/* * MARS Long Distance Replication Software * * This file is part of MARS project: http://schoebel.github.io/mars/ * * Copyright (C) 2010-2014 Thomas Schoebel-Theuer * Copyright (C) 2011-2014 1&1 Internet AG * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ //#define BRICK_DEBUGGING #define MARS_DEBUGGING //#define IO_DEBUGGING #define STAT_DEBUGGING #include #include #include #include #include #include #include #include #include #include #include #include "strategy.h" #include "../lib_mapfree.h" #include "../mars_client.h" #include "../compat.h" #include #include #include #define SKIP_BIO false // remove_this #include #include #ifndef DCACHE_MISS_TYPE /* define accessors compatible to b18825a7c8e37a7cf6abb97a12a6ad71af160de7 */ #define d_is_negative(dentry) ((dentry)->d_inode == NULL) #define d_backing_inode(dentry) ((dentry)->d_inode) #endif /* FIXME: some Redhat/openvz kernels seem to have both (backporting etc). * The folling is an incomplete quickfix / workaround. TBD. */ #if !defined(__WAIT_ATOMIC_T_KEY_INITIALIZER) || defined(RHEL_RELEASE) #define HAS_VFS_READDIR #elif !defined(f_dentry) #define __HAS_NEW_FILLDIR_T #endif #ifdef RENAME_NOREPLACE #define __HAS_RENAME2 #endif // end_remove_this ///////////////////////////////////////////////////////////////////// // meta descriptions const struct meta mars_kstat_meta[] = { META_INI(ino, struct kstat, FIELD_INT), META_INI(mode, struct kstat, FIELD_INT), META_INI(size, struct kstat, FIELD_INT), META_INI_SUB(atime, struct kstat, mars_lamport_time_meta), META_INI_SUB(mtime, struct kstat, mars_lamport_time_meta), META_INI_SUB(ctime, struct kstat, mars_lamport_time_meta), META_INI(blksize, struct kstat, FIELD_INT), {} }; EXPORT_SYMBOL_GPL(mars_kstat_meta); const struct meta mars_dent_meta[] = { META_INI(d_name, struct mars_dent, FIELD_STRING), META_INI(d_rest, struct mars_dent, FIELD_STRING), META_INI(d_path, struct mars_dent, FIELD_STRING), META_INI(d_type, struct mars_dent, FIELD_INT), META_INI(d_class, struct mars_dent, FIELD_INT), META_INI(d_serial, struct mars_dent, FIELD_INT), META_INI(d_corr_A, struct mars_dent, FIELD_INT), META_INI(d_corr_B, struct mars_dent, FIELD_INT), META_INI(d_proto, struct mars_dent, FIELD_INT), META_INI(d_unordered, struct mars_dent, FIELD_INT), META_INI_SUB(new_stat,struct mars_dent, mars_kstat_meta), META_INI_SUB(old_stat,struct mars_dent, mars_kstat_meta), META_INI(new_link, struct mars_dent, FIELD_STRING), META_INI(old_link, struct mars_dent, FIELD_STRING), META_INI(d_args, struct mars_dent, FIELD_STRING), META_INI(d_argv[0], struct mars_dent, FIELD_STRING), META_INI(d_argv[1], struct mars_dent, FIELD_STRING), META_INI(d_argv[2], struct mars_dent, FIELD_STRING), META_INI(d_argv[3], struct mars_dent, FIELD_STRING), {} }; EXPORT_SYMBOL_GPL(mars_dent_meta); // remove_this #ifndef MARS_HAS_PREPATCH ///////////////////////////////////////////////////////////////////// /* The _compat_*() functions are needed for the out-of-tree version * of MARS for adapdation to different kernel version. */ #ifdef SB_FREEZE_LEVELS /* since kernel 3.6 */ /* see a8104a9fcdeb82e22d7acd55fca20746581067d3 */ /* locking order changes in c30dabfe5d10c5fd70d882e5afb8f59f2942b194, we need to adapt */ #define __NEW_PATH_CREATE #endif #include #ifndef FSCACHE_OP_DEAD /* since kernel 3.8 */ /* see b9d6ba94b875192ef5e2dab92d72beea33b83c3d */ #define __HAS_RETRY_ESTALE #endif /* 5955102c9984fa081b2d570cfac75c97eecf8f3b */ #ifndef FLOCK_VERIFY_READ /* detect kernel 4.5-rc1 via acc15575e */ #define HAS_INODE_LOCK_WRAPPERS #endif /* Hack because of 8bcb77fabd7cbabcad49f58750be8683febee92b */ static int __path_parent(const char *name, struct path *path, unsigned flags) { #ifdef user_path return kern_path(name, flags | LOOKUP_PARENT | LOOKUP_DIRECTORY | LOOKUP_FOLLOW, path); #else char *tmp; int len; int error; len = strlen(name); while (len > 0 && name[len] != '/') len--; if (unlikely(!len)) return -EINVAL; tmp = brick_string_alloc(len + 1); strncpy(tmp, name, len); tmp[len] = '\0'; error = kern_path(tmp, flags | LOOKUP_DIRECTORY | LOOKUP_FOLLOW, path); brick_string_free(tmp); return error; #endif } /* code is blindly stolen from symlinkat() * and later adapted to various kernels */ int _compat_symlink(const char __user *oldname, const char __user *newname, struct lamport_time *mtime) { const int newdfd = AT_FDCWD; int error; char *from; struct dentry *dentry; struct path path; unsigned int lookup_flags = 0; from = (char *)oldname; #ifdef __HAS_RETRY_ESTALE retry: #endif dentry = user_path_create(newdfd, newname, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_putname; #ifndef __NEW_PATH_CREATE error = mnt_want_write(path.mnt); if (error) goto out_dput; #endif error = vfs_symlink(path.dentry->d_inode, dentry, from); if (error >= 0 && mtime) { struct iattr iattr = { .ia_valid = ATTR_MTIME | ATTR_MTIME_SET | ATTR_TIMES_SET, .ia_mtime.tv_sec = mtime->tv_sec, .ia_mtime.tv_nsec = mtime->tv_nsec, }; #ifdef HAS_INODE_LOCK_WRAPPERS inode_lock(dentry->d_inode); #else mutex_lock(&dentry->d_inode->i_mutex); #endif #ifdef FL_DELEG error = notify_change(dentry, &iattr, NULL); #else error = notify_change(dentry, &iattr); #endif #ifdef HAS_INODE_LOCK_WRAPPERS inode_unlock(dentry->d_inode); #else mutex_unlock(&dentry->d_inode->i_mutex); #endif } #ifdef __NEW_PATH_CREATE done_path_create(&path, dentry); #else mnt_drop_write(path.mnt); out_dput: dput(dentry); mutex_unlock(&path.dentry->d_inode->i_mutex); path_put(&path); #endif #ifdef __HAS_RETRY_ESTALE if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } #endif out_putname: return error; } /* code is stolen from mkdirat() */ int _compat_mkdir(const char __user *pathname, int mode) { const int dfd = AT_FDCWD; struct dentry *dentry; struct path path; int error; unsigned int lookup_flags = LOOKUP_DIRECTORY; #ifdef __HAS_RETRY_ESTALE retry: #endif dentry = user_path_create(dfd, pathname, &path, lookup_flags); if (IS_ERR(dentry)) return PTR_ERR(dentry); if (!IS_POSIXACL(path.dentry->d_inode)) mode &= ~current_umask(); #ifndef __NEW_PATH_CREATE error = mnt_want_write(path.mnt); if (error) goto out_dput; #endif error = vfs_mkdir(path.dentry->d_inode, dentry, mode); #ifdef __NEW_PATH_CREATE done_path_create(&path, dentry); #else mnt_drop_write(path.mnt); out_dput: dput(dentry); mutex_unlock(&path.dentry->d_inode->i_mutex); path_put(&path); #endif #ifdef __HAS_RETRY_ESTALE if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } #endif return error; } /* This has some restrictions: * - oldname and newname must reside in the same directory * - standard case, no mountpoints inbetween * - no security checks (we are anyway called from kernel code) */ int _compat_rename(const char *oldname, const char *newname) { struct path oldpath; struct path newpath; struct dentry *old_dir; struct dentry *new_dir; struct dentry *old_dentry; struct dentry *new_dentry; struct dentry *trap; const char *old_one; const char *new_one; const char *tmp; unsigned int lookup_flags = 0; #ifdef __HAS_RETRY_ESTALE bool should_retry = false; #endif int error; #ifdef __HAS_RETRY_ESTALE retry: #endif error = __path_parent(oldname, &oldpath, lookup_flags); if (unlikely(error)) goto exit; old_dir = oldpath.dentry; error = __path_parent(newname, &newpath, lookup_flags); if (unlikely(error)) goto exit1; new_dir = newpath.dentry; old_one = oldname; for (;;) { for (tmp = old_one; *tmp && *tmp != '/'; tmp++) /* empty */; if (!*tmp) break; old_one = tmp + 1; } new_one = newname; for (;;) { for (tmp = new_one; *tmp && *tmp != '/'; tmp++) /* empty */; if (!*tmp) break; new_one = tmp + 1; } #ifdef __NEW_PATH_CREATE error = mnt_want_write(oldpath.mnt); if (unlikely(error)) goto exit2; #endif trap = lock_rename(new_dir, old_dir); old_dentry = lookup_one_len(old_one, old_dir, strlen(old_one)); error = PTR_ERR(old_dentry); if (unlikely(IS_ERR(old_dentry))) goto out_unlock_rename; error = -ENOENT; if (unlikely(d_is_negative(old_dentry))) goto out_dput_old; error = -EINVAL; if (unlikely(old_dentry == trap)) goto out_dput_old; new_dentry = lookup_one_len(new_one, new_dir, strlen(new_one)); error = PTR_ERR(new_dentry); if (unlikely(IS_ERR(new_dentry))) goto out_dput_old; error = -ENOTEMPTY; if (unlikely(new_dentry == trap)) goto out_dput_new; #ifndef __NEW_PATH_CREATE error = mnt_want_write(oldpath.mnt); if (unlikely(error)) goto out_dput_new; #endif #ifdef __HAS_RENAME2 error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry, NULL, 0); #elif defined(FL_DELEG) error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry, NULL); #else error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry); #endif #ifndef __NEW_PATH_CREATE mnt_drop_write(oldpath.mnt); #endif out_dput_new: dput(new_dentry); out_dput_old: dput(old_dentry); out_unlock_rename: unlock_rename(new_dir, old_dir); #ifdef __NEW_PATH_CREATE mnt_drop_write(oldpath.mnt); exit2: #endif #ifdef __HAS_RETRY_ESTALE if (retry_estale(error, lookup_flags)) should_retry = true; #endif path_put(&newpath); exit1: path_put(&oldpath); #ifdef __HAS_RETRY_ESTALE if (should_retry) { lookup_flags |= LOOKUP_REVAL; goto retry; } #endif exit: return error; } /* This has some restrictions: * - standard case, no mountpoints inbetween * - no security checks (we are anyway called from kernel code) */ int _compat_unlink(const char *pathname) { struct path path; struct dentry *parent; struct dentry *dentry; struct inode *inode = NULL; const char *one; const char *tmp; int error; unsigned int lookup_flags = 0; #ifdef __HAS_RETRY_ESTALE retry: #endif error = __path_parent(pathname, &path, lookup_flags); if (unlikely(error)) goto exit; parent = path.dentry; if (unlikely(d_is_negative(parent))) goto exit1; one = pathname; for (;;) { for (tmp = one; *tmp && *tmp != '/'; tmp++) /* empty */; if (!