1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-13 02:16:40 +00:00
mpv/libmpcodecs/vd_huffyuv.c

1020 lines
28 KiB
C
Raw Normal View History

/*
*
* HuffYUV Decoder for Mplayer
* (c) 2002 Roberto Togni
*
* Fourcc: HFYU
*
* Original Win32 codec copyright:
*
*** Huffyuv v2.1.1, by Ben Rudiak-Gould.
*** http://www.math.berkeley.edu/~benrg/huffyuv.html
***
*** This file is copyright 2000 Ben Rudiak-Gould, and distributed under
*** the terms of the GNU General Public License, v2 or later. See
*** http://www.gnu.org/copyleft/gpl.html.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#include "mp_msg.h"
#include "vd_internal.h"
static vd_info_t info = {
"HuffYUV Video decoder",
"huffyuv",
"Roberto Togni",
"Roberto Togni, original win32 by Ben Rudiak-Gould http://www.math.berkeley.edu/~benrg/huffyuv.html",
"native codec"
};
LIBVD_EXTERN(huffyuv)
/*
* Bitmap types
*/
#define BMPTYPE_YUV -1
#define BMPTYPE_RGB -2
#define BMPTYPE_RGBA -3
/*
* Compression methods
*/
#define METHOD_LEFT 0
#define METHOD_GRAD 1
#define METHOD_MEDIAN 2
#define DECORR_FLAG 64
#define METHOD_LEFT_DECORR (METHOD_LEFT | DECORR_FLAG)
#define METHOD_GRAD_DECORR (METHOD_GRAD | DECORR_FLAG)
#define METHOD_OLD -2
#define FOURCC_HFYU mmioFOURCC('H','F','Y','U')
#define HUFFTABLE_CLASSIC_YUV ((unsigned char*) -1)
#define HUFFTABLE_CLASSIC_RGB ((unsigned char*) -2)
#define HUFFTABLE_CLASSIC_YUV_CHROMA ((unsigned char*) -3)
/*
* Huffman table
*/
typedef struct {
unsigned char* table_pointers[32];
unsigned char table_data[129*25];
} DecodeTable;
/*
* Decoder context
*/
typedef struct {
// Real image depth
int bitcount;
// Prediction method
int method;
// Bitmap color type
int bitmaptype;
// Interlaced flag
int interlaced;
// Huffman tables
unsigned char decode1_shift[256];
unsigned char decode2_shift[256];
unsigned char decode3_shift[256];
DecodeTable decode1, decode2, decode3;
// Above line buffers
unsigned char *abovebuf1, *abovebuf2;
} huffyuv_context_t;
/*
* Classic Huffman tables
*/
unsigned char classic_shift_luma[] = {
34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
69,68, 0
};
unsigned char classic_shift_chroma[] = {
66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
};
unsigned char classic_add_luma[256] = {
3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
};
unsigned char classic_add_chroma[256] = {
3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
};
/*
* Internal function prototypes
*/
unsigned char* InitializeDecodeTable(unsigned char* hufftable,
unsigned char* shift, DecodeTable* decode_table);
unsigned char* InitializeShiftAddTables(unsigned char* hufftable,
unsigned char* shift, unsigned* add_shifted);
unsigned char* DecompressHuffmanTable(unsigned char* hufftable,
unsigned char* dst);
unsigned char huff_decompress(unsigned int* in, unsigned int *pos,
DecodeTable *decode_table, unsigned char *decode_shift);
// to set/get/query special features/parameters
static int control(sh_video_t *sh,int cmd,void* arg,...)
