {
desc->flags |= MP_IMGFLAG_HAS_COMPS;
}
return;
fail:
for (int n = 0; n < 4; n++)
desc->comps[n] = (struct mp_imgfmt_comp_desc){0};
// Average bit size fallback.
int num_planes = av_pix_fmt_count_planes(fmt);
desc->num_planes = MPCLAMP(num_planes, 0, MP_MAX_PLANES);
for (int p = 0; p < desc->num_planes; p++) {
int ls = av_image_get_linesize(fmt, 256, p);
desc->bpp[p] = ls > 0 ? ls * 8 / 256 : 0;
}
}
static bool mp_imgfmt_get_desc_from_pixdesc(int mpfmt, struct mp_imgfmt_desc *out)
{
enum AVPixelFormat fmt = imgfmt2pixfmt(mpfmt);
const AVPixFmtDescriptor *pd = av_pix_fmt_desc_get(fmt);
if (!pd || pd->nb_components > 4)
return false;
struct mp_imgfmt_desc desc = {
.id = mpfmt,
.chroma_xs = pd->log2_chroma_w,
.chroma_ys = pd->log2_chroma_h,
};
if (pd->flags & AV_PIX_FMT_FLAG_ALPHA)
desc.flags |= MP_IMGFLAG_ALPHA;
if (pd->flags & AV_PIX_FMT_FLAG_HWACCEL)
desc.flags |= MP_IMGFLAG_TYPE_HW;
// Pixdesc does not provide a flag for XYZ, so this is the best we can do.
if (strncmp(pd->name, "xyz", 3) == 0) {
desc.flags |= MP_IMGFLAG_COLOR_XYZ;
} else if (pd->flags & AV_PIX_FMT_FLAG_RGB) {
desc.flags |= MP_IMGFLAG_COLOR_RGB;
} else if (fmt == AV_PIX_FMT_MONOBLACK || fmt == AV_PIX_FMT_MONOWHITE) {
desc.flags |= MP_IMGFLAG_COLOR_RGB;
} else if (fmt == AV_PIX_FMT_PAL8) {
desc.flags |= MP_IMGFLAG_COLOR_RGB | MP_IMGFLAG_TYPE_PAL8;
}
if (pd->flags & AV_PIX_FMT_FLAG_FLOAT)
desc.flags |= MP_IMGFLAG_TYPE_FLOAT;
// Educated guess.
if (!(desc.flags & MP_IMGFLAG_COLOR_MASK) &&
!(desc.flags & MP_IMGFLAG_TYPE_HW))
desc.flags |= MP_IMGFLAG_COLOR_YUV;
desc.align_x = 1 << desc.chroma_xs;
desc.align_y = 1 << desc.chroma_ys;
fill_pixdesc_layout(&desc, fmt, pd);
if (desc.flags & (MP_IMGFLAG_HAS_COMPS | MP_IMGFLAG_PACKED_SS_YUV)) {
if (!(desc.flags & MP_IMGFLAG_TYPE_MASK))
desc.flags |= MP_IMGFLAG_TYPE_UINT;
}
if (desc.bpp[0] % 8u && (pd->flags & AV_PIX_FMT_FLAG_BITSTREAM))
desc.align_x = 8 / desc.bpp[0]; // expect power of 2
// Very heuristical.
bool is_ne = !desc.endian_shift;
bool need_endian = (desc.comps[0].size % 8u && desc.bpp[0] > 8) ||
desc.comps[0].size > 8;
if (need_endian) {
bool is_le = MP_SELECT_LE_BE(is_ne, !is_ne);
desc.flags |= is_le ? MP_IMGFLAG_LE : MP_IMGFLAG_BE;
video: decouple internal pixel formats from FourCCs mplayer's video chain traditionally used FourCCs for pixel formats. For example, it used IMGFMT_YV12 for 4:2:0 YUV, which was defined to the string 'YV12' interpreted as unsigned int. Additionally, it used to encode information into the numeric values of some formats. The RGB formats had their bit depth and endian encoded into the least significant byte. Extended planar formats (420P10 etc.) had chroma shift, endian, and component bit depth encoded. (This has been removed in recent commits.) Replace the FourCC mess with a simple enum. Remove all the redundant formats like YV12/I420/IYUV. Replace some image format names by something more intuitive, most importantly IMGFMT_YV12 -> IMGFMT_420P. Add img_fourcc.h, which contains the old IDs for code that actually uses FourCCs. Change the way demuxers, that output raw video, identify the video format: they set either MP_FOURCC_RAWVIDEO or MP_FOURCC_IMGFMT to request the rawvideo decoder, and sh_video->imgfmt specifies the pixel format. Like the previous hack, this is supposed to avoid the need for a complete codecs.cfg entry per format, or other lookup tables. (Note that the RGB raw video FourCCs mostly rely on ffmpeg's mappings for NUT raw video, but this is still considered better than adding a raw video decoder - even if trivial, it would be full of annoying lookup tables.) The TV code has not been tested. Some corrective changes regarding endian and other image format flags creep in.
