mpv/audio/decode/ad_spdif.c

319 lines
8.7 KiB
C
Raw Normal View History

/*
core: redo how codecs are mapped, remove codecs.conf Use codec names instead of FourCCs to identify codecs. Rewrite how codecs are selected and initialized. Now each decoder exports a list of decoders (and the codec it supports) via add_decoders(). The order matters, and the first decoder for a given decoder is preferred over the other decoders. E.g. all ad_mpg123 decoders are preferred over ad_lavc, because it comes first in the mpcodecs_ad_drivers array. Likewise, decoders within ad_lavc that are enumerated first by libavcodec (using av_codec_next()) are preferred. (This is actually critical to select h264 software decoding by default instead of vdpau. libavcodec and ffmpeg/avconv use the same method to select decoders by default, so we hope this is sane.) The codec names follow libavcodec's codec names as defined by AVCodecDescriptor.name (see libavcodec/codec_desc.c). Some decoders have names different from the canonical codec name. The AVCodecDescriptor API is relatively new, so we need a compatibility layer for older libavcodec versions for codec names that are referenced internally, and which are different from the decoder name. (Add a configure check for that, because checking versions is getting way too messy.) demux/codec_tags.c is generated from the former codecs.conf (minus "special" decoders like vdpau, and excluding the mappings that are the same as the mappings libavformat's exported RIFF tables). It contains all the mappings from FourCCs to codec name. This is needed for demux_mkv, demux_mpg, demux_avi and demux_asf. demux_lavf will set the codec as determined by libavformat, while the other demuxers have to do this on their own, using the mp_set_audio/video_codec_from_tag() functions. Note that the sh_audio/video->format members don't uniquely identify the codec anymore, and sh->codec takes over this role. Replace the --ac/--vc/--afm/--vfm with new --vd/--ad options, which provide cover the functionality of the removed switched. Note: there's no CODECS_FLAG_FLIP flag anymore. This means some obscure container/video combinations (e.g. the sample Film_200_zygo_pro.mov) are played flipped. ffplay/avplay doesn't handle this properly either, so we don't care and blame ffmeg/libav instead.
2013-02-09 14:15:19 +00:00
* Copyright (C) 2012 Naoya OYAMA
*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <assert.h>
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
#include <libavutil/opt.h>
#include "config.h"
#include "common/msg.h"
#include "common/av_common.h"
#include "options/options.h"
#include "ad.h"
#define OUTBUF_SIZE 65536
struct spdifContext {
2013-12-21 17:23:59 +00:00
struct mp_log *log;
enum AVCodecID codec_id;
AVFormatContext *lavf_ctx;
int out_buffer_len;
uint8_t out_buffer[OUTBUF_SIZE];
bool need_close;
bool use_dts_hd;
struct mp_audio fmt;
};
static int write_packet(void *p, uint8_t *buf, int buf_size)
{
struct spdifContext *ctx = p;
int buffer_left = OUTBUF_SIZE - ctx->out_buffer_len;
if (buf_size > buffer_left) {
2013-12-21 17:23:59 +00:00
MP_ERR(ctx, "spdif packet too large.\n");
buf_size = buffer_left;
}
memcpy(&ctx->out_buffer[ctx->out_buffer_len], buf, buf_size);
ctx->out_buffer_len += buf_size;
return buf_size;
}
static void uninit(struct dec_audio *da)
{
struct spdifContext *spdif_ctx = da->priv;
AVFormatContext *lavf_ctx = spdif_ctx->lavf_ctx;
if (lavf_ctx) {
if (spdif_ctx->need_close)
av_write_trailer(lavf_ctx);
if (lavf_ctx->pb)
av_freep(&lavf_ctx->pb->buffer);
av_freep(&lavf_ctx->pb);
avformat_free_context(lavf_ctx);
}
}
static int init(struct dec_audio *da, const char *decoder)
{
struct spdifContext *spdif_ctx = talloc_zero(NULL, struct spdifContext);
da->priv = spdif_ctx;
2013-12-21 17:23:59 +00:00
spdif_ctx->log = da->log;
spdif_ctx->use_dts_hd = da->opts->dtshd;
