1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-01 12:22:22 +00:00
mpv/liba52/imdct.c

1598 lines
47 KiB
C
Raw Normal View History

/*
* imdct.c
* Copyright (C) 2000-2001 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
* See http://liba52.sourceforge.net/ for updates.
*
* Modified for use with MPlayer, changes contained in liba52_changes.diff.
* detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/
* $Id$
*
* a52dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* a52dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* SSE optimizations from Michael Niedermayer (michaelni@gmx.at)
* 3DNOW optimizations from Nick Kurshev <nickols_k@mail.ru>
* michael did port them from libac3 (untested, perhaps totally broken)
* AltiVec optimizations from Romain Dolbeau (romain@dolbeau.org)
*/
#include "config.h"
#include <math.h>
#include <stdio.h>
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795029
#endif
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#include "mm_accel.h"
#include "mangle.h"
#ifdef RUNTIME_CPUDETECT
#undef HAVE_3DNOWEX
#endif
#define USE_AC3_C
void (* imdct_256) (sample_t data[], sample_t delay[], sample_t bias);
void (* imdct_512) (sample_t data[], sample_t delay[], sample_t bias);
typedef struct complex_s {
sample_t real;
sample_t imag;
} complex_t;
static void fft_128p(complex_t *a);
static const int pm128[128] attribute_used __attribute__((aligned(16))) =
{
0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120,
4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124,
2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122,
6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126,
1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121,
5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125,
3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123,
7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127
};
/* 128 point bit-reverse LUT */
static uint8_t attribute_used bit_reverse_512[] = {
0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
static uint8_t bit_reverse_256[] = {
0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e,
0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39,
0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d,
0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
#if defined(ARCH_X86) || defined(ARCH_X86_64)
// NOTE: SSE needs 16byte alignment or it will segfault
//
static complex_t __attribute__((aligned(16))) buf[128];
static float __attribute__((aligned(16))) sseSinCos1c[256];
static float __attribute__((aligned(16))) sseSinCos1d[256];
static float attribute_used __attribute__((aligned(16))) ps111_1[4]={1,1,1,-1};
//static float __attribute__((aligned(16))) sseW0[4];
static float __attribute__((aligned(16))) sseW1[8];
static float __attribute__((aligned(16))) sseW2[16];
static float __attribute__((aligned(16))) sseW3[32];
static float __attribute__((aligned(16))) sseW4[64];
static float __attribute__((aligned(16))) sseW5[128];
static float __attribute__((aligned(16))) sseW6[256];
static float __attribute__((aligned(16))) *sseW[7]=
{NULL /*sseW0*/,sseW1,sseW2,sseW3,sseW4,sseW5,sseW6};
static float __attribute__((aligned(16))) sseWindow[512];
#else
static complex_t __attribute__((aligned(16))) buf[128];
#endif
/* Twiddle factor LUT */
static complex_t __attribute__((aligned(16))) w_1[1];
static complex_t __attribute__((aligned(16))) w_2[2];
static complex_t __attribute__((aligned(16))) w_4[4];
static complex_t __attribute__((aligned(16))) w_8[8];
static complex_t __attribute__((aligned(16))) w_16[16];
static complex_t __attribute__((aligned(16))) w_32[32];
static complex_t __attribute__((aligned(16))) w_64[64];
static complex_t __attribute__((aligned(16))) * w[7] = {w_1, w_2, w_4, w_8, w_16, w_32, w_64};
/* Twiddle factors for IMDCT */
static sample_t __attribute__((aligned(16))) xcos1[128];
static sample_t __attribute__((aligned(16))) xsin1[128];
static sample_t __attribute__((aligned(16))) xcos2[64];
static sample_t __attribute__((aligned(16))) xsin2[64];
/* Windowing function for Modified DCT - Thank you acroread */
sample_t imdct_window[] = {
0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443,
0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061,
0.01166, 0.01279, 0.01399, 0.01526, 0.01662, 0.01806, 0.01959, 0.02121,
0.02292, 0.02472, 0.02662, 0.02863, 0.03073, 0.03294, 0.03527, 0.03770,
0.04025, 0.04292, 0.04571, 0.04862, 0.05165, 0.05481, 0.05810, 0.06153,
0.06508, 0.06878, 0.07261, 0.07658, 0.08069, 0.08495, 0.08935, 0.09389,
0.09859, 0.10343, 0.10842, 0.11356, 0.11885, 0.12429, 0.12988, 0.13563,
0.14152, 0.14757, 0.15376, 0.16011, 0.16661, 0.17325, 0.18005, 0.18699,
0.19407, 0.20130, 0.20867, 0.21618, 0.22382, 0.23161, 0.23952, 0.24757,
0.25574, 0.26404, 0.27246, 0.28100, 0.28965, 0.29841, 0.30729, 0.31626,
0.32533, 0.33450, 0.34376, 0.35311, 0.36253, 0.37204, 0.38161, 0.39126,
0.40096, 0.41072, 0.42054, 0.43040, 0.44030, 0.45023, 0.46020, 0.47019,
0.48020, 0.49022, 0.50025, 0.51028, 0.52031, 0.53033, 0.54033, 0.55031,
0.56026, 0.57019, 0.58007, 0.58991, 0.59970, 0.60944, 0.61912, 0.62873,
0.63827, 0.64774, 0.65713, 0.66643, 0.67564, 0.68476, 0.69377, 0.70269,
0.71150, 0.72019, 0.72877, 0.73723, 0.74557, 0.75378, 0.76186, 0.76981,
0.77762, 0.78530, 0.79283, 0.80022, 0.80747, 0.81457, 0.82151, 0.82831,
0.83496, 0.84145, 0.84779, 0.85398, 0.86001, 0.86588, 0.87160, 0.87716,
0.88257, 0.88782, 0.89291, 0.89785, 0.90264, 0.90728, 0.91176, 0.91610,
0.92028, 0.92432, 0.92822, 0.93197, 0.93558, 0.93906, 0.94240, 0.94560,
0.94867, 0.95162, 0.95444, 0.95713, 0.95971, 0.96217, 0.96451, 0.96674,
0.96887, 0.97089, 0.97281, 0.97463, 0.97635, 0.97799, 0.97953, 0.98099,
0.98236, 0.98366, 0.98488, 0.98602, 0.98710, 0.98811, 0.98905, 0.98994,
0.99076, 0.99153, 0.99225, 0.99291, 0.99353, 0.99411, 0.99464, 0.99513,
