mars/brick.c

948 lines
23 KiB
C

// (c) 2010 Thomas Schoebel-Theuer / 1&1 Internet AG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/semaphore.h>
//#define BRICK_DEBUGGING
#define _STRATEGY
#include "brick.h"
#include "brick_mem.h"
int _brick_msleep(int msecs, bool shorten)
{
unsigned long timeout;
flush_signals(current); \
if (msecs <= 0) {
schedule();
return 0;
}
timeout = msecs_to_jiffies(msecs) + 1;
timeout = schedule_timeout_interruptible(timeout);
if (!shorten)
while (timeout)
timeout = schedule_timeout_uninterruptible(timeout);
return jiffies_to_msecs(timeout);
}
EXPORT_SYMBOL_GPL(_brick_msleep);
#if 1
/* The following _could_ go to kernel/kthread.c.
* However, we need it only for a workaround here.
* This has some conceptual shortcomings, so I will not
* force that.
*/
#if 1 // remove this for migration to kernel/kthread.c
struct kthread {
int should_stop;
#ifdef KTHREAD_WORKER_INIT
void *data;
#endif
struct completion exited;
};
#define to_kthread(tsk) \
container_of((tsk)->vfork_done, struct kthread, exited)
#endif
/**
* kthread_stop_nowait - like kthread_stop(), but don't wait for termination.
* @k: thread created by kthread_create().
*
* If threadfn() may call do_exit() itself, the caller must ensure
* task_struct can't go away.
*
* Therefore, you must not call this twice (or after kthread_stop()), at least
* if you don't get_task_struct() yourself.
*/
void kthread_stop_nowait(struct task_struct *k)
{
struct kthread *kthread;
#if 0 // enable this after migration to kernel/kthread.c
trace_sched_kthread_stop(k);
#endif
kthread = to_kthread(k);
barrier(); /* it might have exited */
if (k->vfork_done != NULL) {
kthread->should_stop = 1;
wake_up_process(k);
}
}
EXPORT_SYMBOL_GPL(kthread_stop_nowait);
#endif
void brick_thread_stop_nowait(struct task_struct *k)
{
kthread_stop_nowait(k);
}
EXPORT_SYMBOL_GPL(brick_thread_stop_nowait);
//////////////////////////////////////////////////////////////
// number management
static char *nr_table = NULL;
int nr_max = 256;
EXPORT_SYMBOL_GPL(nr_max);
int get_nr(void)
{
char *new;
int nr;
if (unlikely(!nr_table)) {
nr_table = brick_zmem_alloc(nr_max);
if (!nr_table) {
return 0;
}
}
for (;;) {
for (nr = 1; nr < nr_max; nr++) {
if (!nr_table[nr]) {
nr_table[nr] = 1;
return nr;
}
}
new = brick_zmem_alloc(nr_max << 1);
if (!new)
return 0;
memcpy(new, nr_table, nr_max);
brick_mem_free(nr_table);
nr_table = new;
nr_max <<= 1;
}
}
EXPORT_SYMBOL_GPL(get_nr);
void put_nr(int nr)
{
if (likely(nr_table && nr > 0 && nr < nr_max)) {
nr_table[nr] = 0;
}
}
EXPORT_SYMBOL_GPL(put_nr);
//////////////////////////////////////////////////////////////
// object stuff
//////////////////////////////////////////////////////////////
// brick stuff
static int nr_brick_types = 0;
static const struct generic_brick_type *brick_types[MAX_BRICK_TYPES] = {};
int generic_register_brick_type(const struct generic_brick_type *new_type)
{
int i;
int found = -1;
BRICK_DBG("generic_register_brick_type() name=%s\n", new_type->type_name);
for (i = 0; i < nr_brick_types; i++) {
if (!brick_types[i]) {
found = i;
continue;
}
if (!strcmp(brick_types[i]->type_name, new_type->type_name)) {
BRICK_DBG("bricktype %s is already registered.\n", new_type->type_name);
return 0;
}
}
if (found < 0) {
if (nr_brick_types >= MAX_BRICK_TYPES) {
BRICK_ERR("sorry, cannot register bricktype %s.\n", new_type->type_name);
return -ENOMEM;
}
found = nr_brick_types++;
}
brick_types[found] = new_type;
BRICK_DBG("generic_register_brick_type() done.\n");
return 0;
}
EXPORT_SYMBOL_GPL(generic_register_brick_type);
int generic_unregister_brick_type(const struct generic_brick_type *old_type)
{
BRICK_DBG("generic_unregister_brick_type()\n");
return -1; // NYI
}
EXPORT_SYMBOL_GPL(generic_unregister_brick_type);
int generic_brick_init_full(
void *data,