*tmp) break; one = tmp + 1; } #ifdef __NEW_PATH_CREATE error = mnt_want_write(path.mnt); if (error) goto exit1; #endif #ifdef HAS_INODE_LOCK_WRAPPERS inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT); #else mutex_lock_nested(&parent->d_inode->i_mutex, I_MUTEX_PARENT); #endif dentry = lookup_one_len(one, parent, strlen(one)); error = PTR_ERR(dentry); if (unlikely(IS_ERR(dentry))) goto exit2; error = -ENOENT; if (unlikely(d_is_negative(dentry))) goto exit3; inode = dentry->d_inode; ihold(inode); #ifndef __NEW_PATH_CREATE error = mnt_want_write(path.mnt); if (error) goto exit3; #endif #ifdef FL_DELEG error = vfs_unlink(parent->d_inode, dentry, NULL); #else error = vfs_unlink(parent->d_inode, dentry); #endif #ifndef __NEW_PATH_CREATE mnt_drop_write(path.mnt); #endif exit3: dput(dentry); exit2: #ifdef HAS_INODE_LOCK_WRAPPERS inode_unlock(dentry->d_inode); #else mutex_unlock(&parent->d_inode->i_mutex); #endif if (inode) iput(inode); #ifdef __NEW_PATH_CREATE mnt_drop_write(path.mnt); #endif exit1: path_put(&path); exit: #ifdef __HAS_RETRY_ESTALE if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; inode = NULL; goto retry; } #endif return error; } #endif // end_remove_this ///////////////////////////////////////////////////////////////////// // some helpers static inline int _length_paranoia(int len, int line) { if (unlikely(len < 0)) { MARS_ERR("implausible string length %d (line=%d)\n", len, line); len = PAGE_SIZE - 2; } else if (unlikely(len > PAGE_SIZE - 2)) { MARS_WRN("string length %d will be truncated to %d (line=%d)\n", len, (int)PAGE_SIZE - 2, line); len = PAGE_SIZE - 2; } return len; } bool mars_is_mountpoint(const char *pathname) { struct path path = {}; mm_segment_t oldfs; int status; bool res = false; oldfs = get_fs(); set_fs(get_ds()); status = user_path_at(AT_FDCWD, pathname, 0, &path); if (unlikely(status < 0)) { MARS_WRN("pathname '%s' does not exist, status = %d\n", pathname, status); goto done_fs; } if (unlikely(!path.dentry)) { MARS_WRN("path '%s' has invalid dentry\n", pathname); goto done_put; } if (unlikely(!follow_up(&path))) { MARS_WRN("path '%s' has no vfsmnt\n", pathname); goto done_put; } /* the second one may fail when we already are at the root mount */ if (!follow_up(&path)) { goto done_put; } res = d_mountpoint(path.dentry); done_put: path_put(&path); done_fs: set_fs(oldfs); return res; } int mars_stat(const char *path, struct kstat *stat, bool use_lstat) { mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); if (use_lstat) { status = vfs_lstat((char*)path, stat); } else { status = vfs_stat((char*)path, stat); } set_fs(oldfs); if (likely(status >= 0)) { set_lamport(&stat->mtime); } return status; } EXPORT_SYMBOL_GPL(mars_stat); void mars_sync(void) { struct file *f; mm_segment_t oldfs; oldfs = get_fs(); set_fs(get_ds()); f = filp_open("/mars", O_DIRECTORY | O_RDONLY, 0); set_fs(oldfs); if (unlikely(IS_ERR(f))) return; if (likely(f->f_mapping)) { struct inode *inode = f->f_mapping->host; if (likely(inode && inode->i_sb)) { struct super_block *sb = inode->i_sb; down_read(&sb->s_umount); sync_filesystem(sb); shrink_dcache_sb(sb); up_read(&sb->s_umount); } } filp_close(f, NULL); } int mars_mkdir(const char *path) { mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); #ifdef MARS_HAS_PREPATCH status = sys_mkdir(path, 0700); #else status = _compat_mkdir(path, 0700); #endif set_fs(oldfs); return status; } EXPORT_SYMBOL_GPL(mars_mkdir); int mars_rmdir(const char *path) { #ifdef MARS_HAS_PREPATCH mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); status = sys_rmdir(path); set_fs(oldfs); return status; #else return -ENOSYS; #endif } EXPORT_SYMBOL_GPL(mars_rmdir); int mars_unlink(const char *path) { mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); #ifdef MARS_HAS_PREPATCH status = sys_unlink(path); #else status = _compat_unlink(path); #endif set_fs(oldfs); return status; } static int mars_symlink(const char *oldpath, const char *newpath, const struct lamport_time *stamp, bool ordered) { char *tmp = backskip_replace(newpath, '/', true, "/.tmp-"); mm_segment_t oldfs; struct kstat stat = {}; struct lamport_time times[2]; int status = -ENOMEM; if (unlikely(!tmp)) goto done; if (stamp) memcpy(×[0], stamp, sizeof(times[0])); else get_lamport(NULL, ×[0]); #ifdef CONFIG_MARS_DEBUG while (mars_hang_mode & 4) brick_msleep(100); #endif oldfs = get_fs(); set_fs(get_ds()); status = vfs_lstat((char*)newpath, &stat); /* When ordered, obey the Lamport condition. */ if (ordered && status >= 0 && stamp && lamport_time_compare(&stat.mtime, stamp) > 0) { struct lamport_time real_now; /* Illegal old link stamps are disobeyed, when * they are too far in the future. * Although this leads to a backskip violating * the Lamport condition, it is a beneficial * exceptional error correction. * Such errors have been observed at ShaHoLin * after fatal hardware crashes, where MARS * was run for a _short_ time with an illegal * CMOS hardware clock value, until ntpd * corrected the system clock, fortunately. */ real_now = get_real_lamport(); if (likely(stat.mtime.tv_sec < real_now.tv_sec + max_lamport_future)) goto done_fs; /* Continue, overriding the illegal old * link stamp by exceptionally disobeying * the Lamport condition. */ } /* Some filesystems have only full second resolution. * Thus it may happen that the new timestamp is not * truly moving forward when called twice shortly. * This is a _workaround_, to be replaced by a better * method somewhen. */ if (status >= 0 && !stamp && !stat.mtime.tv_nsec && times[0].tv_sec == stat.mtime.tv_sec) { MARS_DBG("workaround timestamp tv_sec=%ld\n", stat.mtime.tv_sec); times[0].tv_sec = stat.mtime.tv_sec + 1; /* Setting tv_nsec to 1 prevents from unnecessarily reentering * this workaround again if accidentally the original tv_nsec * had been 0 or if the workaround had been triggered. */ times[0].tv_nsec = 1; } #ifdef MARS_HAS_PREPATCH (void)sys_unlink(tmp); status = sys_symlink(oldpath, tmp); if (status >= 0) { sys_lchown(tmp, 0, 0); memcpy(×[1], ×[0], sizeof(struct lamport_time)); status = do_utimes(AT_FDCWD, tmp, times, AT_SYMLINK_NOFOLLOW); } #else (void)_compat_unlink(tmp); status = _compat_symlink(oldpath, tmp, ×[0]); #endif if (status >= 0) { set_lamport(×[0]); status = mars_rename(tmp, newpath); } done_fs: set_fs(oldfs); brick_string_free(tmp); done: return status; } char *mars_readlink(const char *newpath, struct lamport_time *stamp) { char *res = NULL; struct path path = {}; mm_segment_t oldfs; struct inode *inode; int len; int status = -ENOMEM; oldfs = get_fs(); set_fs(get_ds()); status = user_path_at(AT_FDCWD, newpath, 0, &path); if (unlikely(status < 0)) { MARS_DBG("link '%s' does not exist, status = %d\n", newpath, status); goto done_fs; } if (unlikely(!path.dentry)) { MARS_WRN("path '%s' has invalid dentry\n", newpath); goto done_put; } #ifdef MARS_HAS_VFS_READLINK inode = d_inode(path.dentry); #else inode = path.dentry->d_inode; #endif if (unlikely(!inode)) { MARS_ERR("link '%s' has invalid inode\n", newpath); status = -EINVAL; goto done_put; } if (S_ISDIR(inode->i_mode)) { /* fail silently: this can happen during * deletions of directories */ status = -EINVAL; goto done_put; } if (!S_ISLNK(inode->i_mode)) { MARS_WRN("'%s' is no symlink\n", newpath); status = -EINVAL; goto done_put; } len = i_size_read(inode); if (unlikely(len <= 0 || len > PAGE_SIZE)) { MARS_ERR("link '%s' invalid length = %d\n", newpath, len); status = -EINVAL; goto done_put; } res = brick_string_alloc(len + 2); #ifdef MARS_HAS_VFS_READLINK status = vfs_readlink(path.dentry, res, len + 1); #else status = inode->i_op->readlink(path.dentry, res, len + 1); #endif if (unlikely(status < 0)) { MARS_ERR("cannot read link '%s', status = %d\n", newpath, status); } else if (stamp) { set_get_lamport(&inode->i_mtime, NULL, stamp); } else { set_lamport(&inode->i_mtime); } done_put: path_put(&path); done_fs: set_fs(oldfs); if (unlikely(status < 0)) { if (unlikely(!res)) { res = brick_string_alloc(1); } res[0] = '\0'; } return res; } EXPORT_SYMBOL_GPL(mars_readlink); int mars_rename(const char *oldpath, const char *newpath) { mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); #ifdef MARS_HAS_PREPATCH status = sys_rename(oldpath, newpath); #else status = _compat_rename(oldpath, newpath); #endif set_fs(oldfs); return status; } EXPORT_SYMBOL_GPL(mars_rename); int mars_chmod(const char *path, mode_t mode) { #ifdef MARS_HAS_PREPATCH mm_segment_t oldfs; int status; oldfs = get_fs(); set_fs(get_ds()); status = sys_chmod(path, mode); set_fs(oldfs); return status; #else return -ENOSYS; #endif } EXPORT_SYMBOL_GPL(mars_chmod); loff_t _compute_space(struct kstatfs *kstatfs, loff_t raw_val) { u64 fsize = kstatfs->f_frsize; if (fsize <= 0) fsize = kstatfs->f_bsize; MARS_DBG("fsize = %llu raw_val = %lld\n", fsize, raw_val); /* Implausible value: * Guess, use safe side from old Unix... */ if (fsize <= 0) fsize = 512; // prevent intermediate integer overflows if (fsize <= 1024) return raw_val / (1024 / fsize); return raw_val * (fsize / 1024); } void mars_remaining_space(const char *fspath, loff_t *total, loff_t *remaining) { struct path path = {}; struct kstatfs kstatfs = {}; mm_segment_t oldfs; int res; *total = *remaining = 0; oldfs = get_fs(); set_fs(get_ds()); res = user_path_at(AT_FDCWD, fspath, 0, &path); set_fs(oldfs); if (unlikely(res < 0)) { MARS_ERR("cannot get fspath '%s', err = %d\n\n", fspath, res); goto err; } if (unlikely(!path.dentry)) { MARS_ERR("bad dentry for fspath '%s'\n", fspath); res = -ENXIO; goto done; } #ifdef ST_RDONLY res = vfs_statfs(&path, &kstatfs); #else res = vfs_statfs(path.dentry, &kstatfs); #endif if (unlikely(res < 0)) { goto done; } *total = _compute_space(&kstatfs, kstatfs.f_blocks); *remaining = _compute_space(&kstatfs, kstatfs.f_bavail); done: path_put(&path); err: ; } EXPORT_SYMBOL_GPL(mars_remaining_space); /*************************************************************/ /* Timestamp Ordering */ /* Description of the OLD odering method: */ /* Timestamp ordering (e.g. via Lamport Clock) is easy when * the object exists. * When unlink() comes into play, it becomes more complex: * where to store the timestamp of the object when it is * currently deleted? * This is necessary to allow permutations between _all_ operations * on the object, including unlink(). * Idea: use a substitute object ".deleted-$object". */ int compat_deletions = 1; static DEFINE_MUTEX(ordered_lock); static int compat_ordered_unlink(const char *path, const struct lamport_time *stamp, int serial, int mode) { struct kstat stat; char serial_str[32]; struct lamport_time now; const char *marker_path; int marker_status; int status = 0; snprintf(serial_str, sizeof(serial_str), "%d,%d", serial, mode); if (!stamp) { get_lamport(NULL, &now); stamp = &now; } mutex_lock(&ordered_lock); marker_path = backskip_replace(path, '/', true, "/.deleted-"); marker_status = mars_stat(marker_path, &stat, true); if (marker_status < 0 || lamport_time_compare(stamp, &stat.mtime) >= 0) { MARS_DBG("creating / updating marker '%s' mtime=%lu.