0.99558, 0.99600, 0.99639, 0.99674, 0.99706, 0.99736, 0.99763, 0.99788,
0.99811, 0.99831, 0.99850, 0.99867, 0.99882, 0.99895, 0.99908, 0.99919,
0.99929, 0.99938, 0.99946, 0.99953, 0.99959, 0.99965, 0.99969, 0.99974,
0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993,
0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999,
0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 };
static inline void swap_cmplx(complex_t *a, complex_t *b)
{
complex_t tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
static inline complex_t cmplx_mult(complex_t a, complex_t b)
{
complex_t ret;
ret.real = a.real * b.real - a.imag * b.imag;
ret.imag = a.real * b.imag + a.imag * b.real;
return ret;
}
void
imdct_do_512(sample_t data[],sample_t delay[], sample_t bias)
{
int i;
#ifndef USE_AC3_C
int k;
int p,q;
int m;
int two_m;
int two_m_plus_one;
sample_t tmp_b_i;
sample_t tmp_b_r;
#endif
sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
/* 512 IMDCT with source and dest data in 'data' */
/* Pre IFFT complex multiply plus IFFT cmplx conjugate & reordering*/
for( i=0; i < 128; i++) {
/* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
#ifdef USE_AC3_C
int j= pm128[i];
#else
int j= bit_reverse_512[i];
#endif
buf[i].real = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]);
buf[i].imag = -1.0 * ((data[2*j] * xcos1[j]) + (data[256-2*j-1] * xsin1[j]));
}
/* FFT Merge */
/* unoptimized variant
for (m=1; m < 7; m++) {
if(m)
two_m = (1 << m);
else
two_m = 1;
two_m_plus_one = (1 << (m+1));
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k++) {
p = k + i;
q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
*/
#ifdef USE_AC3_C
fft_128p (&buf[0]);
#else
/* 1. iteration */
for(i = 0; i < 128; i += 2) {
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+1].real;
tmp_b_i = buf[i+1].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+1].real = tmp_a_r - tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
}
/* 2. iteration */
// Note w[1]={{1,0}, {0,-1}}
for(i = 0; i < 128; i += 4) {
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+2].real;
tmp_b_i = buf[i+2].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+2].real = tmp_a_r - tmp_b_r;
buf[i+2].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+1].real;
tmp_a_i = buf[i+1].imag;
tmp_b_r = buf[i+3].imag;
tmp_b_i = buf[i+3].real;
buf[i+1].real = tmp_a_r + tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
buf[i+3].real = tmp_a_r - tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
}
/* 3. iteration */
for(i = 0; i < 128; i += 8) {
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+4].real;
tmp_b_i = buf[i+4].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+4].real = tmp_a_r - tmp_b_r;
buf[i+4].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[1+i].real;
tmp_a_i = buf[1+i].imag;
tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
buf[1+i].real = tmp_a_r + tmp_b_r;
buf[1+i].imag = tmp_a_i + tmp_b_i;
buf[i+5].real = tmp_a_r - tmp_b_r;
buf[i+5].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+2].real;
tmp_a_i = buf[i+2].imag;
tmp_b_r = buf[i+6].imag;
tmp_b_i = - buf[i+6].real;
buf[i+2].real = tmp_a_r + tmp_b_r;
buf[i+2].imag = tmp_a_i + tmp_b_i;
buf[i+6].real = tmp_a_r - tmp_b_r;
buf[i+6].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+3].real;
tmp_a_i = buf[i+3].imag;
tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
buf[i+3].real = tmp_a_r + tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
buf[i+7].real = tmp_a_r - tmp_b_r;
buf[i+7].imag = tmp_a_i - tmp_b_i;
}
/* 4-7. iterations */
for (m=3; m < 7; m++) {
two_m = (1 << m);
two_m_plus_one = two_m<<1;
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k++) {
int p = k + i;
int q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
#endif
/* Post IFFT complex multiply plus IFFT complex conjugate*/
for( i=0; i < 128; i++) {
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
tmp_a_r = buf[i].real;
tmp_a_i = -1.0 * buf[i].imag;
buf[i].real =(tmp_a_r * xcos1[i]) - (tmp_a_i * xsin1[i]);
buf[i].imag =(tmp_a_r * xsin1[i]) + (tmp_a_i * xcos1[i]);
}
data_ptr = data;
delay_ptr = delay;
window_ptr = imdct_window;
/* Window and convert to real valued signal */
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[64+i].imag * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias;
}
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[i].real * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[128-i-1].imag * *window_ptr++ + *delay_ptr++ + bias;
}
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
for(i=0; i< 64; i++) {
*delay_ptr++ = -buf[64+i].real * *--window_ptr;
*delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
}
for(i=0; i<64; i++) {
*delay_ptr++ = buf[i].imag * *--window_ptr;
*delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
}
}
#ifdef HAVE_ALTIVEC
#ifndef SYS_DARWIN
#include <altivec.h>
#endif
// used to build registers permutation vectors (vcprm)
// the 's' are for words in the _s_econd vector
#define WORD_0 0x00,0x01,0x02,0x03
#define WORD_1 0x04,0x05,0x06,0x07
#define WORD_2 0x08,0x09,0x0a,0x0b
#define WORD_3 0x0c,0x0d,0x0e,0x0f
#define WORD_s0 0x10,0x11,0x12,0x13
#define WORD_s1 0x14,0x15,0x16,0x17
#define WORD_s2 0x18,0x19,0x1a,0x1b
#define WORD_s3 0x1c,0x1d,0x1e,0x1f
#ifdef SYS_DARWIN
#define vcprm(a,b,c,d) (const vector unsigned char)(WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d)
#else
#define vcprm(a,b,c,d) (const vector unsigned char){WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d}
#endif
// vcprmle is used to keep the same index as in the SSE version.
// it's the same as vcprm, with the index inversed
// ('le' is Little Endian)
#define vcprmle(a,b,c,d) vcprm(d,c,b,a)
// used to build inverse/identity vectors (vcii)
// n is _n_egative, p is _p_ositive
#define FLOAT_n -1.
#define FLOAT_p 1.
