1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-21 23:23:19 +00:00
mpv/DOCS/tech-overview.txt

250 lines
12 KiB
Plaintext
Raw Normal View History

This file intends to give a big picture of how mpv is structured.
player/*.c:
Essentially makes up the player applications, including the main() function
and the playback loop.
Generally, it accesses all other subsystems, initializes them, and pushes
data between them during playback.
The structure is as follows (as of commit e13c05366557cb):
* main():
* basic initializations (e.g. init_libav() and more)
* pre-parse command line (verbosity level, config file locations)
* load config files (parse_cfgfiles())
* parse command line, add files from the command line to playlist
(m_config_parse_mp_command_line())
* check help options etc. (call handle_help_options()), possibly exit
* call play_files() function that works down the playlist:
* run idle loop (idle_loop()), until there are files in the
2014-07-09 00:14:23 +00:00
playlist or an exit command was given (only if --idle it set)
* actually load and play a file in play_current_file():
* run all the dozens of functions to load the file and
initialize playback
* run a small loop that does normal playback, until the file is
2014-07-09 00:14:23 +00:00
done or a command terminates playback
(on each iteration, run_playloop() is called, which is rather
big and complicated - it decodes some audio and video on
each frame, waits for input, etc.)
* uninitialize playback
* determine next entry on the playlist to play
* loop, or exit if no next file or quit is requested
(see enum stop_play_reason)
* call exit_player_with_rc()
Things worth saying about the playback core:
- the currently played tracks are in sh_video and sh_audio
- the timeline stuff is used only with MKV ordered chapters (and some other
minor features: cue, edl)
- most state is in MPContext (mp_core.h), which is not available to the
subsystems
- the other subsystems rarely call back into the frontend, and the frontend
polls them instead (probably a good thing)
I like to call the player/*.c files the "frontend".
talloc.h & talloc.c:
Hierarchical memory manager copied from Samba. It's like a malloc() with
more features. Most importantly, each talloc allocation can have a parent,
and if the parent is free'd, all children will be free'd as well. The
parent is an arbitrary talloc allocation. It's either set by the allocation
call by passing a talloc parent, usually as first argument to the allocation
function. It can also be set or reset later by other calls (at least
talloc_steal()). A talloc allocation that is used as parent is often called
a talloc context.
Lots of code still uses malloc() proper, and you should be careful what
type of allocation you're dealing with when returning or free'ing an
allocation. (Needless to say, talloc_free() and free() are completely
different things.)
The copy in mpv has been modified to abort on OOM conditions. An
allocation call will never return NULL.
One very useful feature of talloc is fast tracking of memory leaks. ("Fast"
as in it doesn't require valgrind.) You can enable it by passing the option
--leak-report as first parameter, or better, setting the
MPV_LEAK_REPORT environment variable to "1":
export MPV_LEAK_REPORT=1
This will list all unfree'd allocations on exit.
Documentation can be found here:
http://git.samba.org/?p=samba.git;a=blob;f=lib/talloc/talloc.h;hb=HEAD
Note: unlike tcmalloc, jemalloc, etc., talloc() is not actually a malloc
replacement. It works on top of system malloc and provides additional
features that are supposed to make memory management easier.
Warning: actually, we're not using talloc anymore. talloc in mpv has been
replaced by a custom re-implementation (TA in ta/). It provides
some talloc emulation (just the parts needed by mpv). We will get
rid of the talloc emulation later and use TA natively.
(See ta/README for details.)
player/command.c:
2014-07-09 00:14:23 +00:00
This contains the implementation for client API commands and properties.
Properties are essentially dynamic variables changed by certain commands.
This is basically responsible for all user commands, like initiating
seeking, switching tracks, etc. It calls into other player/*.c files,
where most of the work is done, but also calls other parts of mpv.
player/core.h:
Data structures and function prototypes for most of player/*.c. They are
usually not accessed by other parts of mpv for the sake of modularization.
2014-07-09 00:14:23 +00:00
player/client.c:
This implements the client API (libmpv/client.h). For the most part, this
just calls into other parts of the player. This also manages a ringbuffer
of events from player to clients.
options/options.h, options/options.c
options.h contains the global option struct MPOpts. The option declarations
(option names, types, and MPOpts offsets for the option parser) are in
options.c. Most default values for options and MPOpts are in
mp_default_opts at the end of options.c.