%09lu\n", marker_path, stamp->tv_sec, stamp->tv_nsec); status = mars_symlink(serial_str, marker_path, stamp, false); } if (marker_status < 0 || lamport_time_compare(stamp, &stat.mtime) >= 0) { status = mars_unlink(path); } mutex_unlock(&ordered_lock); brick_string_free(marker_path); return status; } static int compat_ordered_symlink(const char *oldpath, const char *newpath, const struct lamport_time *stamp) { struct kstat stat; struct lamport_time now; const char *marker_path; int status = 1; if (!stamp) { get_lamport(NULL, &now); stamp = &now; } mutex_lock(&ordered_lock); marker_path = backskip_replace(newpath, '/', true, "/.deleted-"); if (mars_stat(marker_path, &stat, true) >= 0 && lamport_time_compare(&stat.mtime, stamp) > 0) { goto done; } if (mars_stat(newpath, &stat, true) >= 0 && lamport_time_compare(&stat.mtime, stamp) > 0) { goto done; } (void)mars_unlink(marker_path); status = mars_symlink(oldpath, newpath, stamp, false); done: mutex_unlock(&ordered_lock); brick_string_free(marker_path); return status; } /* NEW timestamp ordering method. * Timestamp ordering (e.g. via Lamport Clock) is easy when * the object exists. * When unlink() comes into play, it becomes more complex: * where to store the timestamp of the object when it is * deleted? * The new method simply uses a special value MARS_DELETED_STR * as a marker for symlinks. * In order to prevent long-term accumulation of suchalike * "zombie" symlinks, some cleanup via unlink() is necessary. * We offload cleanup to "marsadm cron". */ char *ordered_readlink(const char *path, struct lamport_time *stamp) { char *res = mars_readlink(path, stamp); if (!strcmp(res, MARS_DELETED_STR)) { *res = '\0'; } return res; } int ordered_unlink(const char *path, const struct lamport_time *stamp, int serial, int mode) { if (compat_deletions) return compat_ordered_unlink(path, stamp, serial, mode); return ordered_symlink(MARS_DELETED_STR, path, stamp); } int ordered_symlink(const char *oldpath, const char *newpath, const struct lamport_time *stamp) { int status; if (compat_deletions) return compat_ordered_symlink(oldpath, newpath, stamp); status = mars_symlink(oldpath, newpath, stamp, true); return status; } ////////////////////////////////////////////////////////////// // thread binding void bind_to_dent(struct mars_dent *dent, struct say_channel **ch) { if (!dent) { if (*ch) { remove_binding_from(*ch, current); *ch = NULL; } return; } // Memoize the channel. This is executed only once for each dent. if (unlikely(!dent->d_say_channel)) { struct mars_dent *test = dent->d_parent; for (;;) { if (!test) { dent->d_say_channel = default_channel; break; } CHECK_PTR(test, fatal); if (test->d_use_channel && test->d_path) { dent->d_say_channel = make_channel(test->d_path, true); break; } test = test->d_parent; } } if (dent->d_say_channel != *ch) { if (*ch) remove_binding_from(*ch, current); *ch = dent->d_say_channel; if (*ch) bind_to_channel(*ch, current); } fatal: ; } EXPORT_SYMBOL_GPL(bind_to_dent); ////////////////////////////////////////////////////////////// // infrastructure struct mars_global *mars_global = NULL; EXPORT_SYMBOL_GPL(mars_global); void _init_mars_global(struct mars_global *global) { int i; memset(global, 0, sizeof(struct mars_global)); INIT_LIST_HEAD(&global->dent_anchor); INIT_LIST_HEAD(&global->brick_anchor); global->global_power.button = true; init_waitqueue_head(&global->main_event); for (i = 0; i < MARS_GLOBAL_HASH_BASE; i++) { struct list_head *table = brick_mem_alloc(PAGE_SIZE); int j; global->dent_hash_table[i] = table; for (j = 0; j < MARS_GLOBAL_HASH_TABLE; j++) INIT_LIST_HEAD(&table[j]); } } void exit_mars_global(struct mars_global *global) { int i; #ifdef CONFIG_MARS_DEBUG CHECK_HEAD_EMPTY(&global->dent_anchor); CHECK_HEAD_EMPTY(&global->brick_anchor); #endif for (i = 0; i < MARS_GLOBAL_HASH_BASE; i++) { struct list_head *table = global->dent_hash_table[i]; #ifdef CONFIG_MARS_DEBUG int j; for (j = 0; j < MARS_GLOBAL_HASH_TABLE; j++) CHECK_HEAD_EMPTY(&table[j]); #endif brick_mem_free(table); } } void __mars_trigger(int mode) { struct mars_global *global = mars_global; if (global) { global->trigger_mode |= mode; global->main_trigger = true; wake_up_interruptible_all(&global->main_event); } } bool mars_check_inputs(struct mars_brick *brick) { int max_inputs; int i; if (likely(brick->type)) { max_inputs = brick->type->max_inputs; } else { MARS_ERR("uninitialized brick '%s' '%s'\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); return true; } for (i = 0; i < max_inputs; i++) { struct mars_input *input = brick->inputs[i]; struct mars_output *prev_output; struct mars_brick *prev_brick; if (!input) continue; prev_output = input->connect; if (!prev_output) continue; prev_brick = prev_output->brick; CHECK_PTR(prev_brick, done); if (prev_brick->power.led_on) continue; done: return true; } return false; } EXPORT_SYMBOL_GPL(mars_check_inputs); bool mars_check_outputs(struct mars_brick *brick) { int i; for (i = 0; i < brick->type->max_outputs; i++) { struct mars_output *output = brick->outputs[i]; if (!output || !output->nr_connected) continue; return true; } return false; } EXPORT_SYMBOL_GPL(mars_check_outputs); int mars_power_button(struct mars_brick *brick, bool val, bool force_off) { int status = 0; bool oldval = brick->power.button; if (force_off && !val) brick->power.force_off = true; if (brick->power.force_off) val = false; if (val != oldval) { // check whether switching is possible status = -EINVAL; if (val) { // check all inputs if (unlikely(mars_check_inputs(brick))) { MARS_ERR("CANNOT SWITCH ON: brick '%s' '%s' has a turned-off predecessor\n", brick->brick_name, brick->brick_path); goto done; } } else { // check all outputs if (unlikely(mars_check_outputs(brick))) { /* For now, we have a strong rule: * Switching off is only allowed when no successor brick * exists at all. This could be relaxed to checking * whether all successor bricks are actually switched off. * Probabĺy it is a good idea to retain the stronger rule * as long as nobody needs the relaxed one. */ MARS_ERR("CANNOT SWITCH OFF: brick '%s' '%s' has a successor\n", brick->brick_name, brick->brick_path); goto done; } } MARS_DBG("brick '%s' '%s' type '%s' power button %d -> %d\n", brick->brick_name, brick->brick_path, brick->type->type_name, oldval, val); set_button(&brick->power, val, false); } if (unlikely(!brick->ops)) { MARS_ERR("brick '%s' '%s' has no brick_switch() method\n", brick->brick_name, brick->brick_path); status = -EINVAL; goto done; } /* Always call the switch function, even if nothing changes. * The implementations must be idempotent. * They may exploit the regular calls for some maintenance operations * (e.g. changing disk capacity etc). */ status = brick->ops->brick_switch(brick); if (val != oldval || status < 0) { mars_trigger(); } done: return status; } EXPORT_SYMBOL_GPL(mars_power_button); ///////////////////////////////////////////////////////////////////// // strategy layer struct mars_cookie { struct mars_global *global; mars_dent_checker_fn checker; char *path; struct mars_dent *check_parent; struct mars_dent *parent; struct list_head tmp_anchor; int allocsize; int depth; bool some_ordered; bool hit; }; static int get_inode(char *newpath, struct mars_dent *dent, bool get_deleted) { mm_segment_t oldfs; int status; struct kstat tmp = {}; oldfs = get_fs(); set_fs(get_ds()); status = vfs_lstat(newpath, &tmp); if (status < 0) { MARS_WRN("cannot stat '%s', status = %d\n", newpath, status); goto done; } /* Correct illegal timestamps */ if (unlikely(protect_lamport_time(&tmp.mtime)) && S_ISLNK(dent->new_stat.mode)) { char *val = mars_readlink(newpath, NULL); if (val) { mars_symlink(val, newpath, &tmp.mtime, false); brick_string_free(val); } } memcpy(&dent->old_stat, &dent->new_stat, sizeof(dent->old_stat)); memcpy(&dent->new_stat, &tmp, sizeof(dent->new_stat)); if (S_ISLNK(dent->new_stat.mode)) { struct path path = {}; int len = dent->new_stat.size; struct inode *inode; char *link; if (unlikely(len <= 0)) { MARS_ERR("symlink '%s' bad len = %d\n", newpath, len); status = -EINVAL; goto done; } len = _length_paranoia(len, __LINE__); status = user_path_at(AT_FDCWD, newpath, 0, &path); if (unlikely(status < 0)) { MARS_WRN("cannot read link '%s'\n", newpath); goto done; } if (unlikely(!path.dentry)) { MARS_WRN("path '%s' has invalid dentry\n", newpath); goto done; } #ifdef MARS_HAS_VFS_READLINK inode = d_inode(path.dentry); #else inode = path.dentry->d_inode; #endif if (unlikely(!inode || !S_ISLNK(inode->i_mode))) { MARS_ERR("link '%s' has invalid inode\n", newpath); status = -EINVAL; goto