mars/brick.c

1063 lines
27 KiB
C

// (c) 2010 Thomas Schoebel-Theuer / 1&1 Internet AG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/semaphore.h>
//#define BRICK_DEBUGGING
//#define USE_FREELIST // TODO: cleanup
#define _STRATEGY
#include "brick.h"
#include "brick_mem.h"
/////////////////////////////////////////////////////////////////////
// messaging
#ifdef CONFIG_DEBUG_KERNEL
#include <linux/preempt.h>
#include <linux/hardirq.h>
static char say_buf[1024] = {};
static int say_index = 0;
static int dump_max = 5;
void say_mark(void)
{
if (say_buf[0]) {
printk("# %s", say_buf);
say_buf[0] = '\0';
say_index = 0;
}
}
EXPORT_SYMBOL(say_mark);
void say(const char *fmt, ...)
{
va_list args;
if (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK | HARDIRQ_MASK)) {
va_start(args, fmt);
say_index += vsnprintf(say_buf + say_index, sizeof(say_buf) - say_index, fmt, args);
va_end(args);
if (unlikely(say_index >= sizeof(say_buf))) {
say_index = sizeof(say_buf);
say_buf[say_index-1] = '\0';
}
} else {
say_mark();
va_start(args, fmt);
vprintk(fmt, args);
va_end(args);
}
}
EXPORT_SYMBOL(say);
void brick_dump_stack(void)
{
if (dump_max > 0) {
dump_max--; // racy, but does no harm
dump_stack();
}
}
EXPORT_SYMBOL(brick_dump_stack);
#endif
//////////////////////////////////////////////////////////////
// number management
static char *nr_table = NULL;
int nr_max = 256;
EXPORT_SYMBOL_GPL(nr_max);
int get_nr(void)
{
char *new;
int nr;
if (unlikely(!nr_table)) {
nr_table = brick_zmem_alloc(nr_max);
if (!nr_table) {
return 0;
}
}
for (;;) {
for (nr = 1; nr < nr_max; nr++) {
if (!nr_table[nr]) {
nr_table[nr] = 1;
return nr;
}
}
new = brick_zmem_alloc(nr_max << 1);
if (!new)
return 0;
memcpy(new, nr_table, nr_max);
brick_mem_free(nr_table);
nr_table = new;
nr_max <<= 1;
}
}
EXPORT_SYMBOL_GPL(get_nr);
void put_nr(int nr)
{
if (likely(nr_table && nr > 0 && nr < nr_max)) {
nr_table[nr] = 0;
}
}
EXPORT_SYMBOL_GPL(put_nr);
//////////////////////////////////////////////////////////////
// object stuff
//////////////////////////////////////////////////////////////
// brick stuff
int brick_obj_max = 0;
EXPORT_SYMBOL_GPL(brick_obj_max);
static int nr_brick_types = 0;
static const struct generic_brick_type *brick_types[MAX_BRICK_TYPES] = {};
int generic_register_brick_type(const struct generic_brick_type *new_type)
{
int i;
int found = -1;
BRICK_DBG("generic_register_brick_type() name=%s\n", new_type->type_name);
for (i = 0; i < nr_brick_types; i++) {
if (!brick_types[i]) {
found = i;
continue;
}
if (!strcmp(brick_types[i]->type_name, new_type->type_name)) {
BRICK_DBG("bricktype %s is already registered.\n", new_type->type_name);
return 0;
}
}
if (found < 0) {
if (nr_brick_types >= MAX_BRICK_TYPES) {
BRICK_ERR("sorry, cannot register bricktype %s.\n", new_type->type_name);
return -ENOMEM;
}
found = nr_brick_types++;
}
brick_types[found] = new_type;
BRICK_DBG("generic_register_brick_type() done.\n");
return 0;
}
EXPORT_SYMBOL_GPL(generic_register_brick_type);
int generic_unregister_brick_type(const struct generic_brick_type *old_type)
{
BRICK_DBG("generic_unregister_brick_type()\n");
return -1; // NYI
}
EXPORT_SYMBOL_GPL(generic_unregister_brick_type);
int generic_brick_init_full(
void *data,
int size,
const struct generic_brick_type *brick_type,
const struct generic_input_type **input_types,
const struct generic_output_type **output_types,
const char **names)
{
struct generic_brick *brick = data;
int status;
int i;
BRICK_DBG("brick_type = %s\n", brick_type->type_name);