int size,
const struct generic_brick_type *brick_type,
const struct generic_input_type **input_types,
const struct generic_output_type **output_types,
const char **names)
{
struct generic_brick *brick = data;
int status;
int i;
BRICK_DBG("brick_type = %s\n", brick_type->type_name);
if (unlikely(!data)) {
BRICK_ERR("invalid memory\n");
return -EINVAL;
}
// call the generic constructors
status = generic_brick_init(brick_type, brick, names ? *names++ : NULL);
if (status)
return status;
data += brick_type->brick_size;
size -= brick_type->brick_size;
if (size < 0) {
BRICK_ERR("Not enough MEMORY\n");
return -ENOMEM;
}
if (!input_types) {
BRICK_DBG("generic_brick_init_full: switch to default input_types\n");
input_types = brick_type->default_input_types;
names = brick_type->default_input_names;
if (unlikely(!input_types)) {
BRICK_ERR("no input types specified\n");
return -EINVAL;
}
}
BRICK_DBG("generic_brick_init_full: input_types\n");
brick->inputs = data;
data += sizeof(void*) * brick_type->max_inputs;
size -= sizeof(void*) * brick_type->max_inputs;
if (size < 0) {
return -ENOMEM;
}
for (i = 0; i < brick_type->max_inputs; i++) {
struct generic_input *input = data;
const struct generic_input_type *type = *input_types++;
if (!type || type->input_size <= 0) {
return -EINVAL;
}
BRICK_DBG("generic_brick_init_full: calling generic_input_init()\n");
status = generic_input_init(brick, i, type, input, (names && *names) ? *names++ : type->type_name);
if (status < 0)
return status;
data += type->input_size;
size -= type->input_size;
if (size < 0)
return -ENOMEM;
}
if (!output_types) {
BRICK_DBG("generic_brick_init_full: switch to default output_types\n");
output_types = brick_type->default_output_types;
names = brick_type->default_output_names;
if (unlikely(!output_types)) {
BRICK_ERR("no output types specified\n");
return -EINVAL;
}
}
BRICK_DBG("generic_brick_init_full: output_types\n");
brick->outputs = data;
data += sizeof(void*) * brick_type->max_outputs;
size -= sizeof(void*) * brick_type->max_outputs;
if (size < 0)
return -ENOMEM;
for (i = 0; i < brick_type->max_outputs; i++) {
struct generic_output *output = data;
const struct generic_output_type *type = *output_types++;
if (!type || type->output_size <= 0) {
return -EINVAL;
}
BRICK_DBG("generic_brick_init_full: calling generic_output_init()\n");
generic_output_init(brick, i, type, output, (names && *names) ? *names++ : type->type_name);
if (status < 0)
return status;
data += type->output_size;
size -= type->output_size;
if (size < 0)
return -ENOMEM;
}
// call the specific constructors
BRICK_DBG("generic_brick_init_full: call specific contructors.\n");
if (brick_type->brick_construct) {
BRICK_DBG("generic_brick_init_full: calling brick_construct()\n");
status = brick_type->brick_construct(brick);
if (status < 0)
return status;
}
for (i = 0; i < brick_type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (!input)
continue;
if (!input->type) {
BRICK_ERR("input has no associated type!\n");
continue;
}
if (input->type->input_construct) {
BRICK_DBG("generic_brick_init_full: calling input_construct()\n");
status = input->type->input_construct(input);
if (status < 0)
return status;
}
}
for (i = 0; i < brick_type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->type->output_construct) {
BRICK_DBG("generic_brick_init_full: calling output_construct()\n");
status = output->type->output_construct(output);
if (status < 0)
return status;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(generic_brick_init_full);
int generic_brick_exit_full(struct generic_brick *brick)
{
int i;
int status;
// first, check all outputs
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->nr_connected) {
BRICK_ERR("output is connected!\n");
return -EPERM;
}
}
// ok, test succeeded. start destruction...