if (strcmp(decoder, "dts-hd") == 0) {
decoder = "dts";
spdif_ctx->use_dts_hd = true;
}
spdif_ctx->codec_id = mp_codec_to_av_codec_id(decoder);
return spdif_ctx->codec_id != AV_CODEC_ID_NONE;
}
static int determine_codec_profile(struct dec_audio *da, AVPacket *pkt)
{
struct spdifContext *spdif_ctx = da->priv;
int profile = FF_PROFILE_UNKNOWN;
AVCodecContext *ctx = NULL;
AVFrame *frame = NULL;
AVCodec *codec = avcodec_find_decoder(spdif_ctx->codec_id);
if (!codec)
goto done;
frame = av_frame_alloc();
if (!frame)
goto done;
ctx = avcodec_alloc_context3(codec);
if (!ctx)
goto done;
if (avcodec_open2(ctx, codec, NULL) < 0) {
av_free(ctx); // don't attempt to avcodec_close() an unopened ctx
ctx = NULL;
goto done;
}
int got_frame = 0;
if (avcodec_decode_audio4(ctx, frame, &got_frame, pkt) < 1 || !got_frame)
goto done;
profile = ctx->profile;
done:
av_frame_free(&frame);
if (ctx)
avcodec_close(ctx);
avcodec_free_context(&ctx);
if (profile == FF_PROFILE_UNKNOWN)
MP_WARN(da, "Failed to parse codec profile.\n");
return profile;
}
static int init_filter(struct dec_audio *da, AVPacket *pkt)
{
struct spdifContext *spdif_ctx = da->priv;
int profile = FF_PROFILE_UNKNOWN;
if (spdif_ctx->codec_id == AV_CODEC_ID_DTS)
profile = determine_codec_profile(da, pkt);
AVFormatContext *lavf_ctx = avformat_alloc_context();
if (!lavf_ctx)
goto fail;
spdif_ctx->lavf_ctx = lavf_ctx;
lavf_ctx->oformat = av_guess_format("spdif", NULL, NULL);
if (!lavf_ctx->oformat)
goto fail;
void *buffer = av_mallocz(OUTBUF_SIZE);
if (!buffer)
abort();
lavf_ctx->pb = avio_alloc_context(buffer, OUTBUF_SIZE, 1, spdif_ctx, NULL,
write_packet, NULL);
if (!lavf_ctx->pb) {
av_free(buffer);
goto fail;
}
// Request minimal buffering (not available on Libav)
#if LIBAVFORMAT_VERSION_MICRO >= 100
lavf_ctx->pb->direct = 1;
#endif
AVStream *stream = avformat_new_stream(lavf_ctx, 0);
if (!stream)
goto fail;
stream->codec->codec_id = spdif_ctx->codec_id;
AVDictionary *format_opts = NULL;
int num_channels = 0;
int sample_format = 0;
int samplerate = 0;
switch (spdif_ctx->codec_id) {
case AV_CODEC_ID_AAC:
audio: cleanup spdif format definitions Before this commit, there was AF_FORMAT_AC3 (the original spdif format, used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS and DTS-HD), which was handled as some sort of superset for AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used IEC61937-framing, but still was handled as something "separate". Technically, all of them are pretty similar, but may use different bitrates. Since digital passthrough pretends to be PCM (just with special headers that wrap digital packets), this is easily detectable by the higher samplerate or higher number of channels, so I don't know why you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs. AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is just a mess. Simplify this by handling all these formats the same way. AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3). All AOs just accept all spdif formats now - whether that works or not is not really clear (seems inconsistent due to earlier attempts to make DTS-HD work). But on the other hand, enabling spdif requires manual user interaction, so it doesn't matter much if initialization fails in slightly less graceful ways if it can't work at all. At a later point, we will support passthrough with ao_pulse. It seems the PulseAudio API wants to know the codec type (or maybe not - feeding it DTS while telling it it's AC3 works), add separate formats for each codecs. While this reminds of the earlier chaos, it's stricter, and most code just uses AF_FORMAT_IS_IEC61937(). Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to include special formats, so that it always describes the fundamental sample format type. This also ensures valid AF formats are never 0 (this was probably broken in one of the earlier commits from today).