if (unlikely(!data)) {
BRICK_ERR("invalid memory\n");
return -EINVAL;
}
// call the generic constructors
status = generic_brick_init(brick_type, brick, names ? *names++ : NULL);
if (status)
return status;
data += brick_type->brick_size;
size -= brick_type->brick_size;
if (size < 0) {
BRICK_ERR("Not enough MEMORY\n");
return -ENOMEM;
}
if (!input_types) {
BRICK_DBG("generic_brick_init_full: switch to default input_types\n");
input_types = brick_type->default_input_types;
names = brick_type->default_input_names;
if (unlikely(!input_types)) {
BRICK_ERR("no input types specified\n");
return -EINVAL;
}
}
BRICK_DBG("generic_brick_init_full: input_types\n");
brick->inputs = data;
data += sizeof(void*) * brick_type->max_inputs;
size -= sizeof(void*) * brick_type->max_inputs;
if (size < 0) {
return -ENOMEM;
}
for (i = 0; i < brick_type->max_inputs; i++) {
struct generic_input *input = data;
const struct generic_input_type *type = *input_types++;
if (!type || type->input_size <= 0) {
return -EINVAL;
}
BRICK_DBG("generic_brick_init_full: calling generic_input_init()\n");
status = generic_input_init(brick, i, type, input, (names && *names) ? *names++ : type->type_name);
if (status < 0)
return status;
data += type->input_size;
size -= type->input_size;
if (size < 0)
return -ENOMEM;
}
if (!output_types) {
BRICK_DBG("generic_brick_init_full: switch to default output_types\n");
output_types = brick_type->default_output_types;
names = brick_type->default_output_names;
if (unlikely(!output_types)) {
BRICK_ERR("no output types specified\n");
return -EINVAL;
}
}
BRICK_DBG("generic_brick_init_full: output_types\n");
brick->outputs = data;
data += sizeof(void*) * brick_type->max_outputs;
size -= sizeof(void*) * brick_type->max_outputs;
if (size < 0)
return -ENOMEM;
for (i = 0; i < brick_type->max_outputs; i++) {
struct generic_output *output = data;
const struct generic_output_type *type = *output_types++;
if (!type || type->output_size <= 0) {
return -EINVAL;
}
BRICK_DBG("generic_brick_init_full: calling generic_output_init()\n");
generic_output_init(brick, i, type, output, (names && *names) ? *names++ : type->type_name);
if (status < 0)
return status;
data += type->output_size;
size -= type->output_size;
if (size < 0)
return -ENOMEM;
}
// call the specific constructors
BRICK_DBG("generic_brick_init_full: call specific contructors.\n");
if (brick_type->brick_construct) {
BRICK_DBG("generic_brick_init_full: calling brick_construct()\n");
status = brick_type->brick_construct(brick);
if (status < 0)
return status;
}
for (i = 0; i < brick_type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (!input)
continue;
if (!input->type) {
BRICK_ERR("input has no associated type!\n");
continue;
}
if (input->type->input_construct) {
BRICK_DBG("generic_brick_init_full: calling input_construct()\n");
status = input->type->input_construct(input);
if (status < 0)
return status;
}
}
for (i = 0; i < brick_type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->type->output_construct) {
BRICK_DBG("generic_brick_init_full: calling output_construct()\n");
status = output->type->output_construct(output);
if (status < 0)
return status;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(generic_brick_init_full);
int generic_brick_exit_full(struct generic_brick *brick)
{
int i;
int status;
// first, check all outputs
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->nr_connected) {
BRICK_ERR("output is connected!\n");
return -EPERM;
}
}
// ok, test succeeded. start destruction...