#ifdef SYS_DARWIN
#define vcii(a,b,c,d) (const vector float)(FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d)
#else
#define vcii(a,b,c,d) (const vector float){FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d}
#endif
#ifdef SYS_DARWIN
#define FOUROF(a) (a)
#else
#define FOUROF(a) {a,a,a,a}
#endif
void
imdct_do_512_altivec(sample_t data[],sample_t delay[], sample_t bias)
{
int i;
int k;
int p,q;
int m;
long two_m;
long two_m_plus_one;
sample_t tmp_b_i;
sample_t tmp_b_r;
sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
/* 512 IMDCT with source and dest data in 'data' */
/* Pre IFFT complex multiply plus IFFT cmplx conjugate & reordering*/
for( i=0; i < 128; i++) {
/* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
int j= bit_reverse_512[i];
buf[i].real = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]);
buf[i].imag = -1.0 * ((data[2*j] * xcos1[j]) + (data[256-2*j-1] * xsin1[j]));
}
/* 1. iteration */
for(i = 0; i < 128; i += 2) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+1].real;
tmp_b_i = buf[i+1].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+1].real = tmp_a_r - tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
#else
vector float temp, bufv;
bufv = vec_ld(i << 3, (float*)buf);
temp = vec_perm(bufv, bufv, vcprm(2,3,0,1));
bufv = vec_madd(bufv, vcii(p,p,n,n), temp);
vec_st(bufv, i << 3, (float*)buf);
#endif
}
/* 2. iteration */
// Note w[1]={{1,0}, {0,-1}}
for(i = 0; i < 128; i += 4) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+2].real;
tmp_b_i = buf[i+2].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+2].real = tmp_a_r - tmp_b_r;
buf[i+2].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+1].real;
tmp_a_i = buf[i+1].imag;
/* WARNING: im <-> re here ! */
tmp_b_r = buf[i+3].imag;
tmp_b_i = buf[i+3].real;
buf[i+1].real = tmp_a_r + tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
buf[i+3].real = tmp_a_r - tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
#else
vector float buf01, buf23, temp1, temp2;
buf01 = vec_ld((i + 0) << 3, (float*)buf);
buf23 = vec_ld((i + 2) << 3, (float*)buf);
buf23 = vec_perm(buf23,buf23,vcprm(0,1,3,2));
temp1 = vec_madd(buf23, vcii(p,p,p,n), buf01);
temp2 = vec_madd(buf23, vcii(n,n,n,p), buf01);
vec_st(temp1, (i + 0) << 3, (float*)buf);
vec_st(temp2, (i + 2) << 3, (float*)buf);
#endif
}
/* 3. iteration */
for(i = 0; i < 128; i += 8) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+4].real;
tmp_b_i = buf[i+4].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+4].real = tmp_a_r - tmp_b_r;
buf[i+4].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[1+i].real;
tmp_a_i = buf[1+i].imag;
tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
buf[1+i].real = tmp_a_r + tmp_b_r;
buf[1+i].imag = tmp_a_i + tmp_b_i;
buf[i+5].real = tmp_a_r - tmp_b_r;
buf[i+5].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+2].real;
tmp_a_i = buf[i+2].imag;
/* WARNING re <-> im & sign */
tmp_b_r = buf[i+6].imag;
tmp_b_i = - buf[i+6].real;
buf[i+2].real = tmp_a_r + tmp_b_r;
buf[i+2].imag = tmp_a_i + tmp_b_i;
buf[i+6].real = tmp_a_r - tmp_b_r;
buf[i+6].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+3].real;
tmp_a_i = buf[i+3].imag;
tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
buf[i+3].real = tmp_a_r + tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
buf[i+7].real = tmp_a_r - tmp_b_r;
buf[i+7].imag = tmp_a_i - tmp_b_i;
#else
vector float buf01, buf23, buf45, buf67;
buf01 = vec_ld((i + 0) << 3, (float*)buf);
buf23 = vec_ld((i + 2) << 3, (float*)buf);
tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
buf[i+5].real = tmp_b_r;
buf[i+5].imag = tmp_b_i;
tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
buf[i+7].real = tmp_b_r;
buf[i+7].imag = tmp_b_i;
buf23 = vec_ld((i + 2) << 3, (float*)buf);
buf45 = vec_ld((i + 4) << 3, (float*)buf);
buf67 = vec_ld((i + 6) << 3, (float*)buf);
buf67 = vec_perm(buf67, buf67, vcprm(1,0,2,3));
vec_st(vec_add(buf01, buf45), (i + 0) << 3, (float*)buf);
vec_st(vec_madd(buf67, vcii(p,n,p,p), buf23), (i + 2) << 3, (float*)buf);
vec_st(vec_sub(buf01, buf45), (i + 4) << 3, (float*)buf);
vec_st(vec_nmsub(buf67, vcii(p,n,p,p), buf23), (i + 6) << 3, (float*)buf);
#endif
}
/* 4-7. iterations */
for (m=3; m < 7; m++) {
two_m = (1 << m);
two_m_plus_one = two_m<<1;
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k+=2) {
#if 0
int p = k + i;
int q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r =
buf[q].real * w[m][k].real -
buf[q].imag * w[m][k].imag;
tmp_b_i =
buf[q].imag * w[m][k].real +
buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[(p + 1)].real;