{
switch(cmd) {
case VDCTRL_QUERY_FORMAT:
if (((huffyuv_context_t *)(sh->context))->bitmaptype == BMPTYPE_YUV) {
if (*((int*)arg) == IMGFMT_YUY2)
return CONTROL_TRUE;
else
return CONTROL_FALSE;
} else {
if ((*((int*)arg) == IMGFMT_BGR32) || (*((int*)arg) == IMGFMT_BGR24))
return CONTROL_TRUE;
else
return CONTROL_FALSE;
}
}
return CONTROL_UNKNOWN;
}
/*
*
* Init HuffYUV decoder
*
*/
static int init(sh_video_t *sh)
{
int vo_ret; // Video output init ret value
huffyuv_context_t *hc; // Decoder context
unsigned char *hufftable; // Compressed huffman tables
BITMAPINFOHEADER *bih = sh->bih;
if ((hc = malloc(sizeof(huffyuv_context_t))) == NULL) {
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "Can't allocate memory for HuffYUV decoder context\n");
return 0;
}
sh->context = (void *)hc;
if (bih->biCompression != FOURCC_HFYU) {
mp_msg(MSGT_DECVIDEO, MSGL_WARN, "[HuffYUV] BITMAPHEADER fourcc != HFYU\n");
return 0;
}
/* Get bitcount */
hc->bitcount = 0;
if (bih->biSize > sizeof(BITMAPINFOHEADER)+1)
hc->bitcount = *((char*)bih + sizeof(BITMAPINFOHEADER) + 1);
if (hc->bitcount == 0)
hc->bitcount = bih->biBitCount;
/* Get bitmap type */
switch (hc->bitcount & ~7) {
case 16:
hc->bitmaptype = BMPTYPE_YUV; // -1
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Image type is YUV\n");
break;
case 24:
hc->bitmaptype = BMPTYPE_RGB; // -2
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Image type is RGB\n");
break;
case 32:
hc->bitmaptype = BMPTYPE_RGBA; //-3
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Image type is RGBA\n");
break;
default:
hc->bitmaptype = 0; // ERR
mp_msg(MSGT_DECVIDEO, MSGL_WARN, "[HuffYUV] Image type is unknown\n");
}
/* Get method */
switch (bih->biBitCount & 7) {
case 0:
if (bih->biSize > sizeof(BITMAPINFOHEADER)) {
hc->method = *((unsigned char*)bih + sizeof(BITMAPINFOHEADER));
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method stored in extra data\n");
} else
hc->method = METHOD_OLD; // Is it really needed?
break;
case 1:
hc->method = METHOD_LEFT;
break;
case 2:
hc->method = METHOD_LEFT_DECORR;
break;
case 3:
if (hc->bitmaptype == BMPTYPE_YUV) {
hc->method = METHOD_GRAD;
} else {
hc->method = METHOD_GRAD_DECORR;
}
break;
case 4:
hc->method = METHOD_MEDIAN;
break;
default:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: fallback to METHOD_OLD\n");
hc->method = METHOD_OLD;
}
/* Print method info */
switch (hc->method) {
case METHOD_LEFT:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: Predict Left\n");
break;
case METHOD_GRAD:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: Predict Gradient\n");
break;
case METHOD_MEDIAN:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: Predict Median\n");
break;
case METHOD_LEFT_DECORR:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: Predict Left with decorrelation\n");
break;
case METHOD_GRAD_DECORR:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method: Predict Gradient with decorrelation\n");
break;
case METHOD_OLD:
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Method Old\n");
break;
default:
mp_msg(MSGT_DECVIDEO, MSGL_WARN, "[HuffYUV] Method unknown\n");
}
/* Take care of interlaced images */
hc->interlaced = 0;
if (bih->biHeight > 288) {
// Image is interlaced (flag != 0), but we may not care
hc->interlaced = 1;
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Image is interlaced\n");
}
/* Allocate buffers */
hc->abovebuf1 = NULL;
hc->abovebuf2 = NULL;
if ((hc->method == METHOD_MEDIAN) || (hc->method == METHOD_GRAD) ||
(hc->method == METHOD_GRAD_DECORR)) {
// If inetrlaced flag will be 2
(hc->interlaced)++;