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->type->output_destruct) {
BRICK_DBG("generic_brick_exit_full: calling output_destruct()\n");
status = output->type->output_destruct(output);
if (status < 0)
return status;
_generic_output_exit(output);
brick->outputs[i] = NULL; // others may remain leftover
}
}
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (!input)
continue;
if (!input->type) {
BRICK_ERR("input has no associated type!\n");
continue;
}
if (input->type->input_destruct) {
status = generic_disconnect(input);
if (status < 0)
return status;
BRICK_DBG("generic_brick_exit_full: calling input_destruct()\n");
status = input->type->input_destruct(input);
if (status < 0)
return status;
brick->inputs[i] = NULL; // others may remain leftover
generic_input_exit(input);
}
}
if (brick->type->brick_destruct) {
BRICK_DBG("generic_brick_exit_full: calling brick_destruct()\n");
status = brick->type->brick_destruct(brick);
if (status < 0)
return status;
}
generic_brick_exit(brick);
return 0;
}
EXPORT_SYMBOL_GPL(generic_brick_exit_full);
int generic_brick_exit_recursively(struct generic_brick *brick, bool destroy_inputs)
{
int final_status = 0;
LIST_HEAD(tmp);
list_add(&brick->tmp_head, &tmp);
while (!list_empty(&tmp)) {
int i;
int status;
int postpone = 0;
brick = container_of(tmp.next, struct generic_brick, tmp_head);
list_del_init(&brick->tmp_head);
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (output && output->nr_connected) {
postpone += output->nr_connected;
}
}
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (input && input->connect) {
struct generic_brick *other = input->connect->brick;
if (destroy_inputs) {
list_add(&other->tmp_head, &tmp);
postpone++;
} else {
}
}
}
if (postpone) {
list_add_tail(&brick->tmp_head, &tmp);
continue;
}
status = generic_brick_exit_full(brick);
if (status)
final_status = status;
}
return final_status;
}
EXPORT_SYMBOL_GPL(generic_brick_exit_recursively);
////////////////////////////////////////////////////////////////////////
// to disappear!
int generic_add_aspect(struct generic_output *output, struct generic_object_layout *object_layout, const struct generic_aspect_type *aspect_type)
{
struct generic_aspect_layout *aspect_layout;
int nr;
int i;
int status;
(void)i;
status = -EINVAL;
if (unlikely(!object_layout || !object_layout->object_type)) {
goto err;
}
nr = output->output_index;
if (unlikely(nr <= 0 || nr > nr_max)) {
BRICK_ERR("oops, bad nr = %d\n", nr);
goto err;
}
aspect_layout = &object_layout->aspect_layouts[nr];
if (aspect_layout->aspect_type && aspect_layout->aspect_layout_generation == object_layout->object_layout_generation) {
/* aspect_layout is already initialized.
* this is a kind of "dynamic programming".
* ensure consistency to last call.
*/
int min_offset;
BRICK_DBG("reusing aspect_type %s on object_layout %p\n", aspect_type->aspect_type_name, object_layout);
status = -EBADF;
if (unlikely(aspect_layout->aspect_type != aspect_type)) {
BRICK_ERR("inconsistent use of aspect_type %s != %s\n", aspect_type->aspect_type_name, aspect_layout->aspect_type->aspect_type_name);
goto done;
}
if (unlikely(aspect_layout->tied_to != output)) {
BRICK_ERR("inconsistent output assigment (aspect_type=%s)\n", aspect_type->aspect_type_name);
goto done;
}
min_offset = aspect_layout->aspect_offset + aspect_type->aspect_size;
status = -ENOMEM;
if (unlikely(object_layout->object_size > min_offset)) {
BRICK_ERR("overlapping aspects %d > %d (aspect_type=%s)\n", object_layout->object_size, min_offset, aspect_type->aspect_type_name);
goto done;
}
BRICK_DBG("adjusting object_size %d to %d (aspect_type=%s)\n", object_layout->object_size, min_offset, aspect_type->aspect_type_name);
object_layout->object_size = min_offset;
} else {
/* first call: initialize aspect_layout. */
aspect_layout->aspect_type = aspect_type;
aspect_layout->tied_to = output;
aspect_layout->aspect_offset = object_layout->object_size;
object_layout->object_size += aspect_type->aspect_size;
aspect_layout->aspect_layout_generation = object_layout->object_layout_generation;
BRICK_DBG("initializing aspect_type %s on object_layout %p, object_size=%d\n", aspect_type->aspect_type_name, object_layout, object_layout->object_size);
}
if (object_layout->aspect_count <= nr) {
object_layout->aspect_count = nr + 1;
}
status = 0;
done:
if (status < 0) { // invalidate the layout
object_layout->object_type = NULL;
}
err:
return status;
}
/* Callback, usually called for each brick instance.
