mirror of
https://github.com/mpv-player/mpv
synced 2025-01-21 23:23:19 +00:00
204 lines
5.0 KiB
C
204 lines
5.0 KiB
C
|
/*=============================================================================
|
||
|
//
|
||
|
// This software has been released under the terms of the GNU Public
|
||
|
// license. See http://www.gnu.org/copyleft/gpl.html for details.
|
||
|
//
|
||
|
// Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
|
||
|
//
|
||
|
//=============================================================================
|
||
|
*/
|
||
|
|
||
|
/* Calculates a number of window functions. The following window
|
||
|
functions are currently implemented: Boxcar, Triang, Hanning,
|
||
|
Hamming, Blackman, Flattop and Kaiser. In the function call n is
|
||
|
the number of filter taps and w the buffer in which the filter
|
||
|
coefficients will be stored.
|
||
|
*/
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "dsp.h"
|
||
|
|
||
|
/*
|
||
|
// Boxcar
|
||
|
//
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void boxcar(int n, _ftype_t* w)
|
||
|
{
|
||
|
int i;
|
||
|
// Calculate window coefficients
|
||
|
for (i=0 ; i<n ; i++)
|
||
|
w[i] = 1.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
// Triang a.k.a Bartlett
|
||
|
//
|
||
|
// | (N-1)|
|
||
|
// 2 * |k - -----|
|
||
|
// | 2 |
|
||
|
// w = 1.0 - ---------------
|
||
|
// N+1
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void triang(int n, _ftype_t* w)
|
||
|
{
|
||
|
_ftype_t k1 = (_ftype_t)(n & 1);
|
||
|
_ftype_t k2 = 1/((_ftype_t)n + k1);
|
||
|
int end = (n + 1) >> 1;
|
||
|
int i;
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0 ; i<end ; i++)
|
||
|
w[i] = w[n-i-1] = (2.0*((_ftype_t)(i+1))-(1.0-k1))*k2;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
// Hanning
|
||
|
// 2*pi*k
|
||
|
// w = 0.5 - 0.5*cos(------), where 0 < k <= N
|
||
|
// N+1
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void hanning(int n, _ftype_t* w)
|
||
|
{
|
||
|
int i;
|
||
|
_ftype_t k = 2*M_PI/((_ftype_t)(n+1)); // 2*pi/(N+1)
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0; i<n; i++)
|
||
|
*w++ = 0.5*(1.0 - cos(k*(_ftype_t)(i+1)));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// Hamming
|
||
|
// 2*pi*k
|
||
|
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
|
||
|
// N-1
|
||
|
//
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void hamming(int n,_ftype_t* w)
|
||
|
{
|
||
|
int i;
|
||
|
_ftype_t k = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0; i<n; i++)
|
||
|
*w++ = 0.54 - 0.46*cos(k*(_ftype_t)i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// Blackman
|
||
|
// 2*pi*k 4*pi*k
|
||
|
// w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N
|
||
|
// N-1 N-1
|
||
|
//
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void blackman(int n,_ftype_t* w)
|
||
|
{
|
||
|
int i;
|
||
|
_ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
|
||
|
_ftype_t k2 = 2*k1; // 4*pi/(N-1)
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0; i<n; i++)
|
||
|
*w++ = 0.42 - 0.50*cos(k1*(_ftype_t)i) + 0.08*cos(k2*(_ftype_t)i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// Flattop
|
||
|
// 2*pi*k 4*pi*k
|
||
|
// w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N
|
||
|
// N-1 N-1
|
||
|
//
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
*/
|
||
|
void flattop(int n,_ftype_t* w)
|
||
|
{
|
||
|
int i;
|
||
|
_ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1)
|
||
|
_ftype_t k2 = 2*k1; // 4*pi/(N-1)
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0; i<n; i++)
|
||
|
*w++ = 0.2810638602 - 0.5208971735*cos(k1*(_ftype_t)i) + 0.1980389663*cos(k2*(_ftype_t)i);
|
||
|
}
|
||
|
|
||
|
/* Computes the 0th order modified Bessel function of the first kind.
|
||
|
// (Needed to compute Kaiser window)
|
||
|
//
|
||
|
// y = sum( (x/(2*n))^2 )
|
||
|
// n
|
||
|
*/
|
||
|
#define BIZ_EPSILON 1E-21 // Max error acceptable
|
||
|
|
||
|
_ftype_t besselizero(_ftype_t x)
|
||
|
{
|
||
|
_ftype_t temp;
|
||
|
_ftype_t sum = 1.0;
|
||
|
_ftype_t u = 1.0;
|
||
|
_ftype_t halfx = x/2.0;
|
||
|
int n = 1;
|
||
|
|
||
|
do {
|
||
|
temp = halfx/(_ftype_t)n;
|
||
|
u *=temp * temp;
|
||
|
sum += u;
|
||
|
n++;
|
||
|
} while (u >= BIZ_EPSILON * sum);
|
||
|
return(sum);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// Kaiser
|
||
|
//
|
||
|
// n window length
|
||
|
// w buffer for the window parameters
|
||
|
// b beta parameter of Kaiser window, Beta >= 1
|
||
|
//
|
||
|
// Beta trades the rejection of the low pass filter against the
|
||
|
// transition width from passband to stop band. Larger Beta means a
|
||
|
// slower transition and greater stop band rejection. See Rabiner and
|
||
|
// Gold (Theory and Application of DSP) under Kaiser windows for more
|
||
|
// about Beta. The following table from Rabiner and Gold gives some
|
||
|
// feel for the effect of Beta:
|
||
|
//
|
||
|
// All ripples in dB, width of transition band = D*N where N = window
|
||
|
// length
|
||
|
//
|
||
|
// BETA D PB RIP SB RIP
|
||
|
// 2.120 1.50 +-0.27 -30
|
||
|
// 3.384 2.23 0.0864 -40
|
||
|
// 4.538 2.93 0.0274 -50
|
||
|
// 5.658 3.62 0.00868 -60
|
||
|
// 6.764 4.32 0.00275 -70
|
||
|
// 7.865 5.0 0.000868 -80
|
||
|
// 8.960 5.7 0.000275 -90
|
||
|
// 10.056 6.4 0.000087 -100
|
||
|
*/
|
||
|
void kaiser(int n, _ftype_t* w, _ftype_t b)
|
||
|
{
|
||
|
_ftype_t tmp;
|
||
|
_ftype_t k1 = 1.0/besselizero(b);
|
||
|
int k2 = 1 - (n & 1);
|
||
|
int end = (n + 1) >> 1;
|
||
|
int i;
|
||
|
|
||
|
// Calculate window coefficients
|
||
|
for (i=0 ; i<end ; i++){
|
||
|
tmp = (_ftype_t)(2*i + k2) / ((_ftype_t)n - 1.0);
|
||
|
w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp));
|
||
|
}
|
||
|
}
|
||
|
|