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (!output)
continue;
if (!output->type) {
BRICK_ERR("output has no associated type!\n");
continue;
}
if (output->type->output_destruct) {
BRICK_DBG("generic_brick_exit_full: calling output_destruct()\n");
status = output->type->output_destruct(output);
if (status < 0)
return status;
_generic_output_exit(output);
brick->outputs[i] = NULL; // others may remain leftover
}
}
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (!input)
continue;
if (!input->type) {
BRICK_ERR("input has no associated type!\n");
continue;
}
if (input->type->input_destruct) {
status = generic_disconnect(input);
if (status < 0)
return status;
BRICK_DBG("generic_brick_exit_full: calling input_destruct()\n");
status = input->type->input_destruct(input);
if (status < 0)
return status;
brick->inputs[i] = NULL; // others may remain leftover
generic_input_exit(input);
}
}
if (brick->type->brick_destruct) {
BRICK_DBG("generic_brick_exit_full: calling brick_destruct()\n");
status = brick->type->brick_destruct(brick);
if (status < 0)
return status;
}
generic_brick_exit(brick);
return 0;
}
EXPORT_SYMBOL_GPL(generic_brick_exit_full);
int generic_brick_exit_recursively(struct generic_brick *brick, bool destroy_inputs)
{
int final_status = 0;
LIST_HEAD(tmp);
list_add(&brick->tmp_head, &tmp);
while (!list_empty(&tmp)) {
int i;
int status;
int postpone = 0;
brick = container_of(tmp.next, struct generic_brick, tmp_head);
list_del_init(&brick->tmp_head);
for (i = 0; i < brick->type->max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
if (output && output->nr_connected) {
postpone += output->nr_connected;
}
}
for (i = 0; i < brick->type->max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
if (input && input->connect) {
struct generic_brick *other = input->connect->brick;
if (destroy_inputs) {
list_add(&other->tmp_head, &tmp);
postpone++;
} else {
}
}
}
if (postpone) {
list_add_tail(&brick->tmp_head, &tmp);
continue;
}
status = generic_brick_exit_full(brick);
if (status)
final_status = status;
}
return final_status;
}
EXPORT_SYMBOL_GPL(generic_brick_exit_recursively);
////////////////////////////////////////////////////////////////////////
// default implementations
struct generic_object *generic_alloc(struct generic_brick *brick, struct generic_object_layout *object_layout, const struct generic_object_type *object_type)
{
struct generic_object *object;
void *data;
int object_size;
int aspect_nr_max;
int total_size;
int hint_size;
CHECK_PTR_NULL(object_type, err);
CHECK_PTR(object_layout, err);
object_size = object_type->default_size;
aspect_nr_max = nr_max;
total_size = object_size + aspect_nr_max * sizeof(void*);
hint_size = object_layout->size_hint;
if (likely(total_size <= hint_size)) {
total_size = hint_size;
} else { // usually happens only at the first time
object_layout->size_hint = total_size;
}
data = brick_zmem_alloc(total_size);
if (!data)
goto err;
atomic_inc(&object_layout->alloc_count);
atomic_inc(&object_layout->total_alloc_count);
object = data;
object->object_type = object_type;
object->object_layout = object_layout;
object->aspects = data + object_size;
object->aspect_nr_max = aspect_nr_max;
object->free_offset = object_size + aspect_nr_max * sizeof(void*);
object->max_offset = total_size;
if (object_type->init_fn) {
int status = object_type->init_fn(object);
if (status < 0) {
goto err_free;
}
}
return object;
err_free:
brick_mem_free(data);
err:
return NULL;
}
EXPORT_SYMBOL_GPL(generic_alloc);
void generic_free(struct generic_object *object)
{