2014-09-23 20:44:54 +00:00
sample_format = AF_FORMAT_S_AAC;
samplerate = 48000;
num_channels = 2;
break;
case AV_CODEC_ID_AC3:
audio: cleanup spdif format definitions Before this commit, there was AF_FORMAT_AC3 (the original spdif format, used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS and DTS-HD), which was handled as some sort of superset for AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used IEC61937-framing, but still was handled as something "separate". Technically, all of them are pretty similar, but may use different bitrates. Since digital passthrough pretends to be PCM (just with special headers that wrap digital packets), this is easily detectable by the higher samplerate or higher number of channels, so I don't know why you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs. AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is just a mess. Simplify this by handling all these formats the same way. AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3). All AOs just accept all spdif formats now - whether that works or not is not really clear (seems inconsistent due to earlier attempts to make DTS-HD work). But on the other hand, enabling spdif requires manual user interaction, so it doesn't matter much if initialization fails in slightly less graceful ways if it can't work at all. At a later point, we will support passthrough with ao_pulse. It seems the PulseAudio API wants to know the codec type (or maybe not - feeding it DTS while telling it it's AC3 works), add separate formats for each codecs. While this reminds of the earlier chaos, it's stricter, and most code just uses AF_FORMAT_IS_IEC61937(). Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to include special formats, so that it always describes the fundamental sample format type. This also ensures valid AF formats are never 0 (this was probably broken in one of the earlier commits from today).
2014-09-23 20:44:54 +00:00
sample_format = AF_FORMAT_S_AC3;
samplerate = 48000;
num_channels = 2;
break;
case AV_CODEC_ID_DTS: {
bool is_hd = profile == FF_PROFILE_DTS_HD_HRA ||
profile == FF_PROFILE_DTS_HD_MA;
if (spdif_ctx->use_dts_hd && is_hd) {
av_dict_set(&format_opts, "dtshd_rate", "768000", 0); // 4*192000
sample_format = AF_FORMAT_S_DTSHD;
samplerate = 192000;
num_channels = 2*4;
} else {
sample_format = AF_FORMAT_S_DTS;
samplerate = 48000;
num_channels = 2;
}
break;
}
case AV_CODEC_ID_EAC3:
audio: cleanup spdif format definitions Before this commit, there was AF_FORMAT_AC3 (the original spdif format, used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS and DTS-HD), which was handled as some sort of superset for AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used IEC61937-framing, but still was handled as something "separate". Technically, all of them are pretty similar, but may use different bitrates. Since digital passthrough pretends to be PCM (just with special headers that wrap digital packets), this is easily detectable by the higher samplerate or higher number of channels, so I don't know why you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs. AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is just a mess. Simplify this by handling all these formats the same way. AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3). All AOs just accept all spdif formats now - whether that works or not is not really clear (seems inconsistent due to earlier attempts to make DTS-HD work). But on the other hand, enabling spdif requires manual user interaction, so it doesn't matter much if initialization fails in slightly less graceful ways if it can't work at all. At a later point, we will support passthrough with ao_pulse. It seems the PulseAudio API wants to know the codec type (or maybe not - feeding it DTS while telling it it's AC3 works), add separate formats for each codecs. While this reminds of the earlier chaos, it's stricter, and most code just uses AF_FORMAT_IS_IEC61937(). Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to include special formats, so that it always describes the fundamental sample format type. This also ensures valid AF formats are never 0 (this was probably broken in one of the earlier commits from today).