* Initialize the information for single aspect associated to a single brick.
*/
int default_make_object_layout(struct generic_output *output, struct generic_object_layout *object_layout)
{
struct generic_brick *brick;
const struct generic_output_type *output_type;
const struct generic_object_type *object_type;
const struct generic_aspect_type *aspect_type;
int i;
int nr;
int aspect_size = 0;
int status = -EINVAL;
if (unlikely(!output)) {
BRICK_ERR("output is missing\n");
goto done;
}
if (unlikely(!object_layout || !object_layout->object_type)) {
BRICK_ERR("object_layout not inizialized\n");
goto done;
}
brick = output->brick;
if (unlikely(!brick)) {
BRICK_ERR("brick is missing\n");
goto done;
}
output_type = output->type;
if (unlikely(!output_type)) {
BRICK_ERR("output_type is missing\n");
goto done;
}
object_type = object_layout->object_type;
if (unlikely(!object_type)) {
BRICK_ERR("object_type is missing\n");
goto done;
}
nr = object_type->brick_obj_nr;
if (unlikely(nr < 0 || nr >= brick_obj_max)) {
BRICK_ERR("bad brick_obj_nr = %d\n", nr);
goto done;
}
aspect_type = output_type->aspect_types[nr];
status = -ENOENT;
if (unlikely(!aspect_type)) {
BRICK_ERR("aspect type on %s does not exist\n", output_type->type_name);
goto done;
}
aspect_size = aspect_type->aspect_size;
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (input && input->connect) {
int substatus = default_make_object_layout(input->connect, object_layout);
if (substatus < 0)
return substatus;
aspect_size += substatus;
}
}
status = generic_add_aspect(output, object_layout, aspect_type);
done:
if (status < 0)
return status;
return aspect_size;
}
////////////////////////////////////////////////////////////////////////
// default implementations
int brick_layout_generation = 1;
EXPORT_SYMBOL_GPL(brick_layout_generation);
static inline
void _put_data_ref(atomic_t *data_ref)
{
if (data_ref && atomic_dec_and_test(data_ref)) {
brick_mem_free(data_ref);
}
}
static DEFINE_SPINLOCK(global_lock);
void default_exit_object_layout(struct generic_object_layout *object_layout)
{
atomic_t *old_data_ref;
unsigned long flags;
BRICK_DBG("\n");
traced_lock(&global_lock, flags);
object_layout->object_type = NULL;
list_del_init(&object_layout->layout_head);
old_data_ref = object_layout->data_ref;
traced_unlock(&global_lock, flags);
_put_data_ref(old_data_ref);
}
EXPORT_SYMBOL_GPL(default_exit_object_layout);
/* (Re-)Make an object layout
*/
int default_init_object_layout(struct generic_output *output, struct generic_object_layout *object_layout, int aspect_max, const struct generic_object_type *object_type, char *module_name)
{
// TODO: make locking granularity finer (if it were worth).