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Allocating above line buffer\n");
if ((hc->abovebuf1 = malloc(sizeof(char) * 4 * bih->biWidth * hc->interlaced)) == NULL) {
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "Can't allocate memory for HuffYUV above buffer 1\n");
return 0;
}
if ((hc->abovebuf2 = malloc(sizeof(char) * 4 * bih->biWidth * hc->interlaced)) == NULL) {
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "Can't allocate memory for HuffYUV above buffer 2\n");
return 0;
}
}
/* Get compressed Huffman tables */
if (bih->biSize == sizeof(BITMAPINFOHEADER) /*&& !(bih->biBitCount&7)*/) {
hufftable = (hc->bitmaptype == BMPTYPE_YUV) ? HUFFTABLE_CLASSIC_YUV : HUFFTABLE_CLASSIC_RGB;
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Using classic static Huffman tables\n");
} else {
hufftable = (unsigned char*)bih + sizeof(BITMAPINFOHEADER) + ((bih->biBitCount&7) ? 0 : 4);
mp_msg(MSGT_DECVIDEO, MSGL_V, "[HuffYUV] Using Huffman tables stored in file\n");
}
/* Initialize decoder Huffman tables */
hufftable = InitializeDecodeTable(hufftable, hc->decode1_shift, &(hc->decode1));
hufftable = InitializeDecodeTable(hufftable, hc->decode2_shift, &(hc->decode2));
InitializeDecodeTable(hufftable, hc->decode3_shift, &(hc->decode3));
/*
* Initialize video output device
*/
switch (hc->bitmaptype) {
case BMPTYPE_YUV:
vo_ret = mpcodecs_config_vo(sh,sh->disp_w,sh->disp_h,IMGFMT_YUY2);
break;
case BMPTYPE_RGB:
vo_ret = mpcodecs_config_vo(sh,sh->disp_w,sh->disp_h,IMGFMT_BGR24);
break;
case BMPTYPE_RGBA:
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "[HuffYUV] RGBA not supported yet.\n");
return 0;
default:
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "[HuffYUV] BUG! Unknown bitmaptype in vo config.\n");
return 0;
}
return vo_ret;
}
/*
*
* Uninit HuffYUV decoder
*
*/
static void uninit(sh_video_t *sh)
{
if (sh->context) {
if (((huffyuv_context_t*)&sh->context)->abovebuf1)
free(((huffyuv_context_t*)sh->context)->abovebuf1);
if (((huffyuv_context_t*)&sh->context)->abovebuf2)
free(((huffyuv_context_t*)sh->context)->abovebuf2);
free(sh->context);
}
}
#define HUFF_DECOMPRESS_YUYV() \
{ \
y1 = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode1), hc->decode1_shift); \
u = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode2), hc->decode2_shift); \
y2 = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode1), hc->decode1_shift); \
v = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode3), hc->decode3_shift); \
}
#define HUFF_DECOMPRESS_RGB_DECORR() \
{ \
g = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode2), hc->decode2_shift); \
b = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode1), hc->decode1_shift); \
r = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode3), hc->decode3_shift); \
}
#define HUFF_DECOMPRESS_RGB() \
{ \
b = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode1), hc->decode1_shift); \
g = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode2), hc->decode2_shift); \
r = huff_decompress((unsigned int *)encoded, &pos, &(hc->decode3), hc->decode3_shift); \
}
#define MEDIAN(left, above, aboveleft) \
{ \
if ((mi = (above)) > (left)) { \
mx = mi; \
mi = (left); \
} else \
mx = (left); \
tmp = (above) + (left) - (aboveleft); \
if (tmp < mi) \
med = mi; \
else if (tmp > mx) \
med = mx; \
else \
med = tmp; \
}
#define YUV_STORE1ST_ABOVEBUF() \
{ \
abovebuf[0] = outptr[0] = encoded[0]; \
abovebuf[1] = left_u = outptr[1] = encoded[1]; \
abovebuf[2] = left_y = outptr[2] = encoded[2]; \
abovebuf[3] = left_v = outptr[3] = encoded[3]; \
pixel_ptr = 4; \
}
#define YUV_STORE1ST() \
{ \
outptr[0] = encoded[0]; \
