
Architecture Guide for Geo-Redundancy
Multiversion Asynchronous Replicated Storage

01101011101001

Thomas Schöbel-Theuer (tst@1und1.de)

Version 0.1a-135

Copyright (C) 2013-16 Thomas Schöbel-Theuer
Copyright (C) 2013-16 1&1 Internet AG (see http://www.1und1.de shortly called 1&1 in the
following).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

http://www.1und1.de

Abstract

This guide explains how to select the right storage architecture for typical use cases in big
enterprises. Besides general storage architectures, solutions and pitfalls of geo-redundancy /
long-distance replication are highlighted.
Cost and risk are treated as well, addressing some management needs up to CTO level.
Part II explains the architectural goals and methods behind the Linux-based OpenSource

solution MARS.
MARS is a key component for achieving geo-redundancy under Linux, for example Disaster

Recovery (DR) at datacenter granularity, and/or Location Transparency (LT) at VM / LV
granularity.
It can help to increase reliability via Sharding, and to save cost by optional support for

local storage in addition to network storage.
It eases load balancing and background migration of data, even over long distances.
MARS is in enterprise-critial production since 2014, and on thousands of Linux servers repli-

cating petabytes of data.

01101011101001

Many thanks for constructive feedback which helped to improve this document series and related
material like presentation slides:

• Philipp Reisner from Linbit

• Ewen NcNeill and Simon Lyall from the Australian / New Zealand Linux community

• Jens Clever and Jörg Mann, external freelancers working at 1&1

• Anders Henke and Christian Albert and Kai Müller and David Meder-Marouelli from 1&1
Ionos

• Olof Sandström-Herrera from Arsys

Please report any omissions in case I forgot somebody.

4

Preface

Introduction
This guide explains how to select the right storage architecture for typical use cases in big
enterprises. Besides general storage architectures, solutions and pitfalls of geo-redundancy /
long-distance replication are highlighted.
Cost and risk are treated as well, addressing some management needs up to CTO level.
Part II explains the architectural goals and methods behind the Linux-based OpenSource

solution MARS.
MARS is a key component for achieving geo-redundancy under Linux, for example Disaster

Recovery (DR) at datacenter granularity, and/or Location Transparency (LT) at VM / LV
granularity.
It can help to increase reliability via Sharding, and to save cost by optional support for

local storage in addition to network storage.
It eases load balancing and background migration of data, even over long distances.
MARS is in enterprise-critial production since 2014, and on thousands of Linux servers repli-

cating petabytes of data.

Purpose
This document explains and discusses how to select the right storage architecture for typical
use cases in big enterprises. Besides general storage architectures, pitfalls of geo-redundancy
and long-distance replication are highlighted.
In addition to technical discussion, cost and risks are treated as well, addressing some

management needs up to CTO level.
In contrast to several other publications, it is not an enumeration of sheer endless possibilites

and components on the market. It provides guidance about the structures and ideas behind
storage architectures and their connection to application processing. Particular attention is on
avoidance of pitfalls.
It provides both technical and management guidance about selection of architectures as well

as their implementation classes, and also about selection of suitable component classes.
Finally, it helps checking for use cases where MARS will be a good solution, and where other

solutions will be better suited. It also addresses some unexpected problems when inappropriate
types of cluster managers are selected for long-distance replication.

Scope
The following topics are covered within this document:

• Management Summary

• Architectures of Cloud Storage, and
– their application area
– their reliability / risks / pitfalls
– their cost
– scalability and performance of architectures
– recommendations for managers and architects

• Selection of components
– MARS vs DRBD

• Architecture and pitfalls of Cluster Managers

5

Preface

Audience
This document is mainly written for system architects. Technical decision makers / managers
with technical background, up to CTO level, should also benefit from risk reduction and cost
saving, when making clever investment and consolidation decisions.
Researchers in the field of storage systems are also addressed in the section about reliability

and the appendix, by providing mathematical models of reliability.

How to use this document
Managers should start with chapter Management Summary. Then read the short chapter
Important Concepts. For details, just follow the internal links within this document. In any
case, the last chapter Recommendations for Managers is highly recommended.

Manager Hint 0.1:

These boxes are something you definitely should read as a manager. It explains impor-
tant key items in a nutshell.

All others should read chapter 1 and 2 sequentially, and proceed to the other chapters when
interested.
When MARS is already in use (or planned to be used), reading all of the chapters may pay

off for avoidance of pitfalls.

Example 0.1:

Examples are marked with boxes like this. They can be skipped if you don’t have much
time. Examples will however help for understanding of complex material.

Details 0.1:

Detail explanations are marked like this. They are recommended for system architects
for more elaborate methodology, and for deeper understanding of fundamentals.

Hint for research 0.1:

This document is no scientific work in a strong sense. However, it is based on scientific
background. In a few places, hints like this could be fruitful for spawning research
activity.

Related documents
• mars-user-manual.pdf: for sysadmins who want to install and run MARS.