atomic_t *data_ref;
atomic_t *old_data_ref = NULL;
const int size0 = sizeof(atomic_t);
int size1;
int size2;
int size;
int status= -ENOMEM;
unsigned long flags;
BRICK_DBG("\n");
if (unlikely(!module_name)) {
module_name = "(unknown)";
}
aspect_max = nr_max;
size1 = aspect_max * sizeof(struct generic_aspect_layout);
size2 = aspect_max * sizeof(void*);
size = size0 + size1 + size2;
data_ref = brick_zmem_alloc(size);
if (unlikely(!data_ref)) {
BRICK_ERR("alloc failed, size = %ld\n", size);
goto done;
}
traced_lock(&global_lock, flags);
if (unlikely(object_layout->object_type && object_layout->object_layout_generation == brick_layout_generation)) {
traced_unlock(&global_lock, flags);
BRICK_DBG("lost the race on object_layout %p/%s (no harm)\n", object_layout, module_name);
old_data_ref = data_ref;
status = 0;
goto done;
}
atomic_set(data_ref, 1);
object_layout->aspect_layouts_table = ((void*)data_ref) + size0;
object_layout->aspect_layouts = ((void*)data_ref) + size0 + size1;
old_data_ref = object_layout->data_ref;
object_layout->data_ref = data_ref;
object_layout->tied_to = output;
if (object_layout->layout_head.next) {
list_del_init(&object_layout->layout_head);
}
list_add(&object_layout->layout_head, &output->layout_list);
object_layout->object_layout_generation = brick_layout_generation;
object_layout->object_type = object_type;
object_layout->aspect_count = 0;
object_layout->aspect_max = aspect_max;
object_layout->object_size = object_type->default_size;
atomic_set(&object_layout->alloc_count, 0);
atomic_set(&object_layout->free_count, 0);
spin_lock_init(&object_layout->free_lock);
object_layout->free_list = NULL;
object_layout->module_name = module_name;
status = default_make_object_layout(output, object_layout);
if (unlikely(status < 0)) {
object_layout->object_type = NULL;
}
traced_unlock(&global_lock, flags);
if (unlikely(status < 0)) {
BRICK_ERR("emergency, cannot add aspects to object_layout %s (module %s)\n", object_type->object_type_name, module_name);
goto done;
}
BRICK_INF("OK, object_layout %s init succeeded (size = %d).\n", object_type->object_type_name, object_layout->object_size);
done:
_put_data_ref(old_data_ref);
return status;
}
EXPORT_SYMBOL_GPL(default_init_object_layout);
struct generic_object *alloc_generic(struct generic_object_layout *object_layout)
{
struct generic_object *object;
void *data;
if (unlikely(!object_layout || !object_layout->object_type)) {
BRICK_ERR("bad object_layout\n");
goto err;
}
#ifdef USE_FREELIST
object = object_layout->free_list;
if (object) {
unsigned long flags;
traced_lock(&object_layout->free_lock, flags);
object = object_layout->free_list;
if (object) {
object_layout->free_list = *(struct generic_object**)object;
*(struct generic_object**)object = NULL;
traced_unlock(&object_layout->free_lock, flags);
atomic_dec(&object_layout->free_count);
data = object;
goto ok;
}
traced_unlock(&object_layout->free_lock, flags);
}
#else
if (false) goto ok; // shut up gcc
#endif
data = brick_zmem_alloc(object_layout->object_size);
if (unlikely(!data))
goto err;
atomic_inc(&object_layout->alloc_count);
ok:
object = generic_construct(data, object_layout);
if (unlikely(!object))
goto err_free;
object->data_ref = object_layout->data_ref;
atomic_inc(object->data_ref);
#if 1
{
int count = atomic_read(&object_layout->alloc_count);
if (count >= object_layout->last_count + 1000 || ((int)jiffies - object_layout->last_jiffies) >= 30 * HZ) {
object_layout->last_count = count;
object_layout->last_jiffies = jiffies;
BRICK_INF("pool %s/%p/%s alloc=%d free=%d\n", object_layout->object_type->object_type_name, object_layout, object_layout->module_name, count, atomic_read(&object_layout->free_count));
}
}
#endif
return object;
err_free:
brick_mem_free(data);
err:
return NULL;