tmp_a_i = buf[(p + 1)].imag;
tmp_b_r =
buf[(q + 1)].real * w[m][(k + 1)].real -
buf[(q + 1)].imag * w[m][(k + 1)].imag;
tmp_b_i =
buf[(q + 1)].imag * w[m][(k + 1)].real +
buf[(q + 1)].real * w[m][(k + 1)].imag;
buf[(p + 1)].real = tmp_a_r + tmp_b_r;
buf[(p + 1)].imag = tmp_a_i + tmp_b_i;
buf[(q + 1)].real = tmp_a_r - tmp_b_r;
buf[(q + 1)].imag = tmp_a_i - tmp_b_i;
#else
int p = k + i;
int q = p + two_m;
vector float vecp, vecq, vecw, temp1, temp2, temp3, temp4;
const vector float vczero = (const vector float)FOUROF(0.);
// first compute buf[q] and buf[q+1]
vecq = vec_ld(q << 3, (float*)buf);
vecw = vec_ld(0, (float*)&(w[m][k]));
temp1 = vec_madd(vecq, vecw, vczero);
temp2 = vec_perm(vecq, vecq, vcprm(1,0,3,2));
temp2 = vec_madd(temp2, vecw, vczero);
temp3 = vec_perm(temp1, temp2, vcprm(0,s0,2,s2));
temp4 = vec_perm(temp1, temp2, vcprm(1,s1,3,s3));
vecq = vec_madd(temp4, vcii(n,p,n,p), temp3);
// then butterfly with buf[p] and buf[p+1]
vecp = vec_ld(p << 3, (float*)buf);
temp1 = vec_add(vecp, vecq);
temp2 = vec_sub(vecp, vecq);
vec_st(temp1, p << 3, (float*)buf);
vec_st(temp2, q << 3, (float*)buf);
#endif
}
}
}
/* Post IFFT complex multiply plus IFFT complex conjugate*/
for( i=0; i < 128; i+=4) {
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
#if 0
tmp_a_r = buf[(i + 0)].real;
tmp_a_i = -1.0 * buf[(i + 0)].imag;
buf[(i + 0)].real =
(tmp_a_r * xcos1[(i + 0)]) - (tmp_a_i * xsin1[(i + 0)]);
buf[(i + 0)].imag =
(tmp_a_r * xsin1[(i + 0)]) + (tmp_a_i * xcos1[(i + 0)]);
tmp_a_r = buf[(i + 1)].real;
tmp_a_i = -1.0 * buf[(i + 1)].imag;
buf[(i + 1)].real =
(tmp_a_r * xcos1[(i + 1)]) - (tmp_a_i * xsin1[(i + 1)]);
buf[(i + 1)].imag =
(tmp_a_r * xsin1[(i + 1)]) + (tmp_a_i * xcos1[(i + 1)]);
tmp_a_r = buf[(i + 2)].real;
tmp_a_i = -1.0 * buf[(i + 2)].imag;
buf[(i + 2)].real =
(tmp_a_r * xcos1[(i + 2)]) - (tmp_a_i * xsin1[(i + 2)]);
buf[(i + 2)].imag =
(tmp_a_r * xsin1[(i + 2)]) + (tmp_a_i * xcos1[(i + 2)]);
tmp_a_r = buf[(i + 3)].real;
tmp_a_i = -1.0 * buf[(i + 3)].imag;
buf[(i + 3)].real =
(tmp_a_r * xcos1[(i + 3)]) - (tmp_a_i * xsin1[(i + 3)]);
buf[(i + 3)].imag =
(tmp_a_r * xsin1[(i + 3)]) + (tmp_a_i * xcos1[(i + 3)]);
#else
vector float bufv_0, bufv_2, cosv, sinv, temp1, temp2;
vector float temp0022, temp1133, tempCS01;
const vector float vczero = (const vector float)FOUROF(0.);
bufv_0 = vec_ld((i + 0) << 3, (float*)buf);
bufv_2 = vec_ld((i + 2) << 3, (float*)buf);
cosv = vec_ld(i << 2, xcos1);
sinv = vec_ld(i << 2, xsin1);
temp0022 = vec_perm(bufv_0, bufv_0, vcprm(0,0,2,2));
temp1133 = vec_perm(bufv_0, bufv_0, vcprm(1,1,3,3));
tempCS01 = vec_perm(cosv, sinv, vcprm(0,s0,1,s1));
temp1 = vec_madd(temp0022, tempCS01, vczero);
tempCS01 = vec_perm(cosv, sinv, vcprm(s0,0,s1,1));
temp2 = vec_madd(temp1133, tempCS01, vczero);
bufv_0 = vec_madd(temp2, vcii(p,n,p,n), temp1);
vec_st(bufv_0, (i + 0) << 3, (float*)buf);
/* idem with bufv_2 and high-order cosv/sinv */
temp0022 = vec_perm(bufv_2, bufv_2, vcprm(0,0,2,2));
temp1133 = vec_perm(bufv_2, bufv_2, vcprm(1,1,3,3));
tempCS01 = vec_perm(cosv, sinv, vcprm(2,s2,3,s3));
temp1 = vec_madd(temp0022, tempCS01, vczero);
tempCS01 = vec_perm(cosv, sinv, vcprm(s2,2,s3,3));
temp2 = vec_madd(temp1133, tempCS01, vczero);
bufv_2 = vec_madd(temp2, vcii(p,n,p,n), temp1);
vec_st(bufv_2, (i + 2) << 3, (float*)buf);
#endif
}
data_ptr = data;
delay_ptr = delay;
window_ptr = imdct_window;
/* Window and convert to real valued signal */
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[64+i].imag * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias;
}
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[i].real * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[128-i-1].imag * *window_ptr++ + *delay_ptr++ + bias;
}
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
for(i=0; i< 64; i++) {
*delay_ptr++ = -buf[64+i].real * *--window_ptr;
*delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
}
for(i=0; i<64; i++) {
*delay_ptr++ = buf[i].imag * *--window_ptr;
*delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
}
}
#endif
// Stuff below this line is borrowed from libac3
#include "srfftp.h"
#if defined(ARCH_X86) || defined(ARCH_X86_64)
#ifndef HAVE_3DNOW
#define HAVE_3DNOW 1
#endif
#include "srfftp_3dnow.h"
const i_cmplx_t x_plus_minus_3dnow __attribute__ ((aligned (8))) = {{ 0x00000000UL, 0x80000000UL }};
const i_cmplx_t x_minus_plus_3dnow __attribute__ ((aligned (8))) = {{ 0x80000000UL, 0x00000000UL }};
const complex_t HSQRT2_3DNOW __attribute__ ((aligned (8))) = { 0.707106781188, 0.707106781188 };
#undef HAVE_3DNOWEX
#include "imdct_3dnow.h"