const struct generic_object_type *object_type;
struct generic_object_layout *object_layout;
int i;
CHECK_PTR(object, done);
object_type = object->object_type;
CHECK_PTR_NULL(object_type, done);
object_layout = object->object_layout;
CHECK_PTR(object_layout, done);
atomic_dec(&object_layout->alloc_count);
for (i = 0; i < object->aspect_nr_max; i++) {
const struct generic_aspect_type *aspect_type;
struct generic_aspect *aspect = object->aspects[i];
if (!aspect)
continue;
object->aspects[i] = NULL;
aspect_type = aspect->aspect_type;
CHECK_PTR_NULL(aspect_type, done);
if (aspect_type->exit_fn) {
aspect_type->exit_fn(aspect);
}
if (aspect->shortcut)
continue;
brick_mem_free(aspect);
atomic_dec(&object_layout->aspect_count);
}
if (object_type->exit_fn) {
object_type->exit_fn(object);
}
brick_mem_free(object);
done: ;
}
EXPORT_SYMBOL_GPL(generic_free);
static
struct generic_aspect *_new_aspect(struct generic_brick *brick, struct generic_object *obj)
{
struct generic_aspect *res = NULL;
const struct generic_brick_type *brick_type = brick->type;
const struct generic_object_type *object_type;
const struct generic_aspect_type *aspect_type;
int object_type_nr;
int size;
int rest;
object_type = obj->object_type;
CHECK_PTR_NULL(object_type, done);
object_type_nr = object_type->object_type_nr;
aspect_type = brick_type->aspect_types[object_type_nr];
CHECK_PTR_NULL(aspect_type, done);
size = aspect_type->aspect_size;
rest = obj->max_offset - obj->free_offset;
if (likely(size <= rest)) {
/* Optimisation: re-use single memory allocation for both
* the object and the new aspect.
*/
res = ((void*)obj) + obj->free_offset;
obj->free_offset += size;
res->shortcut = true;
} else {
struct generic_object_layout *object_layout = obj->object_layout;
CHECK_PTR(object_layout, done);
/* Maintain the size hint.
* In future, only small aspects should be integrated into
* the same memory block, and the hint should not grow larger
* than PAGE_SIZE if it was smaller before.
*/
if (size < PAGE_SIZE / 2) {
int max;
max = obj->free_offset + size;
/* This is racy, but races won't do any harm because
* it is just a hint, not essential.
*/
if ((max < PAGE_SIZE || object_layout->size_hint > PAGE_SIZE) &&
object_layout->size_hint < max)
object_layout->size_hint = max;
}
res = brick_zmem_alloc(size);
if (unlikely(!res)) {
goto done;
}
atomic_inc(&object_layout->aspect_count);
atomic_inc(&object_layout->total_aspect_count);
}
res->object = obj;
res->aspect_type = aspect_type;
if (aspect_type->init_fn) {
int status = aspect_type->init_fn(res);
if (unlikely(status < 0)) {
BRICK_ERR("aspect init %p %p %p status = %d\n", brick, obj, res, status);
goto done;
}
}
done:
return res;
}
struct generic_aspect *generic_get_aspect(struct generic_brick *brick, struct generic_object *obj)
{
struct generic_aspect *res = NULL;
int nr;
CHECK_PTR(brick, done);
CHECK_PTR(obj, done);
nr = brick->brick_index;
if (unlikely(nr <= 0 || nr >= obj->aspect_nr_max)) {
BRICK_ERR("bad nr = %d\n", nr);
goto done;
}
res = obj->aspects[nr];
if (!res) {
res = _new_aspect(brick, obj);
obj->aspects[nr] = res;
}
CHECK_PTR(res, done);
CHECK_PTR(res->object, done);
_CHECK(res->object == obj, done);
done:
return res;
}
EXPORT_SYMBOL_GPL(generic_get_aspect);
/////////////////////////////////////////////////////////////////
// helper stuff
struct semaphore lamport_sem = __SEMAPHORE_INITIALIZER(lamport_sem, 1); // TODO: replace with spinlock if possible (first check)
struct timespec lamport_now = {};
EXPORT_SYMBOL_GPL(lamport_now);
void get_lamport(struct timespec *now)
{
int diff;