done_put; } status = -ENOMEM; link = brick_string_alloc(len + 2); MARS_IO("len = %d\n", len); #ifdef MARS_HAS_VFS_READLINK status = vfs_readlink(path.dentry, link, len + 1); #else status = inode->i_op->readlink(path.dentry, link, len + 1); #endif link[len] = '\0'; if (status < 0 || (dent->new_link && !strcmp(dent->new_link, link))) { brick_string_free(link); } else { MARS_IO("symlink '%s' -> '%s' (%s) status = %d\n", newpath, link, dent->new_link ? dent->new_link : "", status); brick_string_free(dent->old_link); dent->old_link = dent->new_link; dent->new_link = link; } /* Treat deleted dents as non-existing. * Killing will be done later via ->killme. */ if (!get_deleted && status >= 0 && dent->new_link && !strcmp(dent->new_link, MARS_DELETED_STR)) { status = -ENOENT; } done_put: path_put(&path); } else if (S_ISREG(dent->new_stat.mode) && dent->d_name && !strncmp(dent->d_name, "log-", 4)) { loff_t min; dent->d_corr_A = 0; dent->d_corr_B = 0; min = mf_get_any_dirty(newpath, DIRTY_COMPLETED); if (min < dent->new_stat.size) { MARS_DBG("file '%s' A size=%lld min=%lld\n", newpath, dent->new_stat.size, min); dent->d_corr_A = min; } min = mf_get_any_dirty(newpath, DIRTY_FINISHED); if (min < dent->new_stat.size) { MARS_DBG("file '%s' B size=%lld min=%lld\n", newpath, dent->new_stat.size, min); dent->d_corr_B = min; } } if (dent->new_link) MARS_IO("symlink '%s'\n", dent->new_link); done: set_fs(oldfs); return status; } unsigned int dent_hash(const char *str, int len) { u32 raw_hash = crc32c(0, str, len); u32 mask = (u32)-1; unsigned int hash = 0; /* catch all possible bits */ while (mask) { hash ^= raw_hash; raw_hash /= MARS_GLOBAL_HASH; mask /= MARS_GLOBAL_HASH; } hash %= MARS_GLOBAL_HASH; return hash; } static int dent_compare(struct mars_dent *a, struct mars_dent *b) { if (a->d_class < b->d_class) { return -1; } if (a->d_class > b->d_class) { return +1; } if (a->d_serial < b->d_serial) { return -1; } if (a->d_serial > b->d_serial) { return +1; } return strcmp(a->d_path, b->d_path); } // remove_this #ifndef HAS_VFS_READDIR // end_remove_this struct mars_dir_context { struct dir_context ctx; struct mars_cookie *cookie; }; // remove_this #endif // end_remove_this /* Skip any names / directories used for backup purposes */ #define MARS_BACKUP_STR "backup" static const int backup_strlen = strlen(MARS_BACKUP_STR); /* Caution: this is called as a callback from iterate_dir() and friends. * Don't deadlock by producing any filesystem output within this! */ #ifdef __HAS_NEW_FILLDIR_T int mars_filler(struct dir_context *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) #else static int mars_filler(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) #endif { // remove_this #ifdef HAS_VFS_READDIR struct mars_cookie *cookie = __buf; #else // end_remove_this struct mars_dir_context *buf = (void *)__buf; struct mars_cookie *cookie = buf->cookie; // remove_this #endif // end_remove_this struct mars_dent *dent; char *newpath; unsigned int hash; int prefix = 0; int pathlen; int class; int serial = 0; int backup_len; bool use_channel = false; cookie->hit = true; cookie->global->nr_readitem++; if (!name || !*name || name[0] == '.') { return 0; } class = cookie->checker(cookie->check_parent, name, namlen, d_type, &prefix, &serial, &use_channel); /* For some_ordered network transfers, always * accept symlinks. */ if (class < 0 && (!cookie->some_ordered || d_type != DT_LNK)) return 0; backup_len = namlen; if (backup_len > backup_strlen) backup_len = backup_strlen; if (strnstr(name, MARS_BACKUP_STR, backup_len)) return 0; pathlen = strlen(cookie->path); newpath = brick_string_alloc(pathlen + namlen + 2); memcpy(newpath, cookie->path, pathlen); newpath[pathlen++] = '/'; memcpy(newpath + pathlen, name, namlen); pathlen += namlen; newpath[pathlen] = '\0'; hash = dent_hash(newpath, pathlen); dent = brick_zmem_alloc(cookie->allocsize); dent->d_class = class; dent->d_serial = serial; dent->d_path = newpath; newpath = NULL; dent->d_hash = hash; dent->d_name = brick_string_alloc(namlen + 1); memcpy(dent->d_name, name, namlen); dent->d_name[namlen] = '\0'; dent->d_rest = brick_strdup(dent->d_name + prefix); INIT_LIST_HEAD(&dent->dent_link); INIT_LIST_HEAD(&dent->dent_hash_link); INIT_LIST_HEAD(&dent->brick_list); list_add(&dent->dent_link, &cookie->tmp_anchor); dent->d_type = d_type; dent->d_class = class; dent->d_serial = serial; dent->d_killme = false; dent->d_use_channel = use_channel; dent->d_depth = cookie->depth; return 0; } static void _reconnect_dent(struct mars_dent *parent, struct mars_dent *dent) { CHECK_PTR(dent, fatal); if (dent->d_parent == parent) return; if (dent->d_parent) { CHECK_PTR(dent->d_parent, fatal); dent->d_parent->d_child_count--; } dent->d_parent = parent; if (parent) { CHECK_PTR(parent, fatal); parent->d_child_count++; } fatal: ; } static void _mars_order(struct mars_cookie *cookie, struct mars_dent *dent) { struct mars_global *global = cookie->global; struct list_head *sorted_anchor; struct list_head *sorted_prev; struct list_head *hash_anchor; struct list_head *hash_try; struct list_head *hash_prev; struct list_head *tmp; CHECK_PTR(dent, fatal); /* Fuzzy hashing algorithm. * Although based on external hashing, it produces an additional * sorted list and allows for neighbour search. + A description and an evaluation can be found at the * University of Stattgart, Institut fuer Informatik * (sorry, much is in German, produced in the 1990s) */ sorted_anchor = &global->dent_anchor; CHECK_PTR(sorted_anchor, fatal); hash_anchor = DENT_HASH_ANCHOR(global, dent->d_hash); CHECK_PTR(hash_anchor, fatal); sorted_prev = sorted_anchor; tmp = sorted_anchor->next; for (hash_try = hash_anchor->next; hash_try != hash_anchor; hash_try = hash_try->next) { struct mars_dent *hash_test = container_of(hash_try, struct mars_dent, dent_hash_link); int cmp; CHECK_PTR(hash_test, fatal); if (hash_test->d_unordered) break; #ifdef CONFIG_MARS_DEBUG if (unlikely(hash_test->d_hash != dent->d_hash)) { MARS_ERR("bad target hash index %d\n", hash_test->d_hash); break; } #endif cmp = dent_compare(hash_test, dent); if (!cmp) { mars_free_dent(global, dent); dent = hash_test; goto found; } if (cmp >= 0) break; tmp = &hash_test->dent_link; sorted_prev = tmp->prev; CHECK_PTR(sorted_prev, fatal); } while (tmp != sorted_anchor) { struct mars_dent *test = container_of(tmp, struct mars_dent, dent_link); int cmp; CHECK_PTR(test, fatal); if (test->d_unordered) break; cmp = dent_compare(test, dent); if (!cmp) { mars_free_dent(global, dent); dent = test; goto found; } // keep the list sorted. find the next smallest member. if (cmp > 0) break; for (;;) { struct list_head *hash_try; struct list_head *hash_try_anchor; int hash_try_index = test->d_hash; #ifdef CONFIG_MARS_DEBUG if (unlikely(hash_try_index < 0 || hash_try_index >= MARS_GLOBAL_HASH)) { MARS_ERR("bad hash index %d\n", hash_try_index); break; } #endif hash_try_anchor = DENT_HASH_ANCHOR(global, hash_try_index); CHECK_PTR(hash_try_anchor, fatal); hash_try = test->dent_hash_link.next; CHECK_PTR(hash_try, fatal); if (hash_try == hash_try_anchor || hash_try == tmp->next || hash_try == &test->dent_hash_link) break; test = container_of(hash_try, struct mars_dent, dent_hash_link); CHECK_PTR(test, fatal); if (test->d_unordered) break; #ifdef CONFIG_MARS_DEBUG if (unlikely(test->d_hash != hash_try_index)) { MARS_ERR("bad target hash index %d\n", test->d_hash); break; } #endif cmp = dent_compare(test, dent); if (!cmp) { mars_free_dent(global, dent); dent = test; goto found; } if (cmp >= 0) break; tmp = &test->dent_link; CHECK_PTR(tmp, fatal); } sorted_prev = tmp; tmp = tmp->next; CHECK_PTR(tmp, fatal); } /* not found: finish dent and insert into data stuctures */ dent->d_unordered = false; list_add(&dent->dent_link, sorted_prev); hash_prev = hash_anchor; for (tmp = hash_anchor->next; tmp != hash_anchor; tmp = tmp->next) { struct mars_dent *test = container_of(tmp, struct mars_dent, dent_hash_link); int cmp; CHECK_PTR(test, fatal); cmp = dent_compare(test, dent); if (cmp >= 0) break; hash_prev = tmp; } list_add(&dent->dent_hash_link, hash_prev); found: _reconnect_dent(cookie->parent, dent); fatal: ; } static inline void _list_connect(struct list_head *a, struct list_head *b) { a->next = b; b->prev = a; } static void _mars_order_all(struct mars_cookie *cookie) { LIST_HEAD(later_anchor); while (!list_empty(&cookie->tmp_anchor)) { struct list_head *tmp = cookie->tmp_anchor.next; struct mars_dent *dent = container_of(tmp, struct mars_dent, dent_link); CHECK_PTR(dent, fatal); list_del_init(tmp); /* When some_ordered: only sort links spawning * a .cl_forward action (with some unimportant exceptions). * In addition, the alive and time links need to * come last, for race avoidance. * The rest needs not to be sorted, saving CPU. */ if (cookie->some_ordered && dent->d_class < 0 && !S_ISDIR(dent->new_stat.mode) && /* further sorted items */ strncmp(dent->d_name, "alive-", 6) && true) { get_inode(dent->d_path, dent, true); dent->d_unordered = true; cookie->global->nr_unordered++; /* time-* must be the very last items */ if (strncmp(dent->d_name, "time-", 5)) list_add(&dent->dent_link, &later_anchor); else list_add_tail(&dent->dent_link, &later_anchor); _reconnect_dent(NULL, dent); continue; } if (!cookie->some_ordered) { char *check; /* Do not add _new_ dents when deleted. * Existing ones are treated in get_inode(). */ check = mars_readlink(dent->d_path, NULL); if (check && !strcmp(check, MARS_DELETED_STR)) { brick_string_free(check); mars_free_dent(cookie->global, dent); continue; } brick_string_free(check); } cookie->global->nr_ordered++; get_inode(dent->d_path, dent, true); _mars_order(cookie, dent); } /* Append the whole unordered list. * This is done on return from recursion, so searching * remains possible. */ if (!list_empty(&later_anchor)) { struct list_head *a = cookie->global->dent_anchor.prev; struct list_head *b = later_anchor.next; struct list_head *c = later_anchor.prev; struct list_head *d = &cookie->global->dent_anchor; _list_connect(a, b); _list_connect(c, d); } fatal: ; } static int _mars_readdir(struct mars_cookie *cookie) { struct file *f; struct address_space *mapping; mm_segment_t oldfs; int status = 0; if (unlikely(strstr(cookie->path, MARS_BACKUP_STR))) goto done; /* Performance optimization. * Skip readdir() when not activated and no device-$host exists */ if (cookie->parent && cookie->parent->d_skip_fn) { cookie->parent->d_skip_fn(cookie->parent); if (cookie->parent->d_no_scan && !cookie->parent->d_running) { MARS_DBG("scan_skip '%s'\n", cookie->parent->d_path); goto done; } } oldfs = get_fs(); set_fs(get_ds()); f = filp_open(cookie->path, O_DIRECTORY | O_RDONLY, 0); set_fs(oldfs); if (unlikely(IS_ERR(f))) { return PTR_ERR(f); } if ((mapping = f->f_mapping)) { mapping_set_gfp_mask(mapping, mapping_gfp_mask(mapping) & ~(__GFP_IO | __GFP_FS)); } cookie->global->nr_readdir++; for (;;) { // remove_this #ifdef HAS_VFS_READDIR cookie->hit = false; status = vfs_readdir(f, mars_filler, cookie); #else // end_remove_this struct mars_dir_context buf = { .ctx.actor = mars_filler, .cookie = cookie, }; cookie->hit = false; status = iterate_dir(f, &buf.ctx); // remove_this #endif // end_remove_this if (!cookie->hit) break; if (unlikely(status < 0)) { MARS_ERR("readdir() on path='%s' status=%d\n", cookie->path, status); break; } } filp_close(f, NULL); _mars_order_all(cookie); done: return status; } static bool dir_path_is_in(const char *path, const char *list) { const char *pattern = path_make("|%s/", path); bool res; res = strstr(list, pattern) != NULL; brick_string_free(pattern); return res; } #define MARS_PREFIX_RESOURCE "/mars/resource-" static bool has_subtree_prefix(const char *path) { bool res; res = !strncmp(path, MARS_PREFIX_RESOURCE, sizeof(MARS_PREFIX_RESOURCE) - 1); return res; } static const char *subtree_prefix(const char *path) { char *copy = brick_strdup(path); char *tmp = copy; int count = 3; while (*tmp) { if (*tmp++ != '/') continue; if (--count > 0) continue; tmp[-1] = '\0'; return copy; } brick_string_free(copy); return NULL; } static int _op_scan(struct say_channel **say_channel, struct mars_global *global, const char *path_list, int allocsize, mars_dent_checker_fn checker, int maxdepth, bool use_subtree, int version, bool *found_dir, bool has_dir_list, bool some_ordered) { struct list_head *tmp; int total_status = 0; for (tmp = global->dent_anchor.next; tmp != &global->dent_anchor; tmp = tmp->next) { struct mars_dent *dent = container_of(tmp, struct mars_dent, dent_link); int status; // treat any member only once during this invocation if (dent->d_version == version) continue; dent->d_version = version; if (say_channel) bind_to_dent(dent, say_channel); //MARS_IO("reading inode '%s'\n", dent->d_path); status = get_inode(dent->d_path, dent, some_ordered); total_status |= status; // mark gone dents for removal if (unlikely(status < 0) && list_empty(&dent->brick_list)) dent->d_killme = true; /* Recurse into subdirectories. * Insert either into the flat list, or create * a new subtree. */ if (S_ISDIR(dent->new_stat.mode) && (maxdepth <= 0 || dent->d_depth <= maxdepth) && (!dent->d_no_scan || dent->d_running || dent->d_depth <= 1) && (!has_dir_list || dent->d_depth > 0 || dir_path_is_in(dent->d_path, path_list))) { struct mars_cookie sub_cookie = { .global = global, .checker = checker, .path = dent->d_path, .allocsize = allocsize, .check_parent = dent, .parent = some_ordered ? NULL : dent, .tmp_anchor = LIST_HEAD_INIT(sub_cookie.tmp_anchor), .depth = dent->d_depth + 1, .some_ordered = some_ordered, }; if (say_channel && use_subtree && has_subtree_prefix(dent->d_path)) { if (!dent->d_subtree) { dent->d_subtree = alloc_mars_global(); } sub_cookie.global = dent->d_subtree; sub_cookie.global->nr_readdir = 0; sub_cookie.global->nr_readitem = 0; sub_cookie.global->nr_ordered = 0; sub_cookie.global->nr_unordered = 0; } global->has_subtrees = true; *found_dir = true; status = _mars_readdir(&sub_cookie); total_status |= status; if (status < 0) { MARS_INF("forward: status %d on '%s'\n", status, dent->d_path); } if (dent->d_subtree) total_status |= _op_scan(NULL, dent->d_subtree, path_list, allocsize, checker, maxdepth, use_subtree, version, found_dir, has_dir_list, false); } } return total_status; } static int _op_forward(struct say_channel **say_channel, struct mars_global *global, mars_dent_worker_fn worker, void *buf, bool w_fl1, bool w_fl2) { struct list_head *tmp; struct list_head *next; int total_status = 0; down_read(&global->dent_mutex); for (tmp = global->dent_anchor.next, next = tmp->next; tmp != &global->dent_anchor; tmp = next, next = next->next) { struct mars_dent *dent = container_of(tmp, struct mars_dent, dent_link); int status; if (dent->d_no_scan && !dent->d_running) { MARS_DBG("scan_skip '%s'\n", dent->d_path); continue; } up_read(&global->dent_mutex); brick_yield(); if (say_channel) bind_to_dent(dent, say_channel); /* Caution: the order is important. * First visit the parent, then descend into * the subtree (when present). */ status = worker(buf, dent, w_fl1, w_fl2); total_status |= status; if (dent->d_subtree) total_status |= _op_forward(NULL, dent->d_subtree, worker, buf, w_fl1, w_fl2); down_read(&global->dent_mutex); } up_read(&global->dent_mutex); return total_status; } static int _op_backward(struct say_channel **say_channel, struct mars_global *global, mars_dent_worker_fn worker, void *buf) { struct list_head *tmp; struct list_head *next; int total_status = 0; down_read(&global->dent_mutex); for (tmp = global->dent_anchor.prev, next = tmp->prev; tmp != &global->dent_anchor; tmp = next, next = next->prev) { struct mars_dent *dent = container_of(tmp, struct mars_dent, dent_link); int status; if (dent->d_no_scan && !dent->d_running) { MARS_DBG("scan_skip '%s'\n", dent->d_path); continue; } up_read(&global->dent_mutex); brick_yield(); if (say_channel) bind_to_dent(dent, say_channel); /* Caution: the order is important. * When running backwards, we first need to * descend into the subtree (when present) * before visiting the parent. */ if (dent->d_subtree) total_status |= _op_backward(NULL, dent->d_subtree, worker, buf); status = worker(buf, dent, false, true); down_read(&global->dent_mutex); total_status |= status; if (status < 0) { MARS_INF("backwards: status %d on '%s'\n", status, dent->d_path); } } up_read(&global->dent_mutex); return total_status; } static void _op_remove(struct say_channel **say_channel, struct mars_global *global) { struct list_head *tmp; struct list_head *prev; down_write(&global->dent_mutex); for (tmp = global->dent_anchor.prev, prev = tmp->prev; tmp != &global->dent_anchor; tmp = prev, prev = prev->prev) { struct mars_dent *dent = container_of(tmp, struct mars_dent, dent_link); if (dent->d_subtree) _op_remove(NULL, dent->d_subtree); if (!dent->d_killme) continue; if (dent->d_child_count) continue; if (atomic_read(&dent->d_count)) continue; if (!list_empty(&dent->brick_list)) continue; if (say_channel) bind_to_dent(dent, say_channel); MARS_DBG("killing dent '%s'\n", dent->d_path); list_del_init(&dent->dent_link); list_del_init(&dent->dent_hash_link); mars_free_dent(NULL, dent); } up_write(&global->dent_mutex); } /* Stripped-down version for peer metadata exchange */ int mars_get_dent_list(struct mars_global *global, const char *path_list, int allocsize, mars_dent_checker_fn checker, int maxdepth) { static int version = 0; char *startname = brick_strdup(path_list); struct mars_cookie cookie = { .global = global, .checker = checker, .path = startname, .tmp_anchor = LIST_HEAD_INIT(cookie.tmp_anchor), .allocsize = allocsize, .depth = 0, .some_ordered = true, }; struct say_channel *say_channel = NULL; char *ptr; int total_status; bool found_dir = false; bool has_dir_list = false; ptr = strchr(startname, '|'); if (ptr) { *ptr = '\0'; has_dir_list = true; } global->global_version = ++version; down_write(&global->dent_mutex); global->nr_readdir = 0; global->nr_readitem = 0; global->nr_ordered = 0; global->nr_unordered = 0; total_status = _mars_readdir(&cookie); total_status = _op_scan(&say_channel, global, path_list, allocsize, checker, maxdepth, false, version, &found_dir, has_dir_list, true); up_write(&global->dent_mutex); brick_string_free(startname); return total_status; } int mars_dent_work(struct mars_global *global, char *path_list, int allocsize, mars_dent_checker_fn checker, mars_dent_worker_fn worker, void *buf, int maxdepth, bool use_subtree) { static int version = 0; char *startname = brick_strdup(path_list); char *ptr; struct mars_cookie cookie = { .global = global, .checker = checker, .path = startname, .tmp_anchor = LIST_HEAD_INIT(cookie.tmp_anchor), .allocsize = allocsize, .depth = 0, }; struct say_channel *say_channel = NULL; int rounds = 0; int total_status = 0; bool found_dir; bool has_dir_list = false; ptr = strchr(startname, '|'); if (ptr) { *ptr = '\0'; has_dir_list = true; } /* Initialize the flat dent list */ version++; global->global_version = version; total_status = _mars_readdir(&cookie); if (total_status || !worker) { goto done; } down_write(&global->dent_mutex); global->nr_readdir = 0; global->nr_readitem = 0; global->nr_ordered = 0; global->nr_unordered = 0; restart: MARS_IO("at restart\n"); found_dir = false; /* First, get all the inode information in a separate pass * before starting work. * The separate pass is necessary because some dents may * forward-reference other dents, and it would be a pity if * some inodes were not available or were outdated. */ total_status |= _op_scan(&say_channel, global, path_list, allocsize, checker, maxdepth, use_subtree, version, &found_dir, has_dir_list, false); bind_to_dent(NULL, &say_channel); if (found_dir && ++rounds < 10) { brick_yield(); goto restart; } up_write(&global->dent_mutex); /* Preparation pass. * Here is a chance to mark some dents for removal * (or other types of non-destructive operations) */ total_status |= _op_forward(&say_channel, global, worker, buf, true, false); bind_to_dent(NULL, &say_channel); /* Remove all dents marked for removal. * Needs to be done in reverse order because later d_parent pointers may * reference earlier list members. */ _op_remove(&say_channel, global); bind_to_dent(NULL, &say_channel); /* Forward pass. */ total_status |= _op_forward(&say_channel, global, worker, buf, false, false); /* Backward pass. */ total_status |= _op_backward(&say_channel, global, worker, buf); bind_to_dent(NULL, &say_channel); done: brick_string_free(startname); MARS_IO("total_status = %d\n", total_status); return total_status; } EXPORT_SYMBOL_GPL(mars_dent_work); static inline struct mars_dent *_mars_find_dent(struct list_head *anchor, const char *path) { struct mars_dent *res = NULL; struct list_head *tmp; for (tmp = anchor->next; tmp != anchor; tmp = tmp->next) { struct mars_dent *tmp_dent; tmp_dent = container_of(tmp, struct mars_dent, dent_hash_link); CHECK_PTR(tmp_dent, done); if (unlikely(!tmp_dent->d_path)) { MARS_ERR("dent %p has empty path\n", tmp_dent); continue; } if (!strcmp(tmp_dent->d_path, path)) { if (unlikely(tmp_dent->d_unordered)) MARS_ERR("found unordered '%s'\n", tmp_dent->d_path); res = tmp_dent; break; } } done: return res; } struct mars_dent *mars_find_dent(struct mars_global *global, const char *path) { struct list_head *hash_anchor; struct mars_dent *res = NULL; unsigned int hash; if (!global || !path) return NULL; if (global->has_subtrees && has_subtree_prefix(path)) { const char *prefix = subtree_prefix(path); if (prefix) { struct list_head *sub_hash_anchor; struct mars_dent *sub; unsigned int sub_hash; sub_hash = dent_hash(prefix, strlen(prefix)); sub_hash_anchor = DENT_HASH_ANCHOR(global, sub_hash); down_read(&global->dent_mutex); sub = _mars_find_dent(sub_hash_anchor, prefix); if (sub && sub->d_subtree) { hash = dent_hash(path, strlen(path)); hash_anchor = DENT_HASH_ANCHOR(sub->d_subtree, hash); down_read(&sub->d_subtree->dent_mutex); up_read(&global->dent_mutex); res = _mars_find_dent(hash_anchor, path); up_read(&sub->d_subtree->dent_mutex); } else { up_read(&global->dent_mutex); res = sub; } brick_string_free(prefix); return res; } } hash = dent_hash(path, strlen(path)); hash_anchor = DENT_HASH_ANCHOR(global, hash); down_read(&global->dent_mutex); res = _mars_find_dent(hash_anchor, path); up_read(&global->dent_mutex); return res; } void mars_kill_dent(struct mars_global *global, struct mars_dent *dent) { /* Only mark as killable. * Removal from the lists is done at mars_free_dent_all(). */ dent->d_killme = true; mars_kill_brick_all(global, &dent->brick_list, true); } EXPORT_SYMBOL_GPL(mars_kill_dent); void mars_free_dent(struct mars_global *global, struct mars_dent *dent) { int i; CHECK_PTR(dent, fatal); MARS_IO("%p path='%s'\n", dent, dent->d_path); mars_kill_dent(global, dent); CHECK_HEAD_EMPTY(&dent->dent_link); CHECK_HEAD_EMPTY(&dent->dent_hash_link); CHECK_HEAD_EMPTY(&dent->brick_list); if (dent->d_subtree) { mars_free_dent_all(dent->d_subtree); free_mars_global(dent->d_subtree); } if (dent->d_private) { if (dent->d_private_destruct) { dent->d_private_destruct(dent->d_private); } brick_mem_free(dent->d_private); } for (i = 0; i < MARS_ARGV_MAX; i++) { brick_string_free(dent->d_argv[i]); } brick_string_free(dent->d_args); brick_string_free(dent->d_name); brick_string_free(dent->d_rest); brick_string_free(dent->d_path); brick_string_free(dent->old_link); brick_string_free(dent->new_link); if (dent->d_parent) { CHECK_PTR(dent->d_parent, fatal); dent->d_parent->d_child_count--; dent->d_parent = NULL; } if (unlikely(dent->d_child_count)) { MARS_ERR("dent '%s' child_count=%d\n", dent->d_path, dent->d_child_count); goto fatal; } if (unlikely(atomic_read(&dent->d_count))) { MARS_ERR("dent '%s' d_count=%d\n", dent->d_path, atomic_read(&dent->d_count)); goto fatal; } brick_mem_free(dent); fatal: ; } EXPORT_SYMBOL_GPL(mars_free_dent); void mars_free_dent_all(struct mars_global *global) { struct list_head *anchor = &global->dent_anchor; LIST_HEAD(tmp_list); /* Needs to be done in reverse order because later d_parent pointers may * reference earlier list members. */ if (global) { down_write(&global->dent_mutex); } list_replace_init(anchor, &tmp_list); if (global) up_write(&global->dent_mutex); MARS_DBG("is_empty=%d\n", list_empty(&tmp_list)); while (!list_empty(&tmp_list)) { struct mars_dent *dent; dent = container_of(tmp_list.prev, struct mars_dent, dent_link); CHECK_PTR(dent, fatal); list_del_init(&dent->dent_link); list_del_init(&dent->dent_hash_link); MARS_IO("freeing dent %p\n", dent); mars_free_dent(global, dent); } fatal: ; } EXPORT_SYMBOL_GPL(mars_free_dent_all); ///////////////////////////////////////////////////////////////////// // low-level brick instantiation int mars_connect(struct mars_input *a, struct mars_output *b) { struct mars_brick *a_brick = a->brick; struct mars_global *a_global = a_brick->global; struct mars_brick *b_brick = b->brick; struct mars_global *b_global = b_brick->global; int status; if (a_global) down_write(&a_global->brick_mutex); if (b_global && b_global != a_global) down_write(&b_global->brick_mutex); status = generic_connect((void*)a, (void*)b); if (b_global && b_global != a_global) up_write(&b_global->brick_mutex); if (a_global) up_write(&a_global->brick_mutex); return status; } int mars_disconnect(struct mars_input *a) { struct mars_brick *a_brick = a->brick; struct mars_global *a_global = a_brick->global; struct mars_output *b; int status = 0; if (a_global) down_write(&a_global->brick_mutex); b = a->connect; if (b) { struct mars_brick *b_brick = b->brick; struct mars_global *b_global = b_brick->global; if (b_global && b_global != a_global) down_write(&b_global->brick_mutex); status = generic_disconnect((void*)a); if (b_global && b_global != a_global) up_write(&b_global->brick_mutex); } if (a_global) up_write(&a_global->brick_mutex); return status; } struct mars_brick *mars_find_brick(struct mars_global *global, const void *brick_type, const char *path) { struct list_head *tmp; if (!global || !path) return NULL; down_read(&global->brick_mutex); for (tmp = global->brick_anchor.next; tmp != &global->brick_anchor; tmp = tmp->next) { struct mars_brick *test = container_of(tmp, struct mars_brick, global_brick_link); if (!strcmp(test->brick_path, path)) { up_read(&global->brick_mutex); if (brick_type && test->type != brick_type) { MARS_ERR("bad brick type\n"); return NULL; } return test; } } up_read(&global->brick_mutex); return NULL; } EXPORT_SYMBOL_GPL(mars_find_brick); int mars_free_brick(struct mars_brick *brick) { struct mars_global *global; int i; int count; int status; int sleeptime; int maxsleep; if (!brick) { MARS_ERR("bad brick parameter\n"); status = -EINVAL; goto done; } if (!brick->power.force_off || !brick->power.led_off) { MARS_WRN("brick '%s' is not freeable\n", brick->brick_path); status = -ETXTBSY; goto done; } // first check whether the brick is in use somewhere for (i = 0; i < brick->type->max_outputs; i++) { struct mars_output *output = brick->outputs[i]; if (output && output->nr_connected > 0) { MARS_WRN("brick '%s' not freeable, output %i is used\n", brick->brick_path, i); status = -EEXIST; goto done; } } // Should not happen, but workaround: wait until flying IO has vanished maxsleep = 20000; sleeptime = 1000; for (;;) { count = atomic_read(&brick->mref_object_layout.alloc_count); if (likely(!count)) { break; } if (maxsleep > 0) { MARS_WRN("memleak: brick '%s' has %d mrefs allocated (total = %d, maxsleep = %d)\n", brick->brick_path, count, atomic_read(&brick->mref_object_layout.total_alloc_count), maxsleep); } else { MARS_ERR("MEMLEAK: brick '%s' has %d mrefs allocated (total = %d)\n", brick->brick_path, count, atomic_read(&brick->mref_object_layout.total_alloc_count)); #ifdef CONFIG_MARS_DEBUG dump_stack(); #endif break; } brick_msleep(sleeptime); maxsleep -= sleeptime; } MARS_DBG("===> freeing brick name = '%s' path = '%s'\n", brick->brick_name, brick->brick_path); global = brick->global; if (global) { down_write(&global->brick_mutex); list_del_init(&brick->global_brick_link); list_del_init(&brick->dent_brick_link); up_write(&global->brick_mutex); } for (i = 0; i < brick->type->max_inputs; i++) { struct mars_input *input = brick->inputs[i]; if (input) { MARS_DBG("disconnecting input %i\n", i); mars_disconnect(input); } } MARS_DBG("deallocate name = '%s' path = '%s'\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); brick_string_free(brick->brick_name); brick_string_free(brick->brick_path); status = generic_brick_exit_full((void*)brick); if (status >= 0) { brick_mem_free(brick); mars_trigger(); } else { MARS_ERR("error freeing brick, status = %d\n", status); } done: return status; } EXPORT_SYMBOL_GPL(mars_free_brick); struct mars_brick *mars_make_brick(struct mars_global *global, struct mars_dent *belongs, const void *_brick_type, const char *path, const char *_name) { const char *name = brick_strdup(_name); const char *names[] = { name, NULL }; const struct generic_brick_type *brick_type = _brick_type; const struct generic_input_type **input_types; const struct generic_output_type **output_types; struct mars_brick *res; int size; int i; int status; if (!name) { MARS_ERR("cannot allocate space for name\n"); return NULL; } size = brick_type->brick_size + (brick_type->max_inputs + brick_type->max_outputs) * sizeof(void*); input_types = brick_type->default_input_types; for (i = 0; i < brick_type->max_inputs; i++) { const