2014-09-23 20:44:54 +00:00
sample_format = AF_FORMAT_S_EAC3;
samplerate = 192000;
num_channels = 2;
break;
case AV_CODEC_ID_MP3:
audio: cleanup spdif format definitions Before this commit, there was AF_FORMAT_AC3 (the original spdif format, used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS and DTS-HD), which was handled as some sort of superset for AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used IEC61937-framing, but still was handled as something "separate". Technically, all of them are pretty similar, but may use different bitrates. Since digital passthrough pretends to be PCM (just with special headers that wrap digital packets), this is easily detectable by the higher samplerate or higher number of channels, so I don't know why you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs. AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is just a mess. Simplify this by handling all these formats the same way. AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3). All AOs just accept all spdif formats now - whether that works or not is not really clear (seems inconsistent due to earlier attempts to make DTS-HD work). But on the other hand, enabling spdif requires manual user interaction, so it doesn't matter much if initialization fails in slightly less graceful ways if it can't work at all. At a later point, we will support passthrough with ao_pulse. It seems the PulseAudio API wants to know the codec type (or maybe not - feeding it DTS while telling it it's AC3 works), add separate formats for each codecs. While this reminds of the earlier chaos, it's stricter, and most code just uses AF_FORMAT_IS_IEC61937(). Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to include special formats, so that it always describes the fundamental sample format type. This also ensures valid AF formats are never 0 (this was probably broken in one of the earlier commits from today).
2014-09-23 20:44:54 +00:00
sample_format = AF_FORMAT_S_MP3;
samplerate = 48000;
num_channels = 2;
break;
case AV_CODEC_ID_TRUEHD:
audio: cleanup spdif format definitions Before this commit, there was AF_FORMAT_AC3 (the original spdif format, used for AC3 and DTS core), and AF_FORMAT_IEC61937 (used for AC3, DTS and DTS-HD), which was handled as some sort of superset for AF_FORMAT_AC3. There also was AF_FORMAT_MPEG2, which used IEC61937-framing, but still was handled as something "separate". Technically, all of them are pretty similar, but may use different bitrates. Since digital passthrough pretends to be PCM (just with special headers that wrap digital packets), this is easily detectable by the higher samplerate or higher number of channels, so I don't know why you'd need a separate "class" of sample formats (AF_FORMAT_AC3 vs. AF_FORMAT_IEC61937) to distinguish them. Actually, this whole thing is just a mess. Simplify this by handling all these formats the same way. AF_FORMAT_IS_IEC61937() now returns 1 for all spdif formats (even MP3). All AOs just accept all spdif formats now - whether that works or not is not really clear (seems inconsistent due to earlier attempts to make DTS-HD work). But on the other hand, enabling spdif requires manual user interaction, so it doesn't matter much if initialization fails in slightly less graceful ways if it can't work at all. At a later point, we will support passthrough with ao_pulse. It seems the PulseAudio API wants to know the codec type (or maybe not - feeding it DTS while telling it it's AC3 works), add separate formats for each codecs. While this reminds of the earlier chaos, it's stricter, and most code just uses AF_FORMAT_IS_IEC61937(). Also, modify AF_FORMAT_TYPE_MASK (renamed from AF_FORMAT_POINT_MASK) to include special formats, so that it always describes the fundamental sample format type. This also ensures valid AF formats are never 0 (this was probably broken in one of the earlier commits from today).