left_u = outptr[1] = encoded[1]; \
left_y = outptr[2] = encoded[2]; \
left_v = outptr[3] = encoded[3]; \
pixel_ptr = 4; \
}
#define RGB_STORE1ST() \
{ \
pixel_ptr = (height-1)*mpi->stride[0]; \
left_b = outptr[pixel_ptr++] = encoded[1]; \
left_g = outptr[pixel_ptr++] = encoded[2]; \
left_r = outptr[pixel_ptr++] = encoded[3]; \
pixel_ptr += bgr32; \
}
#define RGB_STORE1ST_ABOVEBUF() \
{ \
pixel_ptr = (height-1)*mpi->stride[0]; \
abovebuf[0] = left_b = outptr[pixel_ptr++] = encoded[1]; \
abovebuf[1] = left_g = outptr[pixel_ptr++] = encoded[2]; \
abovebuf[2] = left_r = outptr[pixel_ptr++] = encoded[3]; \
pixel_ptr += bgr32; \
}
#define YUV_PREDLEFT() \
{ \
outptr[pixel_ptr++] = left_y += y1; \
outptr[pixel_ptr++] = left_u += u; \
outptr[pixel_ptr++] = left_y += y2; \
outptr[pixel_ptr++] = left_v += v; \
}
#define YUV_PREDLEFT_BUF(buf, offs) \
{ \
(buf)[(offs)] = outptr[pixel_ptr++] = left_y += y1; \
(buf)[(offs)+1] = outptr[pixel_ptr++] = left_u += u; \
(buf)[(offs)+2] = outptr[pixel_ptr++] = left_y += y2; \
(buf)[(offs)+3] = outptr[pixel_ptr++] = left_v += v; \
}
#define YUV_PREDMED() \
{ \
MEDIAN (left_y, abovebuf[col], abovebuf[col-2]); \
curbuf[col] = outptr[pixel_ptr++] = left_y = med + y1; \
MEDIAN (left_u, abovebuf[col+1], abovebuf[col+1-4]); \
curbuf[col+1] = outptr[pixel_ptr++] = left_u = med + u; \
MEDIAN (left_y, abovebuf[col+2], abovebuf[col+2-2]); \
curbuf[col+2] = outptr[pixel_ptr++] = left_y = med + y2; \
MEDIAN (left_v, abovebuf[col+3], abovebuf[col+3-4]); \
curbuf[col+3] = outptr[pixel_ptr++] = left_v = med + v; \
}
#define YUV_PREDMED_1ST() \
{ \
MEDIAN (left_y, abovebuf[0], curbuf[width2*4-2]); \
curbuf[0] = outptr[pixel_ptr++] = left_y = med + y1; \
MEDIAN (left_u, abovebuf[1], curbuf[width2*4+1-4]); \
curbuf[1] = outptr[pixel_ptr++] = left_u = med + u; \
MEDIAN (left_y, abovebuf[2], abovebuf[0]); \
curbuf[2] = outptr[pixel_ptr++] = left_y = med + y2; \
MEDIAN (left_v, abovebuf[3], curbuf[width2*4+3-4]); \
curbuf[3] = outptr[pixel_ptr++] = left_v = med + v; \
}
#define YUV_PREDGRAD() \
{ \
curbuf[col] = outptr[pixel_ptr++] = left_y += y1 + abovebuf[col]-abovebuf[col-2]; \
curbuf[col+1] = outptr[pixel_ptr++] = left_u += u + abovebuf[col+1]-abovebuf[col+1-4]; \
curbuf[col+2] = outptr[pixel_ptr++] = left_y += y2 + abovebuf[col+2]-abovebuf[col+2-2]; \
curbuf[col+3] = outptr[pixel_ptr++] = left_v += v + abovebuf[col+3]-abovebuf[col+3-4]; \
}
#define YUV_PREDGRAD_1ST() \
{ \
curbuf[0] = outptr[pixel_ptr++] = left_y += y1 + abovebuf[0] - curbuf[width2*4-2]; \
curbuf[1] = outptr[pixel_ptr++] = left_u += u + abovebuf[1] - curbuf[width2*4+1-4]; \
curbuf[2] = outptr[pixel_ptr++] = left_y += y2 + abovebuf[2] - abovebuf[0]; \
curbuf[3] = outptr[pixel_ptr++] = left_v += v + abovebuf[3] - curbuf[width2*4+3-4]; \
}
#define RGB_PREDLEFT_DECORR() \
{ \
outptr[pixel_ptr++] = left_b += b + g; \
outptr[pixel_ptr++] = left_g += g; \
outptr[pixel_ptr++] = left_r += r + g; \
pixel_ptr += bgr32; \
}
#define RGB_PREDLEFT_DECORR_BUF() \
{ \
abovebuf[col] = outptr[pixel_ptr++] = left_b += b + g; \
abovebuf[col+1] = outptr[pixel_ptr++] = left_g += g; \
abovebuf[col+2] = outptr[pixel_ptr++] = left_r += r + g; \
pixel_ptr += bgr32; \
}
#define RGB_PREDLEFT() \
{ \
outptr[pixel_ptr++] = left_b += b; \
outptr[pixel_ptr++] = left_g += g; \
outptr[pixel_ptr++] = left_r += r; \
pixel_ptr += bgr32; \
}
#define RGB_PREDGRAD_DECORR() \
{ \
curbuf[col] = outptr[pixel_ptr++] = left_b += b + g + abovebuf[col]-abovebuf[col-3]; \
curbuf[col+1] = outptr[pixel_ptr++] = left_g += g + abovebuf[col+1]-abovebuf[col+1-3]; \
curbuf[col+2] = outptr[pixel_ptr++] = left_r += r + g + abovebuf[col+2]-abovebuf[col+2-3]; \