struct generic_input_type *type = *input_types++; if (unlikely(!type)) { MARS_ERR("input_type %d is missing\n", i); goto err_name; } if (unlikely(type->input_size <= 0)) { MARS_ERR("bad input_size at %d\n", i); goto err_name; } size += type->input_size; } output_types = brick_type->default_output_types; for (i = 0; i < brick_type->max_outputs; i++) { const struct generic_output_type *type = *output_types++; if (unlikely(!type)) { MARS_ERR("output_type %d is missing\n", i); goto err_name; } if (unlikely(type->output_size <= 0)) { MARS_ERR("bad output_size at %d\n", i); goto err_name; } size += type->output_size; } res = brick_zmem_alloc(size); if (!res) { MARS_ERR("cannot grab %d bytes for brick type '%s'\n", size, brick_type->type_name); goto err_name; } get_lamport(NULL, &res->create_stamp); res->global = global; INIT_LIST_HEAD(&res->dent_brick_link); res->brick_path = brick_strdup(path); if (!res->brick_path) { MARS_ERR("cannot grab memory for path '%s'\n", path); goto err_res; } status = generic_brick_init_full(res, size, brick_type, NULL, NULL, names); MARS_DBG("brick '%s' init '%s' '%s' (status=%d)\n", brick_type->type_name, path, name, status); if (status < 0) { MARS_ERR("cannot init brick %s\n", brick_type->type_name); goto err_path; } res->free = mars_free_brick; /* Immediately make it visible, regardless of internal state. * Switching on / etc must be done separately. */ down_write(&global->brick_mutex); list_add(&res->global_brick_link, &global->brick_anchor); if (belongs) { list_add_tail(&res->dent_brick_link, &belongs->brick_list); } up_write(&global->brick_mutex); return res; err_path: brick_string_free(res->brick_path); err_res: brick_mem_free(res); err_name: brick_string_free(name); return NULL; } EXPORT_SYMBOL_GPL(mars_make_brick); int mars_kill_brick(struct mars_brick *brick) { struct mars_global *global; int status = -EINVAL; CHECK_PTR(brick, done); global = brick->global; MARS_DBG("===> killing brick %s path = '%s' name = '%s'\n", brick->type ? SAFE_STR(brick->type->type_name) : "undef", SAFE_STR(brick->brick_path), SAFE_STR(brick->brick_name)); if (unlikely(brick->nr_outputs > 0 && brick->outputs[0] && brick->outputs[0]->nr_connected)) { MARS_ERR("sorry, output is in use '%s'\n", SAFE_STR(brick->brick_path)); goto done; } // start shutdown set_button_wait((void*)brick, false, true, 0); if (brick->power.led_off) { int max_inputs = 0; bool failed = false; int i; if (global) { down_write(&global->brick_mutex); list_del_init(&brick->global_brick_link); list_del_init(&brick->dent_brick_link); up_write(&global->brick_mutex); } if (likely(brick->type)) { max_inputs = brick->type->max_inputs; } else { MARS_ERR("uninitialized brick '%s' '%s'\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); } MARS_DBG("---> freeing '%s' '%s'\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); if (brick->kill_ptr) *brick->kill_ptr = NULL; for (i = 0; i < max_inputs; i++) { struct mars_input *input = brick->inputs[i]; if (!input) continue; status = mars_disconnect(input); if (unlikely(status < 0)) { failed = true; MARS_ERR("brick '%s' '%s' disconnect %d failed, status = %d\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path), i, status); } } if (failed) goto done; if (likely(brick->free)) { status = brick->free(brick); if (unlikely(status < 0)) { MARS_ERR("freeing '%s' '%s' failed, status = %d\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path), status); goto done; } } else { MARS_ERR("brick '%s' '%s' has no destructor\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); } status = 0; } else { /* This may happen regularly when bricks are shut down in parallel */ MARS_INF("brick '%s' '%s' is not off\n", SAFE_STR(brick->brick_name), SAFE_STR(brick->brick_path)); status = -EUCLEAN; } done: return status; } EXPORT_SYMBOL_GPL(mars_kill_brick); int mars_kill_brick_all(struct mars_global *global, struct list_head *anchor, bool use_dent_link) { int status = 0; if (!anchor || !anchor->next) goto done; if (global) { down_write(&global->brick_mutex); } while (!list_empty(anchor)) { struct list_head *tmp = anchor->next; struct mars_brick *brick; if (use_dent_link) { brick = container_of(tmp, struct mars_brick, dent_brick_link); } else { brick = container_of(tmp, struct mars_brick, global_brick_link); } list_del_init(tmp); if (global) { up_write(&global->brick_mutex); } status |= mars_kill_brick(brick); if (global) { down_write(&global->brick_mutex); } } if (global) { up_write(&global->brick_mutex); } done: return status; } EXPORT_SYMBOL_GPL(mars_kill_brick_all); int mars_kill_brick_when_possible(struct mars_global *global, const struct mars_brick_type *type_list[], bool even_on) { struct list_head *anchor = &global->brick_anchor; int return_status = 0; struct list_head *tmp; restart: if (global) { down_write(&global->brick_mutex); } for (tmp = anchor->next; tmp != anchor; tmp = tmp->next) { struct mars_brick *brick; struct lamport_time now; int count; int status; brick = container_of(tmp, struct mars_brick, global_brick_link); // only kill marked bricks if (!brick->killme) { continue; } // only kill unconnected bricks if (brick->nr_outputs > 0 && brick->outputs[0] && brick->outputs[0]->nr_connected > 0) { continue; } if (!even_on && (brick->power.button || !brick->power.led_off)) { continue; } /* Only kill the right brick types */ if (type_list) { int index = 0; const struct mars_brick_type *this_type = type_list[index++]; bool matches = false; while (this_type) { if (this_type == brick->type) { matches = true; break; } this_type = type_list[index++]; } /* also kill any non-working bricks */ if (!matches && (brick->power.button || !brick->power.led_off)) continue; } // only kill bricks which have no resources allocated count = atomic_read(&brick->mref_object_layout.alloc_count); if (count > 0) { mars_trigger(); continue; } /* only kill non-transient bricks */ if (brick->power.button != brick->power.led_on || brick->power.button == brick->power.led_off) { if (!brick->kill_stamp.tv_sec) { brick->kill_stamp = get_real_lamport(); brick->kill_stamp.tv_sec += 10; } } /* Workaround FIXME: * only kill bricks which have not been touched during the current mars_dent_work() round. * some bricks like aio seem to have races between startup and termination of threads. * disable this for stress-testing the allocation/deallocation logic. * OTOH, frequently doing useless starts/stops is no good idea. * CHECK: how to avoid too frequent switching by other means? */ if (!brick->kill_stamp.tv_sec) { brick->kill_stamp = get_real_lamport(); brick->kill_stamp.tv_sec += 3; } now = get_real_lamport(); if (lamport_time_compare(&now, &brick->kill_stamp) <= 0 && global && global->global_power.button) { mars_trigger(); continue; } if (brick->kill_round++ < 1) { mars_trigger(); continue; } /* start shutdown */ mars_power_button(brick, false, true); /* wait until actually off */ if (!brick->power.led_off) { mars_trigger(); continue; } if (global) { up_write(&global->brick_mutex); } MARS_DBG("KILLING '%s' '%s'\n", brick->brick_path, brick->brick_name); status = mars_kill_brick(brick); if (status >= 0) return_status++; /* The list may have changed during the open lock * in unpredictable ways. */ goto restart; } if (global) { up_write(&global->brick_mutex); } return return_status; } EXPORT_SYMBOL_GPL(mars_kill_brick_when_possible); ///////////////////////////////////////////////////////////////////// // mid-level brick instantiation (identity is based on path strings) char *_vpath_make(int line, const char *fmt, va_list *args) { va_list copy_args; char dummy[2]; int len; char *res; memcpy(©_args, args, sizeof(copy_args)); len = vsnprintf(dummy, sizeof(dummy), fmt, copy_args); len = _length_paranoia(len, line); res = _brick_string_alloc(len + 2, line); vsnprintf(res, len + 1, fmt, *args); return res; } EXPORT_SYMBOL_GPL(_vpath_make); char *_path_make(int line, const char *fmt, ...) { va_list args; char *res; va_start(args, fmt); res = _vpath_make(line, fmt, &args); va_end(args); return res; } EXPORT_SYMBOL_GPL(_path_make); char *_backskip_replace(int line, const char *path, char delim, bool insert, const char *fmt, ...) { int path_len = strlen(path); int fmt_len; int total_len; char *res; va_list args; int pos = path_len; int plus; char dummy[2]; va_start(args, fmt); fmt_len = vsnprintf(dummy, sizeof(dummy), fmt, args); va_end(args); fmt_len = _length_paranoia(fmt_len, line); total_len = fmt_len + path_len; total_len = _length_paranoia(total_len, line); res = _brick_string_alloc(total_len + 2, line); while (pos > 0 && path[pos] != '/') { pos--; } if (delim != '/') { while (pos < path_len && path[pos] != delim) { pos++; } } memcpy(res, path, pos); va_start(args, fmt); plus = vscnprintf(res + pos, total_len - pos, fmt, args); va_end(args); if (insert) { strncpy(res + pos + plus, path + pos + 1, total_len - pos - plus); } return res; } EXPORT_SYMBOL_GPL(_backskip_replace); struct mars_brick *path_find_brick(struct mars_global *global, const void *brick_type, const char *fmt, ...) { va_list args; char *fullpath; struct mars_brick *res; va_start(args, fmt); fullpath = vpath_make(fmt, &args); va_end(args); if (!fullpath) { return NULL; } res = mars_find_brick(global, brick_type, fullpath); brick_string_free(fullpath); MARS_IO("search for '%s' found = %p\n", fullpath, res); return res; } EXPORT_SYMBOL_GPL(path_find_brick); const struct generic_brick_type *_client_brick_type = NULL; EXPORT_SYMBOL_GPL(_client_brick_type); const struct generic_brick_type *_bio_brick_type = NULL; EXPORT_SYMBOL_GPL(_bio_brick_type); const struct generic_brick_type *_aio_brick_type = NULL; EXPORT_SYMBOL_GPL(_aio_brick_type); const struct generic_brick_type *_sio_brick_type = NULL; EXPORT_SYMBOL_GPL(_sio_brick_type); struct mars_brick *make_brick_all( struct