• football-user-manual.pdf: for sysadmins and userspace developers who want to use
Football.

• mars-for-kernel-developers.pdf: some infos for kernel developers.

Table of Contents

6

Contents

Preface 5
Purpose . 5
Scope . 5
Audience . 6
How to use this document . 6
Related documents . 6
Table of Contents . 6

I. Geo-Redundancy for Managers and Consultants
Plus Background for Responsibles / Architects / Project Members / Sysadmins / etc 10

1. Management Summary 11

2. Important Concepts 13
2.1. What is Architecture . 13
2.2. What is Backup . 19
2.3. What is Replication . 20
2.4. What is Location Transparency . 21
2.5. What is HA = High Availability . 22
2.6. What is Geo-Redundancy . 23
2.7. What is Cloud Storage . 25
2.8. What is SDS = Software Defined Storage . 26
2.9. What is Scalability . 26
2.10. What is an Object Store . 28
2.11. What is Sharding . 30

3. Architectural Principles and Properties 31
3.1. Fundamental Requirements for Geo-Redundancy 31
3.2. Architectural Properties of Cloud Storage . 33
3.3. Suitability of Architectures for Cloud Storage . 38
3.4. Kirchhoff’s Law: Suitability of Storage Networks 40
3.5. Layering Rules and their Importance . 47

3.5.1. Negative Example: object store implementations mis-used as backend for
block devices / directory or pointer structures / POSIX filesystems 48

3.5.2. Positive Example: ShaHoLin storage + application stack 53
3.5.3. Negative Example: Inappropriate Replication Layering 55

VM replication and Dijkstra. 55
Operational environment conditions for MARS. 56
Sysadmin Perspective. 56
User Perspective. 56
Management Perspective. 57

3.5.4. Potentially Negative Example: layering directory-alike structures on top
of billions of eventually consistent objects 58

3.6. Granularity at Architecture . 60
3.6.1. Granularities for Achieving Strict Consistency 60
3.6.2. Granularity for Achieving Eventually Consistent 61

3.7. Flexibility of Handover / Failover Granularities 61
3.7.1. Where to implement Location Transparency 61
3.7.2. Granularity of Cross-Datacenter and Geo-Redundant Handover / Failover 62

7

Contents

4. Architectures of Cloud Storage / Software Defined Storage 66
4.1. Performance Arguments from Architecture . 66

4.1.1. Performance Penalties by Choice of Replication Layer 66
4.1.2. Performance Tradeoffs from Load Distribution 69

4.2. Distributed vs Local: Scalability Arguments from Architecture 70
Definition of Sharding . 71

4.2.1. Variants of Sharding . 73
4.2.2. FlexibleSharding . 75
4.2.3. Principle of Background Migration . 77

4.3. Reliability Arguments from Architecture . 79
4.3.1. Storage Server Node Failures . 79

4.3.1.1. Simple Intuitive Explanation in a Nutshell 79
4.3.1.2. Detailed Explanation of BigCluster Reliability 80

4.3.2. Optimum Reliability from Architecture 85
4.3.3. Error Propagation to Client Mountpoints 87
4.3.4. Similarities and Differences to Copysets 88

Similarities . 89
Differences . 89

4.3.5. Explanations from DSM and WorkingSet Theory 90
4.4. Scalability Arguments from Architecture . 93

4.4.1. Example Failures of Scalability . 95
Setup 1 (NFS) . 95
Setup 2 (ocfs2) . 96
Setup 3 (glusterfs as a substitute for NFS / ocfs2) 96
Setup 4 (glusterfs replication as a substitute for DRBD) 96
Setup5 (Sharding on top of DRBD) 96

4.4.2. Properties of Storage Scalability . 97
4.4.2.1. Influence Factors at Scalability 97

4.4.3. Case Study: Example Scalability Scenario 99
4.4.3.1. Theoretical Solution: CentralStorage 100
4.4.3.2. Theoretical Solution: BigCluster 101
4.4.3.3. Current Solution: LocalSharding, sometimes RemoteSharding . 101

4.4.4. Scalability of Filesystem Layer vs Block Layer 102
4.5. Point-in-time Replication via ZFS Snapshots . 104
4.6. Local vs Centralized Storage . 108

4.6.1. Internal Redundancy Degree . 108
4.6.2. Capacity Differences . 109
4.6.3. Caching Differences . 109
4.6.4. Latencies and Throughput . 111
4.6.5. Reliability Differences CentralStorage vs Sharding 113
4.6.6. Proprietary vs OpenSource . 114

4.7. Cost Arguments . 115
4.7.1. Cost Arguments from Technology . 115

4.7.1.1. Raw Storage Price Comparison 115
4.7.1.2. Waste-Corrected Storage Price Comparison 116

4.7.2. Cost Arguments from Architecture . 117

II. MARS for Consultants and Architects
Plus Background for Interested Managers / Responsibles / Project Members / Sysadmins / etc 119