MPOpts is unfortunarely quite monolithic, and virtually accessed by
everything.But some components (like video outputs and video filters) have
their own sub-option tables separate from MPOpts.
The actual option parser is spread over m_option.c, m_config.c, and
parser-mpcmd.c, and uses the option table in options.c.
input/input.c:
This translates keyboard input comming from libvo and other sources (such
2014-07-09 00:14:23 +00:00
as remote control devices like Apple IR or client API commands) to the
key bindings listed in the user's (or the builtin) input.conf and turns
them into items of type struct mp_cmd. These commands are queued, and read
by playloop.c. They get pushed with run_command() to command.c.
2014-07-09 00:14:23 +00:00
Note that keyboard input and commands used by the client API are the same.
The client API only uses the command parser though, and has its own queue
of input commands somewhere else.
common/msg.h:
All terminal output should go through mp_msg().
stream/*:
File input is implemented here. stream.h/.c provides a simple stream based
interface (like reading a number of bytes at a given offset). mpv can
also play from http streams and such, which is implemented here.
E.g. if mpv sees "http://something" on the command line, it will pick
stream_lavf.c based on the prefix, and pass the rest of the filename to it.
Some stream inputs are quite special: stream_dvd.c turns DVDs into mpeg
streams (DVDs are actually a bunch of vob files etc. on a filesystem),
stream_tv.c provides TV input including channel switching.
Some stream inputs are just there to invoke special demuxers, like
stream_mf.c. (Basically to make the prefix "mf://" do something special.)
cache.c is a caching wrapper around streams implementations, needed for
smooth network playback.
demux/:
Demuxers split data streams into audio/video/sub streams, which in turn
are split in packets. Packets (see demux_packet.h) are mostly byte chunks
tagged with a playback time (PTS). These packets are passed to the decoders.
Most demuxers have been removed from this fork, and the only important and
"actual" demuxers left are demux_mkv.c and demux_lavf.c (uses libavformat).
There are some pseudo demuxers like demux_cue.c, which exist only to invoke
other frontend code (tl_cue.c in this case).
The main interface is in demux.h. The stream headers are in stheader.h.
There is a stream header for each audio/video/sub stream, and each of them
holds codec information about the stream and other information.
video/:
This contains several things related to audio/video decoding, as well as
video filters.
mp_image.h and img_format.h define how mpv stores decoded video frames
internally.
video/decode/:
vd_*.c are video decoders. (There's only vd_lavc.c left.) dec_video.c/vd.c
handle most of connecting the frontend with the actual decoder.
video/filter/:
vf_*.c and vf.c form the video filter chain. They are fed by the video
decoder, and output the filtered images to the VOs though vf_vo.c. By
default, no video filters (except vf_vo) are used. vf_scale is automatically
inserted if the video output can't handle the video format used by the
decoder.
video/out/:
Video output. They also create GUI windows and handle user input. In most
cases, the windowing code is shared among VOs, like x11_common.c for X11 and
w32_common.c for Windows. The VOs stand between frontend and windowing code.
vo_opengl can pick a windowing system at runtime, e.g. the same binary can
provide both X11 and Cocoa support on OSX.
VOs can be reconfigured at runtime. A config() call can change the video
resolution and format, without destroying the window.
vo_vdpau and vo_opengl should be taken as reference.
audio/:
format.h/format.c define the uncompressed audio formats. (As well as some
compressed formats used for spdif.)
audio/decode/:
ad_*.c and dec_audio.c/ad.c handle audio decoding. ad_lavc.c is the
decoder using ffmpeg. ad_spdif.c is not really a decoder, but is used for
compressed audio passthrough.
audio/filter/:
Audio filter chain. af_lavrresample is inserted if any form of conversion
2013-11-20 17:16:20 +00:00
between audio formats is needed. (af_convert24.c and af_convertsignendian.c
are also used for some formats not directly supported by FFmpeg.)
audio/out/:
Audio outputs.