pixel_ptr += bgr32; \
}
#define RGB_PREDGRAD_DECORR_1ST() \
{ \
curbuf[0] = outptr[pixel_ptr++] = left_b += b + g + abovebuf[0] - curbuf[width2*3-3]; \
curbuf[1] = outptr[pixel_ptr++] = left_g += g + abovebuf[1] - curbuf[width2*3+1-3]; \
curbuf[2] = outptr[pixel_ptr++] = left_r += r + g + abovebuf[2] - curbuf[width2*3+2-3]; \
pixel_ptr += bgr32; \
}
#define SWAPBUF() \
{ \
swap = abovebuf; \
abovebuf = curbuf; \
curbuf = swap; \
}
/*
*
* Decode a HuffYUV frame
*
*/
static mp_image_t* decode(sh_video_t *sh,void* data,int len,int flags)
{
mp_image_t* mpi;
int pixel_ptr;
unsigned char y1, y2, u, v, r, g, b/*, a*/;
unsigned char left_y, left_u, left_v, left_r, left_g, left_b;
unsigned char tmp, mi, mx, med;
unsigned char *swap;
int row, col;
unsigned int pos = 32;
unsigned char *encoded = (unsigned char *)data;
huffyuv_context_t *hc = (huffyuv_context_t *) sh->context; // Decoder context
unsigned char *abovebuf = hc->abovebuf1;
unsigned char *curbuf = hc->abovebuf2;
unsigned char *outptr;
int width = sh->disp_w; // Real image width
int height = sh->disp_h; // Real image height
int width2, height2;
int bgr32;
int interlaced, oddlines;
// Skipped frame
if(len <= 0)
return NULL;
/* If image is interlaced and we care about it fix size */
if (hc->interlaced == 2) {
width2 = width*2; // Double image width
height2 = height/2; // Half image height
oddlines = height%2; // Set if line number is odd
interlaced = 1; // Used also for row counter computation, must be exactly 1
} else {
width2 = width; // Real image width
height2 = height; // Real image height
interlaced = 0; // Flag is 0: no need to deinterlaced image
oddlines = 0; // Don't care about odd line number if not interlaced
}
/* Get output image buffer */
mpi=mpcodecs_get_image(sh, MP_IMGTYPE_TEMP, MP_IMGFLAG_ACCEPT_STRIDE, sh->disp_w, sh->disp_h);
if (!mpi) {
mp_msg(MSGT_DECVIDEO, MSGL_ERR, "Can't allocate mpi image for huffyuv codec.\n");
return NULL;
}
outptr = mpi->planes[0]; // Output image pointer
if (hc->bitmaptype == BMPTYPE_YUV) {
width >>= 1; // Each cycle stores two pixels
width2 >>= 1;
if (hc->method == METHOD_GRAD) {
/*
* YUV predict gradient
*/
/* Store 1st pixel */
YUV_STORE1ST_ABOVEBUF();
// Decompress 1st row (always stored with left prediction)
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (abovebuf, col);
}
if (interlaced) {
pixel_ptr = mpi->stride[0];
for (col = width*4; col < width*8; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (abovebuf, col);
}
}
curbuf[width2*4-1] = curbuf[width2*4-2] = curbuf[width2*4-3] = 0;
for (row = 1; row < height2; row++) {
pixel_ptr = (interlaced + 1) * row * mpi->stride[0];
HUFF_DECOMPRESS_YUYV();
YUV_PREDGRAD_1ST();
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDGRAD();
}
if (interlaced) {
pixel_ptr = (2 * row + 1) * mpi->stride[0];
for (col = width*4; col < width*8; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDGRAD();
}
}
SWAPBUF();
}
if (oddlines) {
pixel_ptr = 2 * height * mpi->stride[0];
HUFF_DECOMPRESS_YUYV();
YUV_PREDGRAD_1ST();
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDGRAD();
}
}
} else if (hc->method == METHOD_MEDIAN) {
/*
* YUV predict median
*/
/* Store 1st pixel */
YUV_STORE1ST_ABOVEBUF();
// Decompress 1st row (always stored with left prediction)
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (abovebuf, col);
}
if (interlaced) {
pixel_ptr = mpi->stride[0];
for (col = width*4; col < width*8; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (abovebuf, col);
}
}
// Decompress 1st two pixels of 2nd row
pixel_ptr = mpi->stride[0] * (interlaced + 1);