#define HAVE_3DNOWEX
#include "imdct_3dnow.h"
void
imdct_do_512_sse(sample_t data[],sample_t delay[], sample_t bias)
{
/* int i,k;
int p,q;*/
int m;
long two_m;
long two_m_plus_one;
long two_m_plus_one_shl3;
complex_t *buf_offset;
/* sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t tmp_b_i;
sample_t tmp_b_r;*/
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
/* 512 IMDCT with source and dest data in 'data' */
/* see the c version (dct_do_512()), its allmost identical, just in C */
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
/* Bit reversed shuffling */
asm volatile(
"xor %%"REG_S", %%"REG_S" \n\t"
"lea "MANGLE(bit_reverse_512)", %%"REG_a"\n\t"
"mov $1008, %%"REG_D" \n\t"
"push %%"REG_BP" \n\t" //use ebp without telling gcc
".balign 16 \n\t"
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // XXXI
"movhps 8(%0, %%"REG_D"), %%xmm0 \n\t" // RXXI
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // XXXi
"movhps (%0, %%"REG_D"), %%xmm1 \n\t" // rXXi
"shufps $0x33, %%xmm1, %%xmm0 \n\t" // irIR
"movaps "MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm2\n\t"
"mulps %%xmm0, %%xmm2 \n\t"
"shufps $0xB1, %%xmm0, %%xmm0 \n\t" // riRI
"mulps "MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
"subps %%xmm0, %%xmm2 \n\t"
"movzb (%%"REG_a"), %%"REG_d" \n\t"
"movzb 1(%%"REG_a"), %%"REG_BP" \n\t"
"movlps %%xmm2, (%1, %%"REG_d", 8) \n\t"
"movhps %%xmm2, (%1, %%"REG_BP", 8) \n\t"
"add $16, %%"REG_S" \n\t"
"add $2, %%"REG_a" \n\t" // avoid complex addressing for P4 crap
"sub $16, %%"REG_D" \n\t"
"jnc 1b \n\t"
"pop %%"REG_BP" \n\t"//no we didnt touch ebp *g*
:: "b" (data), "c" (buf)
: "%"REG_S, "%"REG_D, "%"REG_a, "%"REG_d
);
/* FFT Merge */
/* unoptimized variant
for (m=1; m < 7; m++) {
if(m)
two_m = (1 << m);
else
two_m = 1;
two_m_plus_one = (1 << (m+1));
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k++) {
p = k + i;
q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
*/
/* 1. iteration */
// Note w[0][0]={1,0}
asm volatile(
"xorps %%xmm1, %%xmm1 \n\t"
"xorps %%xmm2, %%xmm2 \n\t"
"mov %0, %%"REG_S" \n\t"
".balign 16 \n\t"
"1: \n\t"
"movlps (%%"REG_S"), %%xmm0\n\t" //buf[p]
"movlps 8(%%"REG_S"), %%xmm1\n\t" //buf[q]
"movhps (%%"REG_S"), %%xmm0\n\t" //buf[p]
"movhps 8(%%"REG_S"), %%xmm2\n\t" //buf[q]
"addps %%xmm1, %%xmm0 \n\t"
"subps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%%"REG_S")\n\t"
"add $16, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 2. iteration */
// Note w[1]={{1,0}, {0,-1}}
asm volatile(
"movaps "MANGLE(ps111_1)", %%xmm7\n\t" // 1,1,1,-1
"mov %0, %%"REG_S" \n\t"
".balign 16 \n\t"
"1: \n\t"
"movaps 16(%%"REG_S"), %%xmm2 \n\t" //r2,i2,r3,i3
"shufps $0xB4, %%xmm2, %%xmm2 \n\t" //r2,i2,i3,r3
"mulps %%xmm7, %%xmm2 \n\t" //r2,i2,i3,-r3
"movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
"movaps (%%"REG_S"), %%xmm1 \n\t" //r0,i0,r1,i1
"addps %%xmm2, %%xmm0 \n\t"
"subps %%xmm2, %%xmm1 \n\t"
"movaps %%xmm0, (%%"REG_S") \n\t"
"movaps %%xmm1, 16(%%"REG_S") \n\t"
"add $32, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 3. iteration */
/*
Note sseW2+0={1,1,sqrt(2),sqrt(2))
Note sseW2+16={0,0,sqrt(2),-sqrt(2))
Note sseW2+32={0,0,-sqrt(2),-sqrt(2))
Note sseW2+48={1,-1,sqrt(2),-sqrt(2))
*/
asm volatile(
"movaps 48+"MANGLE(sseW2)", %%xmm6\n\t"
"movaps 16+"MANGLE(sseW2)", %%xmm7\n\t"
"xorps %%xmm5, %%xmm5 \n\t"
"xorps %%xmm2, %%xmm2 \n\t"
"mov %0, %%"REG_S" \n\t"
".balign 16 \n\t"
"1: \n\t"
"movaps 32(%%"REG_S"), %%xmm2 \n\t" //r4,i4,r5,i5
"movaps 48(%%"REG_S"), %%xmm3 \n\t" //r6,i6,r7,i7
"movaps "MANGLE(sseW2)", %%xmm4 \n\t" //r4,i4,r5,i5
"movaps 32+"MANGLE(sseW2)", %%xmm5\n\t" //r6,i6,r7,i7
"mulps %%xmm2, %%xmm4 \n\t"
"mulps %%xmm3, %%xmm5 \n\t"
"shufps $0xB1, %%xmm2, %%xmm2 \n\t" //i4,r4,i5,r5
"shufps $0xB1, %%xmm3, %%xmm3 \n\t" //i6,r6,i7,r7
"mulps %%xmm6, %%xmm3 \n\t"
"mulps %%xmm7, %%xmm2 \n\t"
"movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
"movaps 16(%%"REG_S"), %%xmm1 \n\t" //r2,i2,r3,i3
"addps %%xmm4, %%xmm2 \n\t"
"addps %%xmm5, %%xmm3 \n\t"
"movaps %%xmm2, %%xmm4 \n\t"
"movaps %%xmm3, %%xmm5 \n\t"
"addps %%xmm0, %%xmm2 \n\t"
"addps %%xmm1, %%xmm3 \n\t"
"subps %%xmm4, %%xmm0 \n\t"
"subps %%xmm5, %%xmm1 \n\t"
"movaps %%xmm2, (%%"REG_S") \n\t"
"movaps %%xmm3, 16(%%"REG_S") \n\t"
"movaps %%xmm0, 32(%%"REG_S") \n\t"
"movaps %%xmm1, 48(%%"REG_S") \n\t"
"add $64, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 4-7. iterations */
for (m=3; m < 7; m++) {
two_m = (1 << m);
two_m_plus_one = two_m<<1;
two_m_plus_one_shl3 = (two_m_plus_one<<3);
buf_offset = buf+128;
asm volatile(
"mov %0, %%"REG_S" \n\t"