2012-12-23 19:03:30 +00:00
} else {
desc.flags |= MP_IMGFLAG_LE | MP_IMGFLAG_BE;
video: decouple internal pixel formats from FourCCs mplayer's video chain traditionally used FourCCs for pixel formats. For example, it used IMGFMT_YV12 for 4:2:0 YUV, which was defined to the string 'YV12' interpreted as unsigned int. Additionally, it used to encode information into the numeric values of some formats. The RGB formats had their bit depth and endian encoded into the least significant byte. Extended planar formats (420P10 etc.) had chroma shift, endian, and component bit depth encoded. (This has been removed in recent commits.) Replace the FourCC mess with a simple enum. Remove all the redundant formats like YV12/I420/IYUV. Replace some image format names by something more intuitive, most importantly IMGFMT_YV12 -> IMGFMT_420P. Add img_fourcc.h, which contains the old IDs for code that actually uses FourCCs. Change the way demuxers, that output raw video, identify the video format: they set either MP_FOURCC_RAWVIDEO or MP_FOURCC_IMGFMT to request the rawvideo decoder, and sh_video->imgfmt specifies the pixel format. Like the previous hack, this is supposed to avoid the need for a complete codecs.cfg entry per format, or other lookup tables. (Note that the RGB raw video FourCCs mostly rely on ffmpeg's mappings for NUT raw video, but this is still considered better than adding a raw video decoder - even if trivial, it would be full of annoying lookup tables.) The TV code has not been tested. Some corrective changes regarding endian and other image format flags creep in.
2012-12-23 19:03:30 +00:00
}
*out = desc;
return true;
}
bool mp_imgfmt_get_packed_yuv_locations(int imgfmt, uint8_t *luma_offsets)
{
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
if (!(desc.flags & MP_IMGFLAG_PACKED_SS_YUV))
return false;
assert(desc.num_planes == 1);
// Guess at which positions the additional luma samples are. We iterate
// starting with the first byte, and then put a luma sample at places
// not covered by other luma/chroma.
// Pixdesc does not and can not provide this information. This heuristic
// may fail in certain cases. What a load of bullshit, right?
int lsize = desc.comps[0].size;
int cur_offset = 0;
for (int lsample = 1; lsample < (1 << desc.chroma_xs); lsample++) {
while (1) {
if (cur_offset + lsize > desc.bpp[0] * desc.align_x)
return false;
bool free = true;
for (int c = 0; c < 3; c++) {
struct mp_imgfmt_comp_desc *cd = &desc.comps[c];
if (!cd->size)
continue;
if (cd->offset + cd->size > cur_offset &&
cur_offset + lsize > cd->offset)
{
free = false;
break;
}
}
if (free)
break;
cur_offset += lsize;
}
luma_offsets[lsample] = cur_offset;
cur_offset += lsize;
}
luma_offsets[0] = desc.comps[0].offset;
return true;
}
static bool get_native_desc(int mpfmt, struct mp_imgfmt_desc *desc)
{
const struct mp_imgfmt_entry *p = get_mp_desc(mpfmt);
if (!p || !p->desc.flags)
return false;
*desc = p->desc;
// Fill in some fields mp_imgfmt_entry.desc is not required to set.
desc->id = mpfmt;
for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
struct mp_imgfmt_comp_desc *cd = &desc->comps[n];
if (cd->size)
desc->num_planes = MPMAX(desc->num_planes, cd->plane + 1);
desc->bpp[cd->plane] =
MPMAX(desc->bpp[cd->plane], MP_ALIGN_UP(cd->offset + cd->size, 8));
}
if (!desc->align_x && !desc->align_y) {
desc->align_x = 1 << desc->chroma_xs;
desc->align_y = 1 << desc->chroma_ys;
}
if (desc->num_planes)
desc->flags |= MP_IMGFLAG_HAS_COMPS | MP_IMGFLAG_NE;
if (!(desc->flags & MP_IMGFLAG_TYPE_MASK))
desc->flags |= MP_IMGFLAG_TYPE_UINT;
return true;
}
2020-05-21 00:29:05 +00:00
int mp_imgfmt_desc_get_num_comps(struct mp_imgfmt_desc *desc)
{
2020-05-21 00:29:05 +00:00
int flags = desc->flags;
if (!(flags & MP_IMGFLAG_COLOR_MASK))
return 0;
return 3 + (flags & MP_IMGFLAG_GRAY ? -2 : 0) + !!(flags & MP_IMGFLAG_ALPHA);
}
struct mp_imgfmt_desc mp_imgfmt_get_desc(int mpfmt)
{
struct mp_imgfmt_desc desc;
if (!get_native_desc(mpfmt, &desc) &&
!mp_imgfmt_get_desc_from_pixdesc(mpfmt, &desc))
return (struct mp_imgfmt_desc){0};
for (int p = 0; p < desc.num_planes; p++) {
desc.xs[p] = (p == 1 || p == 2) ? desc.chroma_xs : 0;
desc.ys[p] = (p == 1 || p == 2) ? desc.chroma_ys : 0;
}
bool is_ba = desc.num_planes > 0;
for (int p = 0; p < desc.num_planes; p++)
is_ba = !(desc.bpp[p] % 8u);
if (is_ba)
desc.flags |= MP_IMGFLAG_BYTE_ALIGNED;
if (desc.flags & MP_IMGFLAG_HAS_COMPS) {
if (desc.comps[3].size)
desc.flags |= MP_IMGFLAG_ALPHA;
// Assuming all colors are (CCC+[A]) or (C+[A]), the latter being gray.