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (curbuf, 0);
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT_BUF (curbuf, 4);
// Complete 2nd row
for (col = 2*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED();
}
if (interlaced) {
pixel_ptr = mpi->stride[0] * 3;
for (col = width*4; col < width*8; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED();
}
}
SWAPBUF();
for (row = 2; row < height2; row++) {
pixel_ptr = (interlaced + 1) * row * mpi->stride[0];
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED_1ST();
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED();
}
if (interlaced) {
pixel_ptr = (2 * row + 1) * mpi->stride[0];
for (col = width*4; col < width*8; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED();
}
}
SWAPBUF();
}
if (oddlines) {
pixel_ptr = 2 * height2 * mpi->stride[0];
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED_1ST();
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDMED();
}
}
} else {
/*
* YUV predict left and predict old
*/
/* Store 1st pixel */
YUV_STORE1ST();
// Decompress 1st row (always stored with left prediction)
for (col = 1*4; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT();
}
for (row = 1; row < height; row++) {
pixel_ptr = row * mpi->stride[0];
for (col = 0; col < width*4; col += 4) {
HUFF_DECOMPRESS_YUYV();
YUV_PREDLEFT();
}
}
}
} else {
bgr32 = (mpi->bpp) >> 5; // 1 if bpp = 32, 0 if bpp = 24
if (hc->method == METHOD_LEFT_DECORR) {
/*
* RGB predict left with decorrelation
*/
/* Store 1st pixel */
RGB_STORE1ST();
// Decompress 1st row
for (col = 1; col < width; col ++) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDLEFT_DECORR();
}
for (row = 1; row < height; row++) {
pixel_ptr = (height - row - 1) * mpi->stride[0];
for (col = 0; col < width; col++) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDLEFT_DECORR();
}
}
} else if (hc->method == METHOD_GRAD_DECORR) {
/*
* RGB predict gradient with decorrelation
*/
/* Store 1st pixel */
RGB_STORE1ST_ABOVEBUF();
// Decompress 1st row (always stored with left prediction)
for (col = 1*3; col < width*3; col += 3) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDLEFT_DECORR_BUF();
}
if (interlaced) {
pixel_ptr = (height-2)*mpi->stride[0];
for (col = width*3; col < width*6; col += 3) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDLEFT_DECORR_BUF();
}
}
curbuf[width2*3-1] = curbuf[width2*3-2] = curbuf[width2*3-3] = 0;
for (row = 1; row < height2; row++) {
pixel_ptr = (height - (interlaced + 1) * row - 1) * mpi->stride[0];
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDGRAD_DECORR_1ST();
for (col = 1*3; col < width*3; col += 3) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDGRAD_DECORR();
}
if (interlaced) {
pixel_ptr = (height - 2 * row - 2) * mpi->stride[0];
for (col = width*3; col < width*6; col += 3) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDGRAD_DECORR();
}
}
SWAPBUF();
}
if (oddlines) {
pixel_ptr = mpi->stride[0];
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDGRAD_DECORR_1ST();
for (col = 1*3; col < width*3; col += 3) {
HUFF_DECOMPRESS_RGB_DECORR();
RGB_PREDGRAD_DECORR();
}
}
} else {
/*
* RGB predict left (no decorrelation) and predict old
*/
/* Store 1st pixel */
RGB_STORE1ST();
// Decompress 1st row
for (col = 1; col < width; col++) {
HUFF_DECOMPRESS_RGB();
RGB_PREDLEFT();
}
for (row = 1; row < height; row++) {
pixel_ptr = (height - row - 1) * mpi->stride[0];
for (col = 0; col < width; col++) {
HUFF_DECOMPRESS_RGB();
RGB_PREDLEFT();
}
}
}
}
return mpi;
}
unsigned char* InitializeDecodeTable(unsigned char* hufftable,
unsigned char* shift, DecodeTable* decode_table)