2014-09-23 20:44:54 +00:00
sample_format = AF_FORMAT_S_TRUEHD;
samplerate = 192000;
num_channels = 8;
break;
default:
abort();
}
mp_audio_set_num_channels(&spdif_ctx->fmt, num_channels);
mp_audio_set_format(&spdif_ctx->fmt, sample_format);
spdif_ctx->fmt.rate = samplerate;
if (avformat_write_header(lavf_ctx, &format_opts) < 0) {
2013-12-21 17:23:59 +00:00
MP_FATAL(da, "libavformat spdif initialization failed.\n");
av_dict_free(&format_opts);
goto fail;
}
av_dict_free(&format_opts);
spdif_ctx->need_close = true;
return 0;
fail:
uninit(da);
return -1;
}
static int decode_packet(struct dec_audio *da, struct mp_audio **out)
{
struct spdifContext *spdif_ctx = da->priv;
spdif_ctx->out_buffer_len = 0;
struct demux_packet *mpkt;
if (demux_read_packet_async(da->header, &mpkt) == 0)
return AD_WAIT;
if (!mpkt)
return AD_EOF;
AVPacket pkt;
mp_set_av_packet(&pkt, mpkt, NULL);
pkt.pts = pkt.dts = 0;
if (mpkt->pts != MP_NOPTS_VALUE) {
da->pts = mpkt->pts;
da->pts_offset = 0;
}
if (!spdif_ctx->lavf_ctx) {
if (init_filter(da, &pkt) < 0)
return AD_ERR;
}
int ret = av_write_frame(spdif_ctx->lavf_ctx, &pkt);
talloc_free(mpkt);
avio_flush(spdif_ctx->lavf_ctx->pb);
if (ret < 0)
return AD_ERR;
int samples = spdif_ctx->out_buffer_len / spdif_ctx->fmt.sstride;
*out = mp_audio_pool_get(da->pool, &spdif_ctx->fmt, samples);
if (!*out)
return AD_ERR;
memcpy((*out)->planes[0], spdif_ctx->out_buffer, spdif_ctx->out_buffer_len);
return 0;
}
static int control(struct dec_audio *da, int cmd, void *arg)
{
return CONTROL_UNKNOWN;
}
static const int codecs[] = {
AV_CODEC_ID_AAC,
AV_CODEC_ID_AC3,
AV_CODEC_ID_DTS,
AV_CODEC_ID_EAC3,
AV_CODEC_ID_MP3,
AV_CODEC_ID_TRUEHD,
AV_CODEC_ID_NONE
};
core: redo how codecs are mapped, remove codecs.conf Use codec names instead of FourCCs to identify codecs. Rewrite how codecs are selected and initialized. Now each decoder exports a list of decoders (and the codec it supports) via add_decoders(). The order matters, and the first decoder for a given decoder is preferred over the other decoders. E.g. all ad_mpg123 decoders are preferred over ad_lavc, because it comes first in the mpcodecs_ad_drivers array. Likewise, decoders within ad_lavc that are enumerated first by libavcodec (using av_codec_next()) are preferred. (This is actually critical to select h264 software decoding by default instead of vdpau. libavcodec and ffmpeg/avconv use the same method to select decoders by default, so we hope this is sane.) The codec names follow libavcodec's codec names as defined by AVCodecDescriptor.name (see libavcodec/codec_desc.c). Some decoders have names different from the canonical codec name. The AVCodecDescriptor API is relatively new, so we need a compatibility layer for older libavcodec versions for codec names that are referenced internally, and which are different from the decoder name. (Add a configure check for that, because checking versions is getting way too messy.) demux/codec_tags.c is generated from the former codecs.conf (minus "special" decoders like vdpau, and excluding the mappings that are the same as the mappings libavformat's exported RIFF tables). It contains all the mappings from FourCCs to codec name. This is needed for demux_mkv, demux_mpg, demux_avi and demux_asf. demux_lavf will set the codec as determined by libavformat, while the other demuxers have to do this on their own, using the mp_set_audio/video_codec_from_tag() functions. Note that the sh_audio/video->format members don't uniquely identify the codec anymore, and sh->codec takes over this role. Replace the --ac/--vc/--afm/--vfm with new --vd/--ad options, which provide cover the functionality of the removed switched. Note: there's no CODECS_FLAG_FLIP flag anymore. This means some obscure container/video combinations (e.g. the sample Film_200_zygo_pro.mov) are played flipped. ffplay/avplay doesn't handle this properly either, so we don't care and blame ffmeg/libav instead.