}
EXPORT_SYMBOL_GPL(alloc_generic);
void free_generic(struct generic_object *object)
{
struct generic_object_layout *object_layout;
if (unlikely(!object)) {
BRICK_ERR("free_generic on NULL object\n");
return;
}
object_layout = object->object_layout;
if (likely(object_layout)) {
generic_destruct(object);
#ifdef USE_FREELIST
memset(object, 0, object_layout->object_size);
atomic_inc(&object_layout->free_count);
{
unsigned long flags;
traced_lock(&object_layout->free_lock, flags);
*(struct generic_object**)object = object_layout->free_list;
object_layout->free_list = object;
traced_unlock(&object_layout->free_lock, flags);
}
return;
#endif
atomic_dec(&object_layout->alloc_count);
_put_data_ref(object->data_ref);
}
brick_mem_free(object);
}
EXPORT_SYMBOL_GPL(free_generic);
/////////////////////////////////////////////////////////////////
// helper stuff
struct semaphore lamport_sem = __SEMAPHORE_INITIALIZER(lamport_sem, 1); // TODO: replace with spinlock if possible (first check)
struct timespec lamport_now = {};
void get_lamport(struct timespec *now)
{
int diff;
down(&lamport_sem);
//*now = current_kernel_time();
*now = CURRENT_TIME;
diff = timespec_compare(now, &lamport_now);
if (diff > 0) {
memcpy(&lamport_now, now, sizeof(lamport_now));
} else {
timespec_add_ns(&lamport_now, 1);
memcpy(now, &lamport_now, sizeof(*now));
}
up(&lamport_sem);
}
EXPORT_SYMBOL_GPL(get_lamport);
void set_lamport(struct timespec *old)
{
int diff;
down(&lamport_sem);
diff = timespec_compare(old, &lamport_now);
if (diff > 0) {
memcpy(&lamport_now, old, sizeof(lamport_now));
}
up(&lamport_sem);
}
EXPORT_SYMBOL_GPL(set_lamport);
void set_button(struct generic_switch *sw, bool val, bool force)
{
bool oldval = sw->button;
if ((sw->force_off |= force))
val = false;
if (val != oldval) {
sw->button = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_button);
void set_led_on(struct generic_switch *sw, bool val)
{
bool oldval = sw->led_on;
if (val != oldval) {
sw->led_on = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_led_on);
void set_led_off(struct generic_switch *sw, bool val)
{
bool oldval = sw->led_off;
if (val != oldval) {
sw->led_off = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_led_off);
void set_button_wait(struct generic_brick *brick, bool val, bool force, int timeout)
{
set_button(&brick->power, val, force);
if (brick->ops)
(void)brick->ops->brick_switch(brick);
if (val) {
wait_event_interruptible_timeout(brick->power.event, brick->power.led_on, timeout);
} else {
wait_event_interruptible_timeout(brick->power.event, brick->power.led_off, timeout);
}
}
EXPORT_SYMBOL_GPL(set_button_wait);
/* Do it iteratively behind the scenes ;)
*/
int set_recursive_button(struct generic_brick *orig_brick, brick_switch_t mode, int timeout)
{
struct generic_brick **table = NULL;
int max = PAGE_SIZE / sizeof(void*) / 2;
int stack;
bool val = (mode == BR_ON_ONE || mode == BR_ON_ALL);
bool force = (mode != BR_OFF_ONE && mode != BR_OFF_ALL);
int pos;
int status;
#define PUSH_STACK(next) \
{ \
int j; \
bool found = false; \
/* eliminate duplicates */ \
for (j = 0; j < stack; j++) { \
if (table[j] == (next)) { \
BRICK_DBG(" double entry %d '%s' stack = %d\n", i, SAFE_STR((next)->brick_name), stack); \
found = true; \
break; \
} \
} \
if (!found) { \
BRICK_DBG(" push '%s' stack = %d\n", SAFE_STR((next)->brick_name), stack); \
table[stack++] = (next); \
if (unlikely(stack > max)) { \
BRICK_ERR("---- max = %d overflow, restarting...\n", max); \
goto restart; \
} \
} \
}
restart:
BRICK_DBG("-> orig_brick = '%s'\n", SAFE_STR(orig_brick->brick_name));
brick_mem_free(table);
max <<= 1;
table = brick_mem_alloc(max * sizeof(void*));
status = -ENOMEM;
if (unlikely(!table))
goto done;
stack = 0;
table[stack++] = orig_brick;
status = -EAGAIN;