".balign 16 \n\t"
"1: \n\t"
"xor %%"REG_D", %%"REG_D" \n\t" // k
"lea (%%"REG_S", %3), %%"REG_d" \n\t"
"2: \n\t"
"movaps (%%"REG_d", %%"REG_D"), %%xmm1 \n\t"
"movaps (%4, %%"REG_D", 2), %%xmm2 \n\t"
"mulps %%xmm1, %%xmm2 \n\t"
"shufps $0xB1, %%xmm1, %%xmm1 \n\t"
"mulps 16(%4, %%"REG_D", 2), %%xmm1 \n\t"
"movaps (%%"REG_S", %%"REG_D"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm1 \n\t"
"movaps %%xmm1, %%xmm2 \n\t"
"addps %%xmm0, %%xmm1 \n\t"
"subps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm1, (%%"REG_S", %%"REG_D") \n\t"
"movaps %%xmm0, (%%"REG_d", %%"REG_D") \n\t"
"add $16, %%"REG_D" \n\t"
"cmp %3, %%"REG_D" \n\t" //FIXME (opt) count against 0
"jb 2b \n\t"
"add %2, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "m" (buf_offset), "m" (two_m_plus_one_shl3), "r" (two_m<<3),
"r" (sseW[m])
: "%"REG_S, "%"REG_D, "%"REG_d
);
}
/* Post IFFT complex multiply plus IFFT complex conjugate*/
asm volatile(
"mov $-1024, %%"REG_S" \n\t"
".balign 16 \n\t"
"1: \n\t"
"movaps (%0, %%"REG_S"), %%xmm0 \n\t"
"movaps (%0, %%"REG_S"), %%xmm1 \n\t"
"shufps $0xB1, %%xmm0, %%xmm0 \n\t"
"mulps 1024+"MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm1\n\t"
"mulps 1024+"MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
"addps %%xmm1, %%xmm0 \n\t"
"movaps %%xmm0, (%0, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
" jnz 1b \n\t"
:: "r" (buf+128)
: "%"REG_S
);
data_ptr = data;
delay_ptr = delay;
window_ptr = imdct_window;
/* Window and convert to real valued signal */
asm volatile(
"xor %%"REG_D", %%"REG_D" \n\t" // 0
"xor %%"REG_S", %%"REG_S" \n\t" // 0
"movss %3, %%xmm2 \n\t" // bias
"shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
".balign 16 \n\t"
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
"shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps "MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"addps (%2, %%"REG_S"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf+64), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
: "%"REG_S, "%"REG_D
);
data_ptr+=128;
delay_ptr+=128;
// window_ptr+=128;
asm volatile(
"mov $1024, %%"REG_D" \n\t" // 512
"xor %%"REG_S", %%"REG_S" \n\t" // 0
"movss %3, %%xmm2 \n\t" // bias
"shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
".balign 16 \n\t"
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
"shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 512+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"addps (%2, %%"REG_S"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
: "%"REG_S, "%"REG_D
);
data_ptr+=128;
// window_ptr+=128;
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
asm volatile(
"xor %%"REG_D", %%"REG_D" \n\t" // 0
"xor %%"REG_S", %%"REG_S" \n\t" // 0
".balign 16 \n\t"
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
"shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 1024+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf+64), "r" (delay_ptr)
: "%"REG_S, "%"REG_D
);
delay_ptr+=128;
// window_ptr-=128;
asm volatile(
"mov $1024, %%"REG_D" \n\t" // 1024
"xor %%"REG_S", %%"REG_S" \n\t" // 0
".balign 16 \n\t"
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
"shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 1536+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf), "r" (delay_ptr)
: "%"REG_S, "%"REG_D
);
}
#endif // ARCH_X86 || ARCH_X86_64
void
imdct_do_256(sample_t data[],sample_t delay[],sample_t bias)
{
int i,k;
int p,q;
int m;
int two_m;
int two_m_plus_one;
sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t tmp_b_i;
sample_t tmp_b_r;
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
complex_t *buf_1, *buf_2;
buf_1 = &buf[0];
buf_2 = &buf[64];
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
for(k=0; k<64; k++) {
/* X1[k] = X[2*k] */
/* X2[k] = X[2*k+1] */
p = 2 * (128-2*k-1);
q = 2 * (2 * k);
/* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
buf_1[k].real = data[p] * xcos2[k] - data[q] * xsin2[k];
buf_1[k].imag = -1.0f * (data[q] * xcos2[k] + data[p] * xsin2[k]);
/* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
buf_2[k].real = data[p + 1] * xcos2[k] - data[q + 1] * xsin2[k];
buf_2[k].imag = -1.0f * ( data[q + 1] * xcos2[k] + data[p + 1] * xsin2[k]);
}
/* IFFT Bit reversed shuffling */
for(i=0; i<64; i++) {
k = bit_reverse_256[i];
if (k < i) {
swap_cmplx(&buf_1[i],&buf_1[k]);
swap_cmplx(&buf_2[i],&buf_2[k]);
}
}
/* FFT Merge */
for (m=0; m < 6; m++) {
two_m = (1 << m);
two_m_plus_one = (1 << (m+1));
/* FIXME */
if(m)
two_m = (1 << m);
else
two_m = 1;
for(k = 0; k < two_m; k++) {
for(i = 0; i < 64; i += two_m_plus_one) {
p = k + i;