down(&lamport_sem);
//*now = current_kernel_time();
*now = CURRENT_TIME;
diff = timespec_compare(now, &lamport_now);
if (diff > 0) {
memcpy(&lamport_now, now, sizeof(lamport_now));
} else {
timespec_add_ns(&lamport_now, 1);
memcpy(now, &lamport_now, sizeof(*now));
}
up(&lamport_sem);
}
EXPORT_SYMBOL_GPL(get_lamport);
void set_lamport(struct timespec *old)
{
int diff;
down(&lamport_sem);
diff = timespec_compare(old, &lamport_now);
if (diff > 0) {
memcpy(&lamport_now, old, sizeof(lamport_now));
}
up(&lamport_sem);
}
EXPORT_SYMBOL_GPL(set_lamport);
void set_button(struct generic_switch *sw, bool val, bool force)
{
bool oldval = sw->button;
if ((sw->force_off |= force))
val = false;
if (val != oldval) {
sw->button = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_button);
void set_led_on(struct generic_switch *sw, bool val)
{
bool oldval = sw->led_on;
if (val != oldval) {
sw->led_on = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_led_on);
void set_led_off(struct generic_switch *sw, bool val)
{
bool oldval = sw->led_off;
if (val != oldval) {
sw->led_off = val;
//sw->trigger = true;
wake_up_interruptible(&sw->event);
}
}
EXPORT_SYMBOL_GPL(set_led_off);
void set_button_wait(struct generic_brick *brick, bool val, bool force, int timeout)
{
set_button(&brick->power, val, force);
if (brick->ops)
(void)brick->ops->brick_switch(brick);
if (val) {
wait_event_interruptible_timeout(brick->power.event, brick->power.led_on, timeout);
} else {
wait_event_interruptible_timeout(brick->power.event, brick->power.led_off, timeout);
}
}
EXPORT_SYMBOL_GPL(set_button_wait);
/* Do it iteratively behind the scenes ;)
*/
int set_recursive_button(struct generic_brick *orig_brick, brick_switch_t mode, int timeout)
{
struct generic_brick **table = NULL;
int max = PAGE_SIZE / sizeof(void*) / 2;
int stack;
bool val = (mode == BR_ON_ONE || mode == BR_ON_ALL);
bool force = (mode != BR_OFF_ONE && mode != BR_OFF_ALL);
int pos;
int status;
#define PUSH_STACK(next) \
{ \
int j; \
bool found = false; \
/* eliminate duplicates */ \
for (j = 0; j < stack; j++) { \
if (table[j] == (next)) { \
BRICK_DBG(" double entry %d '%s' stack = %d\n", i, SAFE_STR((next)->brick_name), stack); \
found = true; \
break; \
} \
} \
if (!found) { \
BRICK_DBG(" push '%s' stack = %d\n", SAFE_STR((next)->brick_name), stack); \
table[stack++] = (next); \
if (unlikely(stack > max)) { \
BRICK_ERR("---- max = %d overflow, restarting...\n", max); \
goto restart; \
} \
} \
}
restart:
BRICK_DBG("-> orig_brick = '%s'\n", SAFE_STR(orig_brick->brick_name));
brick_mem_free(table);
max <<= 1;
table = brick_mem_alloc(max * sizeof(void*));
status = -ENOMEM;
if (unlikely(!table))
goto done;
stack = 0;
table[stack++] = orig_brick;
status = -EAGAIN;
for (pos = 0; pos < stack; pos++) {
struct generic_brick *brick = table[pos];
int max_inputs = 0;
int max_outputs = 0;
if (unlikely(!brick)) {
BRICK_ERR("intenal problem\n");
status = -EINVAL;
goto done;
}
if (likely(brick->type)) {
max_inputs = brick->type->max_inputs;
max_outputs = brick->type->max_outputs;
} else {
BRICK_WRN("uninitialized brick\n");
}
BRICK_DBG("--> pos = %d stack = %d brick = '%s' inputs = %d/%d outputs = %d/%d\n", pos, stack, SAFE_STR(brick->brick_name), brick->nr_inputs, max_inputs, brick->nr_outputs, max_outputs);
if (val) {
force = false;
if (unlikely(brick->power.force_off)) {
status = -EDEADLK;
goto done;
}
if (mode >= BR_ON_ALL) {
int i;
for (i = 0; i < max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
struct generic_output *output;
struct generic_brick *next;
BRICK_DBG("---> i = %d\n", i);