2013-02-09 14:15:19 +00:00
static void add_decoders(struct mp_decoder_list *list)
{
for (int n = 0; codecs[n] != AV_CODEC_ID_NONE; n++) {
core: redo how codecs are mapped, remove codecs.conf Use codec names instead of FourCCs to identify codecs. Rewrite how codecs are selected and initialized. Now each decoder exports a list of decoders (and the codec it supports) via add_decoders(). The order matters, and the first decoder for a given decoder is preferred over the other decoders. E.g. all ad_mpg123 decoders are preferred over ad_lavc, because it comes first in the mpcodecs_ad_drivers array. Likewise, decoders within ad_lavc that are enumerated first by libavcodec (using av_codec_next()) are preferred. (This is actually critical to select h264 software decoding by default instead of vdpau. libavcodec and ffmpeg/avconv use the same method to select decoders by default, so we hope this is sane.) The codec names follow libavcodec's codec names as defined by AVCodecDescriptor.name (see libavcodec/codec_desc.c). Some decoders have names different from the canonical codec name. The AVCodecDescriptor API is relatively new, so we need a compatibility layer for older libavcodec versions for codec names that are referenced internally, and which are different from the decoder name. (Add a configure check for that, because checking versions is getting way too messy.) demux/codec_tags.c is generated from the former codecs.conf (minus "special" decoders like vdpau, and excluding the mappings that are the same as the mappings libavformat's exported RIFF tables). It contains all the mappings from FourCCs to codec name. This is needed for demux_mkv, demux_mpg, demux_avi and demux_asf. demux_lavf will set the codec as determined by libavformat, while the other demuxers have to do this on their own, using the mp_set_audio/video_codec_from_tag() functions. Note that the sh_audio/video->format members don't uniquely identify the codec anymore, and sh->codec takes over this role. Replace the --ac/--vc/--afm/--vfm with new --vd/--ad options, which provide cover the functionality of the removed switched. Note: there's no CODECS_FLAG_FLIP flag anymore. This means some obscure container/video combinations (e.g. the sample Film_200_zygo_pro.mov) are played flipped. ffplay/avplay doesn't handle this properly either, so we don't care and blame ffmeg/libav instead.
2013-02-09 14:15:19 +00:00
const char *format = mp_codec_from_av_codec_id(codecs[n]);
if (format) {
mp_add_decoder(list, "spdif", format, format,
"libavformat/spdifenc audio pass-through decoder");
}
}
mp_add_decoder(list, "spdif", "dts", "dts-hd",
"libavformat/spdifenc audio pass-through decoder");
core: redo how codecs are mapped, remove codecs.conf Use codec names instead of FourCCs to identify codecs. Rewrite how codecs are selected and initialized. Now each decoder exports a list of decoders (and the codec it supports) via add_decoders(). The order matters, and the first decoder for a given decoder is preferred over the other decoders. E.g. all ad_mpg123 decoders are preferred over ad_lavc, because it comes first in the mpcodecs_ad_drivers array. Likewise, decoders within ad_lavc that are enumerated first by libavcodec (using av_codec_next()) are preferred. (This is actually critical to select h264 software decoding by default instead of vdpau. libavcodec and ffmpeg/avconv use the same method to select decoders by default, so we hope this is sane.) The codec names follow libavcodec's codec names as defined by AVCodecDescriptor.name (see libavcodec/codec_desc.c). Some decoders have names different from the canonical codec name. The AVCodecDescriptor API is relatively new, so we need a compatibility layer for older libavcodec versions for codec names that are referenced internally, and which are different from the decoder name. (Add a configure check for that, because checking versions is getting way too messy.) demux/codec_tags.c is generated from the former codecs.conf (minus "special" decoders like vdpau, and excluding the mappings that are the same as the mappings libavformat's exported RIFF tables). It contains all the mappings from FourCCs to codec name. This is needed for demux_mkv, demux_mpg, demux_avi and demux_asf. demux_lavf will set the codec as determined by libavformat, while the other demuxers have to do this on their own, using the mp_set_audio/video_codec_from_tag() functions. Note that the sh_audio/video->format members don't uniquely identify the codec anymore, and sh->codec takes over this role. Replace the --ac/--vc/--afm/--vfm with new --vd/--ad options, which provide cover the functionality of the removed switched. Note: there's no CODECS_FLAG_FLIP flag anymore. This means some obscure container/video combinations (e.g. the sample Film_200_zygo_pro.mov) are played flipped. ffplay/avplay doesn't handle this properly either, so we don't care and blame ffmeg/libav instead.
2013-02-09 14:15:19 +00:00
}
const struct ad_functions ad_spdif = {
.name = "spdif",
.add_decoders = add_decoders,
.init = init,
.uninit = uninit,
.control = control,
.decode_packet = decode_packet,
};