mars_global *global, struct mars_dent *belongs, int (*setup_fn)(struct mars_brick *brick, void *private), void *private, const char *new_name, const struct generic_brick_type *new_brick_type, const struct generic_brick_type *prev_brick_type[], int switch_override, // -1 = off, 0 = leave in current state, +1 = create when necessary, +2 = create + switch on const char *new_fmt, const char *prev_fmt[], int prev_count, ... ) { va_list args; const char *new_path; char *_new_path = NULL; struct mars_brick *brick = NULL; char *paths[prev_count + 1]; struct mars_brick *prev[prev_count + 1]; bool switch_state; int i; int status; // treat variable arguments va_start(args, prev_count); if (new_fmt) { new_path = _new_path = vpath_make(new_fmt, &args); } else { new_path = new_name; } for (i = 0; i < prev_count; i++) { paths[i] = vpath_make(prev_fmt[i], &args); } va_end(args); if (!new_path) { MARS_ERR("could not create new path\n"); goto err; } // get old switch state brick = mars_find_brick(global, NULL, new_path); switch_state = false; if (brick) { switch_state = brick->power.button; } // override? if (switch_override > 1) switch_state = true; else if (switch_override < 0) switch_state = false; // even higher override if (global && !global->global_power.button) { switch_state = false; } // brick already existing? if (brick) { // just switch the power state MARS_DBG("found existing brick '%s'\n", new_path); // highest general override if (!switch_state && brick->power.button && mars_check_outputs(brick)) { MARS_DBG("KEEP '%s' override 0 -> 1\n", new_path); switch_state = true; } goto do_switch; } // brick not existing => check whether to create it if (switch_override < 1) { // don't create MARS_DBG("no need for brick '%s'\n", new_path); goto done; } MARS_DBG("make new brick '%s'\n", new_path); if (!new_name) new_name = new_path; MARS_DBG("----> new brick type = '%s' path = '%s' name = '%s'\n", new_brick_type->type_name, new_path, new_name); // get all predecessor bricks for (i = 0; i < prev_count; i++) { char *path = paths[i]; if (!path) { MARS_ERR("could not build path %d\n", i); goto err; } prev[i] = mars_find_brick(global, NULL, path); if (!prev[i]) { MARS_WRN("prev brick '%s' does not exist\n", path); goto err; } MARS_DBG("------> predecessor %d path = '%s'\n", i, path); if (!prev[i]->power.led_on) { MARS_DBG("predecessor power is not on\n"); if (!brick || !brick->power.button) switch_state = false; } } // some generic brick replacements (better performance / network functionality) brick = NULL; if ((new_brick_type == _bio_brick_type || new_brick_type == _aio_brick_type) && _client_brick_type != NULL) { char *remote = strchr(new_name, '@'); if (remote) { remote++; MARS_DBG("substitute by remote brick '%s' on peer '%s'\n", new_name, remote); brick = mars_make_brick(global, belongs, _client_brick_type, new_path, new_name); if (brick) { struct client_brick *_brick = (void*)brick; _brick->max_flying = 10000; } } } if (!brick && new_brick_type == _bio_brick_type && _aio_brick_type) { struct kstat test = {}; int status = mars_stat(new_path, &test, false); if (SKIP_BIO || status < 0 || !S_ISBLK(test.mode)) { new_brick_type = _aio_brick_type; MARS_DBG("substitute bio by aio\n"); } } #ifndef ENABLE_MARS_AIO if (!brick && new_brick_type == _aio_brick_type && _sio_brick_type) { new_brick_type = _sio_brick_type; MARS_DBG("substitute aio by sio\n"); } #endif // create it... if (!brick) brick = mars_make_brick(global, belongs, new_brick_type, new_path, new_name); if (unlikely(!brick)) { MARS_ERR("creation failed '%s' '%s'\n", new_path, new_name); goto err; } if (unlikely(brick->nr_inputs < prev_count)) { MARS_ERR("'%s' wrong number of arguments: %d < %d\n", new_path, brick->nr_inputs, prev_count); goto err; } // connect the wires for (i = 0; i < prev_count; i++) { int status; status = mars_connect(brick->inputs[i], prev[i]->outputs[0]); if (unlikely(status < 0)) { MARS_ERR("'%s' '%s' cannot connect input %d\n", new_path, new_name, i); goto err; } } do_switch: // call setup function if (setup_fn) { int setup_status = setup_fn(brick, private); if (setup_status <= 0) { switch_state = 0; } } // switch on/off (may fail silently, but responsibility is at the workers) status = mars_power_button((void *)brick, switch_state, false); /* retry when a stray symlink during O_NOFOLLOW was the reason */ if (status == -ELOOP && switch_state) { mars_unlink(new_path); status = mars_power_button((void *)brick, switch_state, false); } MARS_DBG("switch '%s' to %d status = %d\n", new_path, switch_state, status); goto done; err: if (brick) { mars_kill_brick(brick); } brick = NULL; done: for (i = 0; i < prev_count; i++) { brick_string_free(paths[i]); } brick_string_free(_new_path); return brick; } EXPORT_SYMBOL_GPL(make_brick_all); ///////////////////////////////////////////////////////////////////////// // generic symlink updates void update_client_links(struct client_brick *brick) { char val[8]; const char *name; name = backskip_replace(brick->brick_path, '/', true, "/local-%s/connection-", my_id()); if (unlikely(!name)) return; // silently sprintf(val, "%d", brick->connection_state - 1); ordered_symlink(val, name, NULL); brick_string_free(name); } ///////////////////////////////////////////////////////////////////////// // statistics int global_show_statist = #ifdef CONFIG_MARS_DEBUG_DEFAULT 1; #else 0; #endif EXPORT_SYMBOL_GPL(global_show_statist); int global_show_connections = #ifdef CONFIG_MARS_SHOW_CONNECTIONS 1; #else 0; #endif EXPORT_SYMBOL_GPL(global_show_connections); static void _show_one(struct mars_brick *test, int *brick_count) { int i; if (*brick_count) { MARS_STAT("---------\n"); } MARS_STAT("BRICK type = %s path = '%s' name = '%s' " "create_stamp = %ld.%09ld " "size_hint=%d " "mrefs_alloc = %d " "mrefs_apsect_alloc = %d " "total_mrefs_alloc = %d " "total_mrefs_aspects = %d " "killme = %d " "button = %d force_off = %d off = %d on = %d\n", SAFE_STR(test->type->type_name), SAFE_STR(test->brick_path), SAFE_STR(test->brick_name), test->create_stamp.tv_sec, test->create_stamp.tv_nsec, test->mref_object_layout.size_hint, atomic_read(&test->mref_object_layout.alloc_count), atomic_read(&test->mref_object_layout.aspect_count), atomic_read(&test->mref_object_layout.total_alloc_count), atomic_read(&test->mref_object_layout.total_aspect_count), test->killme, test->power.button, test->power.force_off, test->power.led_off, test->power.led_on); (*brick_count)++; if (test->ops && test->ops->brick_statistics) { char *info = test->ops->brick_statistics(test, 0); if (info) { MARS_STAT(" %s", info); brick_string_free(info); } } for (i = 0; i < test->type->max_inputs; i++) { struct mars_input *input = test->inputs[i]; struct mars_output *output = input ? input->connect : NULL; if (output) { MARS_STAT(" input %d connected with %s path = '%s' name = '%s'\n", i, SAFE_STR(output->brick->type->type_name), SAFE_STR(output->brick->brick_path), SAFE_STR(output->brick->brick_name)); } else { MARS_STAT(" input %d not connected\n", i); } } for (i = 0; i < test->type->max_outputs; i++) { struct mars_output *output = test->outputs[i]; if (output) { MARS_STAT(" output %d nr_connected = %d\n", i, output->nr_connected); } } } static void _show_dent_list(struct mars_global *global, int *count) { struct list_head *tmp; int flat_count = 0; int sub_count = 0; down_read(&global->dent_mutex); for (tmp = global->dent_anchor.next; tmp != &global->dent_anchor; tmp = tmp->next) { struct mars_dent *dent; struct list_head *sub; dent = container_of(tmp, struct mars_dent, dent_link); MARS_STAT("dent %d%d %d '%s' '%s' stamp=%ld.%09ld\n", dent->d_no_scan, dent->d_running, dent->d_class, SAFE_STR(dent->d_path), SAFE_STR(dent->new_link), dent->new_stat.mtime.tv_sec, dent->new_stat.mtime.tv_nsec); (*count)++; for (sub = dent->brick_list.next; sub != &dent->brick_list; sub = sub->next) { struct mars_brick *test; test = container_of(sub, struct mars_brick, dent_brick_link); MARS_STAT(" owner of brick '%s'\n", SAFE_STR(test->brick_path)); } if (dent->d_subtree) { _show_dent_list(dent->d_subtree, count); sub_count++; } else { flat_count++; } } MARS_STAT("flat_count=%d sub_count=%d\n", flat_count, sub_count); MARS_STAT("nr_readdir=%d nr_readitem=%d nr_ordered=%d nr_unordered=%d\n", global->nr_readdir, global->nr_readitem, global->nr_ordered, global->nr_unordered); up_read(&global->dent_mutex); } void show_statistics(struct mars_global *global, const char *class) { struct list_head *tmp; int dent_count = 0; int brick_count = 0; // update all connection state symlinks if (global_show_connections) { down_read(&global->brick_mutex); for (tmp = global->brick_anchor.next; tmp != &global->brick_anchor; tmp = tmp->next) { struct mars_brick *test; test = container_of(tmp, struct mars_brick, global_brick_link); if (test->type == (void*)&client_brick_type) { update_client_links((void*)test); } } up_read(&global->brick_mutex); } if (!global_show_statist) return; // silently brick_mem_statistics(false); down_read(&global->brick_mutex); MARS_STAT("================================== %s bricks:\n", class); for (tmp = global->brick_anchor.next; tmp != &global->brick_anchor; tmp = tmp->next) { struct mars_brick *test; test = container_of(tmp, struct mars_brick, global_brick_link); _show_one(test, &brick_count); } up_read(&global->brick_mutex); MARS_STAT("================================== %s dents:\n", class); _show_dent_list(global, &dent_count); MARS_STAT("==================== %s STATISTICS: %d dents, %d bricks, %lld KB free\n", class, dent_count, brick_count, global_remaining_space); } EXPORT_SYMBOL_GPL(show_statistics); ///////////////////////////////////////////////////////////////////// // init stuff int __init init_sy(void) { MARS_INF("init_sy()\n"); return 0; } void exit_sy(void) { MARS_INF("exit_sy()\n"); }