//brick_msleep(1000);
if (!input)
continue;
output = input->connect;
if (!output)
continue;
next = output->brick;
if (!next)
continue;
PUSH_STACK(next);
}
}
} else if (mode >= BR_ON_ALL) {
int i;
for (i = 0; i < max_outputs; i++) {
struct generic_output *output = brick->outputs[i];
struct list_head *tmp;
BRICK_DBG("---> i = %d output = %p\n", i, output);
//brick_msleep(1000);
if (!output)
continue;
for (tmp = output->output_head.next; tmp && tmp != &output->output_head; tmp = tmp->next) {
struct generic_input *input = container_of(tmp, struct generic_input, input_head);
struct generic_brick *next = input->brick;
BRICK_DBG("----> tmp = %p input = %p next = %p\n", tmp, input, next);
//brick_msleep(1000);
if (unlikely(!next)) {
BRICK_ERR("oops, bad brick pointer\n");
status = -EINVAL;
goto done;
}
PUSH_STACK(next);
}
}
}
}
BRICK_DBG("-> stack = %d\n", stack);
while (stack > 0) {
struct generic_brick *brick = table[--stack];
if (unlikely(!brick)) {
BRICK_ERR("intenal problem\n");
status = -EINVAL;
goto done;
}
BRICK_DBG("--> switch '%s' stack = %d\n", SAFE_STR(brick->brick_name), stack);
set_button_wait(brick, val, force, timeout);
if (val ? !brick->power.led_on : !brick->power.led_off) {
BRICK_ERR("switching '%s' to %d: brick not ready (%s)\n", SAFE_STR(brick->brick_name), val, SAFE_STR(orig_brick->brick_name));
goto done;
}
if (force && !val && (mode == BR_FREE_ONE || mode == BR_FREE_ALL)) {
int max_inputs = 0;
int i;
if (likely(brick->type)) {
max_inputs = brick->type->max_inputs;
} else {
BRICK_WRN("uninitialized brick\n");
}
BRICK_DBG("---> freeing '%s'\n", SAFE_STR(brick->brick_name));
for (i = 0; i < max_inputs; i++) {
struct generic_input *input = brick->inputs[i];
BRICK_DBG("---> i = %d\n", i);
if (!input)
continue;
status = generic_disconnect(input);
if (status < 0) {
BRICK_ERR("disconnect %d failed, status = %d\n", i, status);
goto done;
}
}
if (brick->free) {
status = brick->free(brick);
if (status < 0) {
BRICK_ERR("freeing failed, status = %d\n", status);
goto done;
}
}
}
}
status = 0;
done:
BRICK_DBG("-> done status = %d\n", status);
brick_mem_free(table);
return status;
}
EXPORT_SYMBOL_GPL(set_recursive_button);
/////////////////////////////////////////////////////////////////
// meta stuff
const struct meta *find_meta(const struct meta *meta, const char *field_name)
{
const struct meta *tmp;
for (tmp = meta; tmp->field_name; tmp++) {
if (!strcmp(field_name, tmp->field_name)) {
return tmp;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(find_meta);
#if 0 // currently not needed, but this may change
void free_meta(void *data, const struct meta *meta)
{
for (; meta->field_name[0]; meta++) {
void *item;
switch (meta->field_type) {
case FIELD_SUB:
if (meta->field_ref) {
item = data + meta->field_offset;
free_meta(item, meta->field_ref);
}
break;
case FIELD_REF:
case FIELD_STRING:
item = data + meta->field_offset;
item = *(void**)item;
if (meta->field_ref)
free_meta(item, meta->field_ref);
brick_mem_free(item);
}
}
}
EXPORT_SYMBOL_GPL(free_meta);
#endif
/////////////////////////////////////////////////////////////////////////
// module init stuff
int __init init_brick(void)
{
nr_table = brick_zmem_alloc(nr_max);
if (!nr_table) {
return -ENOMEM;
}
return 0;
}
void __exit exit_brick(void)
{
if (nr_table) {
brick_mem_free(nr_table);
nr_table = NULL;
}
}
#ifndef CONFIG_MARS_HAVE_BIGMODULE
MODULE_DESCRIPTION("generic brick infrastructure");
MODULE_AUTHOR("Thomas Schoebel-Theuer <tst@1und1.de>");
MODULE_LICENSE("GPL");
module_init(init_brick);
module_exit(exit_brick);
#endif