q = p + two_m;
/* Do block 1 */
tmp_a_r = buf_1[p].real;
tmp_a_i = buf_1[p].imag;
tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
buf_1[p].real = tmp_a_r + tmp_b_r;
buf_1[p].imag = tmp_a_i + tmp_b_i;
buf_1[q].real = tmp_a_r - tmp_b_r;
buf_1[q].imag = tmp_a_i - tmp_b_i;
/* Do block 2 */
tmp_a_r = buf_2[p].real;
tmp_a_i = buf_2[p].imag;
tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
buf_2[p].real = tmp_a_r + tmp_b_r;
buf_2[p].imag = tmp_a_i + tmp_b_i;
buf_2[q].real = tmp_a_r - tmp_b_r;
buf_2[q].imag = tmp_a_i - tmp_b_i;
}
}
}
/* Post IFFT complex multiply */
for( i=0; i < 64; i++) {
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
tmp_a_r = buf_1[i].real;
tmp_a_i = -buf_1[i].imag;
buf_1[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
buf_1[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
/* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
tmp_a_r = buf_2[i].real;
tmp_a_i = -buf_2[i].imag;
buf_2[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
buf_2[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
}
data_ptr = data;
delay_ptr = delay;
window_ptr = imdct_window;
/* Window and convert to real valued signal */
for(i=0; i< 64; i++) {
*data_ptr++ = -buf_1[i].imag * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf_1[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias;
}
for(i=0; i< 64; i++) {
*data_ptr++ = -buf_1[i].real * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf_1[64-i-1].imag * *window_ptr++ + *delay_ptr++ + bias;
}
delay_ptr = delay;
for(i=0; i< 64; i++) {
*delay_ptr++ = -buf_2[i].real * *--window_ptr;
*delay_ptr++ = buf_2[64-i-1].imag * *--window_ptr;
}
for(i=0; i< 64; i++) {
*delay_ptr++ = buf_2[i].imag * *--window_ptr;
*delay_ptr++ = -buf_2[64-i-1].real * *--window_ptr;
}
}
void imdct_init (uint32_t mm_accel)
{
#ifdef LIBA52_MLIB
if (mm_accel & MM_ACCEL_MLIB) {
fprintf (stderr, "Using mlib for IMDCT transform\n");
imdct_512 = imdct_do_512_mlib;
imdct_256 = imdct_do_256_mlib;
} else
#endif
{
int i, j, k;
/* Twiddle factors to turn IFFT into IMDCT */
for (i = 0; i < 128; i++) {
xcos1[i] = -cos ((M_PI / 2048) * (8 * i + 1));
xsin1[i] = -sin ((M_PI / 2048) * (8 * i + 1));
}
#if defined(ARCH_X86) || defined(ARCH_X86_64)
for (i = 0; i < 128; i++) {
sseSinCos1c[2*i+0]= xcos1[i];
sseSinCos1c[2*i+1]= -xcos1[i];
sseSinCos1d[2*i+0]= xsin1[i];
sseSinCos1d[2*i+1]= xsin1[i];
}
#endif
/* More twiddle factors to turn IFFT into IMDCT */
for (i = 0; i < 64; i++) {
xcos2[i] = -cos ((M_PI / 1024) * (8 * i + 1));
xsin2[i] = -sin ((M_PI / 1024) * (8 * i + 1));
}
for (i = 0; i < 7; i++) {
j = 1 << i;
for (k = 0; k < j; k++) {
w[i][k].real = cos (-M_PI * k / j);
w[i][k].imag = sin (-M_PI * k / j);
}
}
#if defined(ARCH_X86) || defined(ARCH_X86_64)
for (i = 1; i < 7; i++) {
j = 1 << i;
for (k = 0; k < j; k+=2) {
sseW[i][4*k + 0] = w[i][k+0].real;
sseW[i][4*k + 1] = w[i][k+0].real;
sseW[i][4*k + 2] = w[i][k+1].real;
sseW[i][4*k + 3] = w[i][k+1].real;
sseW[i][4*k + 4] = -w[i][k+0].imag;
sseW[i][4*k + 5] = w[i][k+0].imag;
sseW[i][4*k + 6] = -w[i][k+1].imag;
sseW[i][4*k + 7] = w[i][k+1].imag;
//we multiply more or less uninitalized numbers so we need to use exactly 0.0
if(k==0)
{
// sseW[i][4*k + 0]= sseW[i][4*k + 1]= 1.0;
sseW[i][4*k + 4]= sseW[i][4*k + 5]= 0.0;
}
if(2*k == j)
{
sseW[i][4*k + 0]= sseW[i][4*k + 1]= 0.0;
// sseW[i][4*k + 4]= -(sseW[i][4*k + 5]= -1.0);
}
}
}
for(i=0; i<128; i++)
{
sseWindow[2*i+0]= -imdct_window[2*i+0];
sseWindow[2*i+1]= imdct_window[2*i+1];
}
for(i=0; i<64; i++)
{
sseWindow[256 + 2*i+0]= -imdct_window[254 - 2*i+1];
sseWindow[256 + 2*i+1]= imdct_window[254 - 2*i+0];
sseWindow[384 + 2*i+0]= imdct_window[126 - 2*i+1];
sseWindow[384 + 2*i+1]= -imdct_window[126 - 2*i+0];
}
#endif // ARCH_X86 || ARCH_X86_64
imdct_512 = imdct_do_512;
#if defined(ARCH_X86) || defined(ARCH_X86_64)
if(mm_accel & MM_ACCEL_X86_SSE)
{
fprintf (stderr, "Using SSE optimized IMDCT transform\n");
imdct_512 = imdct_do_512_sse;
}
else
if(mm_accel & MM_ACCEL_X86_3DNOWEXT)
{
fprintf (stderr, "Using 3DNowEx optimized IMDCT transform\n");
imdct_512 = imdct_do_512_3dnowex;
}
else
if(mm_accel & MM_ACCEL_X86_3DNOW)
{
fprintf (stderr, "Using 3DNow optimized IMDCT transform\n");
imdct_512 = imdct_do_512_3dnow;
}
else
#endif // ARCH_X86 || ARCH_X86_64
#ifdef HAVE_ALTIVEC
if (mm_accel & MM_ACCEL_PPC_ALTIVEC)
{
fprintf(stderr, "Using AltiVec optimized IMDCT transform\n");
imdct_512 = imdct_do_512_altivec;
}
else
#endif
fprintf (stderr, "No accelerated IMDCT transform found\n");
imdct_256 = imdct_do_256;
}
}
static void fft_asmb(int k, complex_t *x, complex_t *wTB,