Unlike VOs, AOs can't be reconfigured on a format change. Without
--gapless-audio, even playing a new file will close and re-open the audio
device.
Note that mpv synchronizes the video to the audio. That's the reason
why buggy audio drivers can have a bad influence on playback quality.
sub/:
Contains subtitle and OSD rendering.
2013-06-04 22:28:15 +00:00
2014-07-09 00:14:23 +00:00
osd.c/.h is actually the OSD code. It queries dec_sub.c to retrieve
2013-06-04 22:28:15 +00:00
decoded/rendered subtitles. osd_libass.c is the actual implementation of
the OSD text renderer (which uses libass, and takes care of all the tricky
fontconfig/freetype API usage and text layouting).
Subtitle loading is now in demux/ instead. demux_libass.c wraps loading
.ass subtitles via libass. demux_lavf.c loads most subtitle types via
FFmpeg. demux_subreader.c is the old MPlayer code. It's used as last
fallback, or to handle some text subtitle types on Libav. (It also can
load UTF-16 encoded subtitles without requiring the use of -sub-codepage.)
demux_subreader.c should eventually go away (maybe).
The subtitles are passed to dec_sub.c and the subtitle decoders in sd_*.c
as they are demuxed. All text subtitles are rendered by sd_ass.c. If text
subtitles are not in the ASS format, subtitle converters are inserted, for
example sd_srt.c, which is used to convert SRT->ASS. sd_srt.c is also used
as general converter for text->ASS (to prevent interpretation of text as
ASS tags).
Text subtitles can be preloaded, in which case they are read fully as soon
as the subtitle is selected, and then effectively stored in an ASS_Track.
It's used for external text subtitles, and required to make codepage
detection as well as timing postprocessing work. (Timing postprocessing
removes tiny gaps or overlaps between subtitle events.)
player/timeline/:
A timeline is the abstraction used by loadfile.c to combine several files
into one seemingly linear video. It's mainly used for ordered chapters
playback. The high level code to find and load other files containing the
segments for playing an ordered chapters file is in tl_matroska.c.
etc/:
core: redo how codecs are mapped, remove codecs.conf Use codec names instead of FourCCs to identify codecs. Rewrite how codecs are selected and initialized. Now each decoder exports a list of decoders (and the codec it supports) via add_decoders(). The order matters, and the first decoder for a given decoder is preferred over the other decoders. E.g. all ad_mpg123 decoders are preferred over ad_lavc, because it comes first in the mpcodecs_ad_drivers array. Likewise, decoders within ad_lavc that are enumerated first by libavcodec (using av_codec_next()) are preferred. (This is actually critical to select h264 software decoding by default instead of vdpau. libavcodec and ffmpeg/avconv use the same method to select decoders by default, so we hope this is sane.) The codec names follow libavcodec's codec names as defined by AVCodecDescriptor.name (see libavcodec/codec_desc.c). Some decoders have names different from the canonical codec name. The AVCodecDescriptor API is relatively new, so we need a compatibility layer for older libavcodec versions for codec names that are referenced internally, and which are different from the decoder name. (Add a configure check for that, because checking versions is getting way too messy.) demux/codec_tags.c is generated from the former codecs.conf (minus "special" decoders like vdpau, and excluding the mappings that are the same as the mappings libavformat's exported RIFF tables). It contains all the mappings from FourCCs to codec name. This is needed for demux_mkv, demux_mpg, demux_avi and demux_asf. demux_lavf will set the codec as determined by libavformat, while the other demuxers have to do this on their own, using the mp_set_audio/video_codec_from_tag() functions. Note that the sh_audio/video->format members don't uniquely identify the codec anymore, and sh->codec takes over this role. Replace the --ac/--vc/--afm/--vfm with new --vd/--ad options, which provide cover the functionality of the removed switched. Note: there's no CODECS_FLAG_FLIP flag anymore. This means some obscure container/video combinations (e.g. the sample Film_200_zygo_pro.mov) are played flipped. ffplay/avplay doesn't handle this properly either, so we don't care and blame ffmeg/libav instead.
2013-02-09 14:15:19 +00:00
The file input.conf is actually integrated into the mpv binary by the
build system. It contains the default keybindings.