{
unsigned int add_shifted[256];
char code_lengths[256];
char code_firstbits[256];
char table_lengths[32];
int all_zero_code=-1;
int i, j, k;
int firstbit, length, val;
unsigned char* p;
unsigned char * table;
/* Initialize shift[] and add_shifted[] */
hufftable = InitializeShiftAddTables(hufftable, shift, add_shifted);
memset(table_lengths, -1, 32);
/* Fill code_firstbits[], code_legths[] and table_lengths[] */
for (i = 0; i < 256; ++i) {
if (add_shifted[i]) {
for (firstbit = 31; firstbit >= 0; firstbit--) {
if (add_shifted[i] & (1 << firstbit)) {
code_firstbits[i] = firstbit;
length = shift[i] - (32 - firstbit);
code_lengths[i] = length;
table_lengths[firstbit] = max(table_lengths[firstbit], length);
break;
}
}
} else {
all_zero_code = i;
}
}
p = decode_table->table_data;
*p++ = 31;
*p++ = all_zero_code;
for (j = 0; j < 32; ++j) {
if (table_lengths[j] == -1) {
decode_table->table_pointers[j] = decode_table->table_data;
} else {
decode_table->table_pointers[j] = p;
*p++ = j - table_lengths[j];
p += 1 << table_lengths[j];
}
}
for (k=0; k<256; ++k) {
if (add_shifted[k]) {
firstbit = code_firstbits[k];
val = add_shifted[k] - (1 << firstbit);
table = decode_table->table_pointers[firstbit];
memset(&table[1 + (val >> table[0])], k,
1 << (table_lengths[firstbit] - code_lengths[k]));
}
}
return hufftable;
}
unsigned char* InitializeShiftAddTables(unsigned char* hufftable,
unsigned char* shift, unsigned* add_shifted)
{
int i, j;
unsigned int bits; // must be 32bit unsigned
int min_already_processed;
int max_not_processed;
int bit;
// special-case the old tables, since they don't fit the new rules
if (hufftable == HUFFTABLE_CLASSIC_YUV || hufftable == HUFFTABLE_CLASSIC_RGB) {
DecompressHuffmanTable(classic_shift_luma, shift);
for (i = 0; i < 256; ++i)
add_shifted[i] = classic_add_luma[i] << (32 - shift[i]);
return (hufftable == HUFFTABLE_CLASSIC_YUV) ? HUFFTABLE_CLASSIC_YUV_CHROMA : hufftable;
} else if (hufftable == HUFFTABLE_CLASSIC_YUV_CHROMA) {
DecompressHuffmanTable(classic_shift_chroma, shift);
for (i = 0; i < 256; ++i)
add_shifted[i] = classic_add_chroma[i] << (32 - shift[i]);
return hufftable;
}
hufftable = DecompressHuffmanTable(hufftable, shift);
// derive the actual bit patterns from the code lengths
min_already_processed = 32;
bits = 0;
do {
max_not_processed = 0;
for (i = 0; i < 256; ++i) {
if (shift[i] < min_already_processed && shift[i] > max_not_processed)
max_not_processed = shift[i];
}
bit = 1 << (32 - max_not_processed);
// assert (!(bits & (bit - 1)));
for (j = 0; j < 256; ++j) {
if (shift[j] == max_not_processed) {
add_shifted[j] = bits;
bits += bit;
}
}
min_already_processed = max_not_processed;
} while (bits & 0xFFFFFFFF);
return hufftable;
}
unsigned char* DecompressHuffmanTable(unsigned char* hufftable,
unsigned char* dst)
{
int val;
int repeat;
int i = 0;
do {
val = *hufftable & 31;
repeat = *hufftable++ >> 5;
if (!repeat)
repeat = *hufftable++;
while (repeat--)
dst[i++] = val;
} while (i < 256);
return hufftable;
}
unsigned char huff_decompress(unsigned int* in, unsigned int *pos, DecodeTable *decode_table,
unsigned char *decode_shift)
{
unsigned int word = *pos >> 5;
unsigned int bit = *pos & 31;
unsigned int val = in[word];
unsigned char outbyte;
unsigned char *tableptr;
int i;
if (bit)
val = (val << bit) | (in[word + 1] >> (32 - bit));
// figure out the appropriate lookup table based on the number of leading zeros
i = 31;
val |= 1;
while ((val & (1 << i--)) == 0);
val &= ~(1 << (i+1));
tableptr = decode_table->table_pointers[i+1];
val >>= *tableptr;
outbyte = tableptr[val+1];
*pos += decode_shift[outbyte];
return outbyte;
}