for (pos = 0; pos < stack; pos++) {
struct generic_brick *brick = table[pos];
BRICK_DBG("--> pos = %d stack = %d brick = '%s' inputs = %d/%d outputs = %d/%d\n", pos, stack, SAFE_STR(brick->brick_name), brick->nr_inputs, brick->type->max_inputs, brick->nr_outputs, brick->type->max_outputs);
if (val) {
force = false;
if (unlikely(brick->power.force_off)) {
status = -EDEADLK;
goto done;
}
if (mode >= BR_ON_ALL) {
int i;
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
struct generic_output *output;
struct generic_brick *next;
BRICK_DBG("---> i = %d\n", i);
//msleep(1000);
if (!input)
continue;
output = input->connect;
if (!output)
continue;
next = output->brick;
if (!next)
continue;
PUSH_STACK(next);
}
}
} else if (mode >= BR_ON_ALL) {
int i;
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
struct list_head *tmp;
BRICK_DBG("---> i = %d output = %p\n", i, output);
//msleep(1000);
if (!output)
continue;
for (tmp = output->output_head.next; tmp && tmp != &output->output_head; tmp = tmp->next) {
struct generic_input *input = container_of(tmp, struct generic_input, input_head);
struct generic_brick *next = input->brick;
BRICK_DBG("----> tmp = %p input = %p next = %p\n", tmp, input, next);
//msleep(1000);
if (unlikely(!next)) {
BRICK_ERR("oops, bad brick pointer\n");
status = -EINVAL;
goto done;
}
PUSH_STACK(next);
}
}
}
}
BRICK_DBG("-> stack = %d\n", stack);
while (stack > 0) {
struct generic_brick *brick = table[--stack];
BRICK_DBG("--> switch '%s' stack = %d\n", SAFE_STR(brick->brick_name), stack);
set_button_wait(brick, val, force, timeout);
if (val ? !brick->power.led_on : !brick->power.led_off) {
BRICK_DBG("switching to %d: brick '%s' not ready (%s)\n", val, SAFE_STR(brick->brick_name), SAFE_STR(orig_brick->brick_name));
goto done;
}
if (force && !val && (mode == BR_FREE_ONE || mode == BR_FREE_ALL) && brick->free) {
BRICK_DBG("---> freeing '%s'\n", SAFE_STR(brick->brick_name));
status = brick->free(brick);
BRICK_DBG("---> freeing '%s' status = %d\n", SAFE_STR(brick->brick_name), status);
if (status < 0) {
BRICK_DBG("freeing brick '%s' (%s) failed, status = %d\n", SAFE_STR(brick->brick_name), SAFE_STR(orig_brick->brick_name), status);
goto done;
}
}
}
status = 0;
done:
BRICK_DBG("-> done '%s' status = %d\n", SAFE_STR(orig_brick->brick_name), status);
brick_mem_free(table);
return status;
}
EXPORT_SYMBOL_GPL(set_recursive_button);
/////////////////////////////////////////////////////////////////
// meta stuff
const struct meta *find_meta(const struct meta *meta, const char *field_name)
{
const struct meta *tmp;
for (tmp = meta; tmp->field_name; tmp++) {
if (!strcmp(field_name, tmp->field_name)) {
return tmp;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(find_meta);
#if 0 // currently not needed, but this may change
void free_meta(void *data, const struct meta *meta)
{
for (; meta->field_name[0]; meta++) {
void *item;
switch (meta->field_type) {
case FIELD_SUB:
if (meta->field_ref) {
item = data + meta->field_offset;
free_meta(item, meta->field_ref);
}
break;
case FIELD_REF:
case FIELD_STRING:
item = data + meta->field_offset;
item = *(void**)item;
if (meta->field_ref)
free_meta(item, meta->field_ref);
brick_mem_free(item);
}
}
}
EXPORT_SYMBOL_GPL(free_meta);
#endif
/////////////////////////////////////////////////////////////////////////
// module init stuff
int __init init_brick(void)
{
nr_table = brick_zmem_alloc(nr_max);
if (!nr_table) {
return -ENOMEM;
}
return 0;
}
void __exit exit_brick(void)
{
if (nr_table) {
brick_mem_free(nr_table);
nr_table = NULL;
}
}
#ifndef CONFIG_MARS_HAVE_BIGMODULE
MODULE_DESCRIPTION("generic brick infrastructure");
MODULE_AUTHOR("Thomas Schoebel-Theuer <tst@1und1.de>");
MODULE_LICENSE("GPL");
module_init(init_brick);
module_exit(exit_brick);
#endif