if (!desc.comps[1].size)
desc.flags |= MP_IMGFLAG_GRAY;
bool bb = true;
for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
if (desc.comps[n].offset % 8u || desc.comps[n].size % 8u)
bb = false;
}
if (bb)
desc.flags |= MP_IMGFLAG_BYTES;
}
if ((desc.flags & (MP_IMGFLAG_YUV | MP_IMGFLAG_RGB))
&& (desc.flags & MP_IMGFLAG_HAS_COMPS)
&& (desc.flags & MP_IMGFLAG_BYTES)
&& ((desc.flags & MP_IMGFLAG_TYPE_MASK) == MP_IMGFLAG_TYPE_UINT))
{
2020-05-21 00:29:05 +00:00
int cnt = mp_imgfmt_desc_get_num_comps(&desc);
bool same_depth = true;
for (int p = 0; p < desc.num_planes; p++)
same_depth &= desc.bpp[p] == desc.bpp[0];
if (same_depth && cnt == desc.num_planes) {
if (desc.flags & MP_IMGFLAG_YUV) {
desc.flags |= MP_IMGFLAG_YUV_P;
} else {
desc.flags |= MP_IMGFLAG_RGB_P;
}
}
if (cnt == 3 && desc.num_planes == 2 &&
desc.bpp[1] == desc.bpp[0] * 2 &&
(desc.flags & MP_IMGFLAG_YUV))
{
desc.flags |= MP_IMGFLAG_YUV_NV;
}
}
return desc;
}
static bool validate_regular_imgfmt(const struct mp_regular_imgfmt *fmt)
{
bool present[MP_NUM_COMPONENTS] = {0};
int n_comp = 0;
for (int n = 0; n < fmt->num_planes; n++) {
const struct mp_regular_imgfmt_plane *plane = &fmt->planes[n];
n_comp += plane->num_components;
if (n_comp > MP_NUM_COMPONENTS)
return false;
if (!plane->num_components)
return false; // no empty planes in between allowed
bool pad_only = true;
int chroma_luma = 0; // luma: 1, chroma: 2, both: 3
for (int i = 0; i < plane->num_components; i++) {
int comp = plane->components[i];
if (comp > MP_NUM_COMPONENTS)
return false;
if (comp == 0)
continue;
pad_only = false;
if (present[comp - 1])
return false; // no duplicates
present[comp - 1] = true;
chroma_luma |= (comp == 2 || comp == 3) ? 2 : 1;
}
if (pad_only)
return false; // no planes with only padding allowed
if ((fmt->chroma_xs > 0 || fmt->chroma_ys > 0) && chroma_luma == 3)
return false; // separate chroma/luma planes required
}
if (!(present[0] || present[3]) || // at least component 1 or alpha needed
(present[1] && !present[0]) || // component 2 requires component 1
(present[2] && !present[1])) // component 3 requires component 2
return false;
return true;
}
static enum pl_color_system get_forced_csp_from_flags(int flags)
{
if (flags & MP_IMGFLAG_COLOR_XYZ)
return PL_COLOR_SYSTEM_XYZ;
if (flags & MP_IMGFLAG_COLOR_RGB)
return PL_COLOR_SYSTEM_RGB;
return PL_COLOR_SYSTEM_UNKNOWN;
}
enum pl_color_system mp_imgfmt_get_forced_csp(int imgfmt)
{
return get_forced_csp_from_flags(mp_imgfmt_get_desc(imgfmt).flags);
}
static enum mp_component_type get_component_type_from_flags(int flags)
{
if (flags & MP_IMGFLAG_TYPE_UINT)
return MP_COMPONENT_TYPE_UINT;
if (flags & MP_IMGFLAG_TYPE_FLOAT)
return MP_COMPONENT_TYPE_FLOAT;
return MP_COMPONENT_TYPE_UNKNOWN;
}
enum mp_component_type mp_imgfmt_get_component_type(int imgfmt)
{
return get_component_type_from_flags(mp_imgfmt_get_desc(imgfmt).flags);
}
2020-04-12 20:14:55 +00:00
int mp_find_other_endian(int imgfmt)
{
return pixfmt2imgfmt(av_pix_fmt_swap_endianness(imgfmt2pixfmt(imgfmt)));
}
bool mp_get_regular_imgfmt(struct mp_regular_imgfmt *dst, int imgfmt)
{
struct mp_regular_imgfmt res = {0};
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