const complex_t *d, const complex_t *d_3)
{
register complex_t *x2k, *x3k, *x4k, *wB;
register float a_r, a_i, a1_r, a1_i, u_r, u_i, v_r, v_i;
x2k = x + 2 * k;
x3k = x2k + 2 * k;
x4k = x3k + 2 * k;
wB = wTB + 2 * k;
TRANSZERO(x[0],x2k[0],x3k[0],x4k[0]);
TRANS(x[1],x2k[1],x3k[1],x4k[1],wTB[1],wB[1],d[1],d_3[1]);
--k;
for(;;) {
TRANS(x[2],x2k[2],x3k[2],x4k[2],wTB[2],wB[2],d[2],d_3[2]);
TRANS(x[3],x2k[3],x3k[3],x4k[3],wTB[3],wB[3],d[3],d_3[3]);
if (!--k) break;
x += 2;
x2k += 2;
x3k += 2;
x4k += 2;
d += 2;
d_3 += 2;
wTB += 2;
wB += 2;
}
}
static void fft_asmb16(complex_t *x, complex_t *wTB)
{
register float a_r, a_i, a1_r, a1_i, u_r, u_i, v_r, v_i;
int k = 2;
/* transform x[0], x[8], x[4], x[12] */
TRANSZERO(x[0],x[4],x[8],x[12]);
/* transform x[1], x[9], x[5], x[13] */
TRANS(x[1],x[5],x[9],x[13],wTB[1],wTB[5],delta16[1],delta16_3[1]);
/* transform x[2], x[10], x[6], x[14] */
TRANSHALF_16(x[2],x[6],x[10],x[14]);
/* transform x[3], x[11], x[7], x[15] */
TRANS(x[3],x[7],x[11],x[15],wTB[3],wTB[7],delta16[3],delta16_3[3]);
}
static void fft_4(complex_t *x)
{
/* delta_p = 1 here */
/* x[k] = sum_{i=0..3} x[i] * w^{i*k}, w=e^{-2*pi/4}
*/
register float yt_r, yt_i, yb_r, yb_i, u_r, u_i, vi_r, vi_i;
yt_r = x[0].real;
yb_r = yt_r - x[2].real;
yt_r += x[2].real;
u_r = x[1].real;
vi_i = x[3].real - u_r;
u_r += x[3].real;
u_i = x[1].imag;
vi_r = u_i - x[3].imag;
u_i += x[3].imag;
yt_i = yt_r;
yt_i += u_r;
x[0].real = yt_i;
yt_r -= u_r;
x[2].real = yt_r;
yt_i = yb_r;
yt_i += vi_r;
x[1].real = yt_i;
yb_r -= vi_r;
x[3].real = yb_r;
yt_i = x[0].imag;
yb_i = yt_i - x[2].imag;
yt_i += x[2].imag;
yt_r = yt_i;
yt_r += u_i;
x[0].imag = yt_r;
yt_i -= u_i;
x[2].imag = yt_i;
yt_r = yb_i;
yt_r += vi_i;
x[1].imag = yt_r;
yb_i -= vi_i;
x[3].imag = yb_i;
}
static void fft_8(complex_t *x)
{
/* delta_p = diag{1, sqrt(i)} here */
/* x[k] = sum_{i=0..7} x[i] * w^{i*k}, w=e^{-2*pi/8}
*/
register float wT1_r, wT1_i, wB1_r, wB1_i, wT2_r, wT2_i, wB2_r, wB2_i;
wT1_r = x[1].real;
wT1_i = x[1].imag;
wB1_r = x[3].real;
wB1_i = x[3].imag;
x[1] = x[2];
x[2] = x[4];
x[3] = x[6];
fft_4(&x[0]);
/* x[0] x[4] */
wT2_r = x[5].real;
wT2_r += x[7].real;
wT2_r += wT1_r;
wT2_r += wB1_r;
wT2_i = wT2_r;
wT2_r += x[0].real;
wT2_i = x[0].real - wT2_i;
x[0].real = wT2_r;
x[4].real = wT2_i;
wT2_i = x[5].imag;
wT2_i += x[7].imag;
wT2_i += wT1_i;
wT2_i += wB1_i;
wT2_r = wT2_i;
wT2_r += x[0].imag;
wT2_i = x[0].imag - wT2_i;
x[0].imag = wT2_r;
x[4].imag = wT2_i;
/* x[2] x[6] */
wT2_r = x[5].imag;
wT2_r -= x[7].imag;
wT2_r += wT1_i;
wT2_r -= wB1_i;
wT2_i = wT2_r;
wT2_r += x[2].real;
wT2_i = x[2].real - wT2_i;
x[2].real = wT2_r;
x[6].real = wT2_i;
wT2_i = x[5].real;
wT2_i -= x[7].real;
wT2_i += wT1_r;
wT2_i -= wB1_r;
wT2_r = wT2_i;
wT2_r += x[2].imag;
wT2_i = x[2].imag - wT2_i;
x[2].imag = wT2_i;
x[6].imag = wT2_r;
/* x[1] x[5] */
wT2_r = wT1_r;
wT2_r += wB1_i;
wT2_r -= x[5].real;
wT2_r -= x[7].imag;
wT2_i = wT1_i;
wT2_i -= wB1_r;
wT2_i -= x[5].imag;
wT2_i += x[7].real;
wB2_r = wT2_r;
wB2_r += wT2_i;
wT2_i -= wT2_r;
wB2_r *= HSQRT2;
wT2_i *= HSQRT2;
wT2_r = wB2_r;
wB2_r += x[1].real;
wT2_r = x[1].real - wT2_r;
wB2_i = x[5].real;
x[1].real = wB2_r;
x[5].real = wT2_r;
wT2_r = wT2_i;
wT2_r += x[1].imag;
wT2_i = x[1].imag - wT2_i;
wB2_r = x[5].imag;
x[1].imag = wT2_r;
x[5].imag = wT2_i;
/* x[3] x[7] */
wT1_r -= wB1_i;
wT1_i += wB1_r;
wB1_r = wB2_i - x[7].imag;
wB1_i = wB2_r + x[7].real;
wT1_r -= wB1_r;
wT1_i -= wB1_i;
wB1_r = wT1_r + wT1_i;
wB1_r *= HSQRT2;
wT1_i -= wT1_r;
wT1_i *= HSQRT2;
wB2_r = x[3].real;
wB2_i = wB2_r + wT1_i;
wB2_r -= wT1_i;
x[3].real = wB2_i;
x[7].real = wB2_r;
wB2_i = x[3].imag;
wB2_r = wB2_i + wB1_r;
wB2_i -= wB1_r;
x[3].imag = wB2_i;
x[7].imag = wB2_r;
}
static void fft_128p(complex_t *a)
{
fft_8(&a[0]); fft_4(&a[8]); fft_4(&a[12]);
fft_asmb16(&a[0], &a[8]);
fft_8(&a[16]), fft_8(&a[24]);
fft_asmb(4, &a[0], &a[16],&delta32[0], &delta32_3[0]);
fft_8(&a[32]); fft_4(&a[40]); fft_4(&a[44]);
fft_asmb16(&a[32], &a[40]);
fft_8(&a[48]); fft_4(&a[56]); fft_4(&a[60]);
fft_asmb16(&a[48], &a[56]);
fft_asmb(8, &a[0], &a[32],&delta64[0], &delta64_3[0]);
fft_8(&a[64]); fft_4(&a[72]); fft_4(&a[76]);
/* fft_16(&a[64]); */
fft_asmb16(&a[64], &a[72]);
fft_8(&a[80]); fft_8(&a[88]);
/* fft_32(&a[64]); */
fft_asmb(4, &a[64], &a[80],&delta32[0], &delta32_3[0]);
fft_8(&a[96]); fft_4(&a[104]), fft_4(&a[108]);
/* fft_16(&a[96]); */
fft_asmb16(&a[96], &a[104]);
fft_8(&a[112]), fft_8(&a[120]);
/* fft_32(&a[96]); */
fft_asmb(4, &a[96], &a[112], &delta32[0], &delta32_3[0]);
/* fft_128(&a[0]); */
fft_asmb(16, &a[0], &a[64], &delta128[0], &delta128_3[0]);
}