if (!desc.num_planes)
return false;
res.num_planes = desc.num_planes;
if (desc.endian_shift || !(desc.flags & MP_IMGFLAG_HAS_COMPS))
return false;
res.component_type = get_component_type_from_flags(desc.flags);
if (!res.component_type)
return false;
struct mp_imgfmt_comp_desc *comp0 = &desc.comps[0];
if (comp0->size < 1 || comp0->size > 64 || (comp0->size % 8u))
return false;
res.component_size = comp0->size / 8u;
res.component_pad = comp0->pad;
for (int n = 0; n < res.num_planes; n++) {
if (desc.bpp[n] % comp0->size)
return false;
res.planes[n].num_components = desc.bpp[n] / comp0->size;
}
for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
struct mp_imgfmt_comp_desc *comp = &desc.comps[n];
if (!comp->size)
continue;
struct mp_regular_imgfmt_plane *plane = &res.planes[comp->plane];
res.num_planes = MPMAX(res.num_planes, comp->plane + 1);
// We support uniform depth only.
if (comp->size != comp0->size || comp->pad != comp0->pad)
return false;
// Size-aligned only.
int pos = comp->offset / comp->size;
if (comp->offset != pos * comp->size || pos >= MP_NUM_COMPONENTS)
return false;
if (plane->components[pos])
return false;
plane->components[pos] = n + 1;
}
res.chroma_xs = desc.chroma_xs;
res.chroma_ys = desc.chroma_ys;
res.forced_csp = get_forced_csp_from_flags(desc.flags);
if (!validate_regular_imgfmt(&res))
return false;
*dst = res;
return true;
}
static bool regular_imgfmt_equals(struct mp_regular_imgfmt *a,
struct mp_regular_imgfmt *b)
{
if (a->component_type != b->component_type ||
a->component_size != b->component_size ||
a->num_planes != b->num_planes ||
a->component_pad != b->component_pad ||
a->forced_csp != b->forced_csp ||
a->chroma_xs != b->chroma_xs ||
a->chroma_ys != b->chroma_ys)
return false;
for (int n = 0; n < a->num_planes; n++) {
int num_comps = a->planes[n].num_components;
if (num_comps != b->planes[n].num_components)
return false;
for (int i = 0; i < num_comps; i++) {
if (a->planes[n].components[i] != b->planes[n].components[i])
return false;
}
}
return true;
}
// Find a format that matches this one exactly.
int mp_find_regular_imgfmt(struct mp_regular_imgfmt *src)
{
for (int n = IMGFMT_START + 1; n < IMGFMT_END; n++) {
struct mp_regular_imgfmt f;
if (mp_get_regular_imgfmt(&f, n) && regular_imgfmt_equals(src, &f))
return n;
}
return 0;
}
// Compare the dst image formats, and return the one which can carry more data
// (e.g. higher depth, more color components, lower chroma subsampling, etc.),
// with respect to what is required to keep most of the src format.
// Returns the imgfmt, or 0 on error.
int mp_imgfmt_select_best(int dst1, int dst2, int src)
{
enum AVPixelFormat dst1pxf = imgfmt2pixfmt(dst1);
enum AVPixelFormat dst2pxf = imgfmt2pixfmt(dst2);
enum AVPixelFormat srcpxf = imgfmt2pixfmt(src);
enum AVPixelFormat dstlist[] = {dst1pxf, dst2pxf, AV_PIX_FMT_NONE};
return pixfmt2imgfmt(avcodec_find_best_pix_fmt_of_list(dstlist, srcpxf, 1, 0));
}
// Same as mp_imgfmt_select_best(), but with a list of dst formats.
int mp_imgfmt_select_best_list(int *dst, int num_dst, int src)
{
int best = 0;
for (int n = 0; n < num_dst; n++)
best = best ? mp_imgfmt_select_best(best, dst[n], src) : dst[n];
return best;
}