5. Use Cases for MARS 120
5.1. Network Bottlenecks . 121

5.1.1. Behaviour of DRBD . 121
5.1.2. Behaviour of MARS . 123

5.2. Long Distances / High Latencies . 127
5.3. Explanation via CAP Theorem . 127

5.3.1. CAP Differences between DRBD and MARS 128

8

Contents

5.3.2. CAP Commonalities between DRBD and MARS 130
5.4. Higher Consistency Guarantees vs Actuality . 132

6. Requirements of Long-Distance Replication 134
6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance

Replication . 134
6.1.1. General Cluster Models . 134
6.1.2. Handover / Failover Reasons and Scenarios 135
6.1.3. Granularity and Layering Hierarchy for Long Distances 136
6.1.4. Discussion of Handover / Failover Methods 137

6.1.4.1. Failover Methods . 137
STONITH-like Methods . 137
ITON = Ignore The Other Node 141

6.1.4.2. Handover Methods . 143
6.1.4.3. Hybrid Methods . 144

6.1.5. Special Requirements for Long Distances 144

7. Advice for Managers and Architects 145
7.1. Maturity Considerations for Managers . 145

7.1.1. Maturity of Architectures . 145
7.1.2. Maturity of MARS . 146

7.2. Recommendations for Hard- and Software Project Setup 146
7.2.1. Hardware Projects and Virtualization . 146

7.2.1.1. Physical Hardware vs Virtual Hardware 147
7.2.1.2. Storage Hardware . 148

7.2.2. Software Project Recommendations . 148
7.2.2.1. Usefulness Scope of Software . 149
7.2.2.2. Architectural Levels of Genericity 151

7.3. From OpenSource Consumers to Contributors to Leaders 155
7.4. Recommendations for Design and Operation of Storage Systems 158

7.4.1. Recommendations for Managers . 158
7.4.2. Recommendations for Architects . 162

III. Appendices 164

A. Mathematical Model of Architectural Reliability 165
A.1. Formula for DRBD / MARS . 165
A.2. Formula for Unweighted BigCluster . 165
A.3. Formula for SizeWeighted BigCluster . 166

B. Draft Definition of “*Scalabilty” 167

C. GNU Free Documentation License 169

9

Part I.

Geo-Redundancy for Managers
and Consultants

Plus Background for Responsibles / Architects / Project Members / Sysadmins / etc

10

1. Management Summary

This guide is about investments and long-term follow-up cost in the range of millions
of € or $. It tries to guide you through the jungle of storage solutions and their features, by
focussing at fundamental principles and high-level structures, called architecture.
ForHA enterprise-critical data in the range of petabytes, different storage architectures

are leading to very different properties in the cost and risk dimensions.
Manager Hint 1.1: Provably best HA / Cloud Storage architecture

By intuitive explanations as well as mathematical arguments, this guide shows that

• Permanent minimization of the distances between storage and the compute
nodes will both increase reliability and reduce cost at the same time.

• When applicable for a certain use case, the best architectural model is shown to
be sharding on top of local storage. It can easily save a cost factor of about 2,
while increasing architectural reliability at the same time.

• When the so-called FlexibleSharding variant of the sharding model is possible,
and when combined with a novel load balancing method called Football, it can
deliver a very similar level of flexibility than network-centric BigCluster archi-
tectures are promising.

• By both intuitive and mathematical explanations, and contrary to some contem-
porary belief, you will learn why(!) BigCluster architectures are generally
worse in practically any dimension, with only few exceptions. Hints are provided
at certain use cases where BigCluster cannot be explicitly recommended, and other
hints at some of the few exceptions.

• When built and dimensioned properly, cross-datacenter replication and/or
geo-redundancy will not double TCO = Total Cost of Ownership, but can cost
roughly about the same as local redundancy in the same datacenter. The key is a
certain class of wide-area distribution of resources in place of local replica-
tion.

• When cross-datacenter replication and/or geo-redundancy is required, the so-called
ability for butterfly leads to further HA = High Availability improvements dur-
ing ordinary operations.

• Object-based Cloud Storage can also be built on top of a sharding model, avoid-
ing cost and reliability / risk pitfalls caused by BigCluster.

• Distributed Systems (aka loosely coupled systems) are much more compli-
cated to program and operate than tightly coupled systems (aka SMP or
NUMA). You will unnecessarily loose TCO = Total Cost of Ownership and TTM
= Time To Market by unappropriate selection of coupling architectures for a
certain use case class. This guide will explain.

• You will learnwhy OpenSource component-based storage systems are much
cheaper than commercial storage appliances (up to factors), at least when you need
a few petabytes of storage. Alone by relinquishing Vendor-Lock-In and going to
RAID-based Linux storage, invest will typically decrease by factors between 3 and
10. By going to a LocalSharding or FlexibleSharding model, where possible,
another decrease factor of about 2 is typically possible.

In addition, this guide explains the ideas behind the OpenSource components Football on top of

11

1. Management Summary

MARS. It can be used for cost-reduced load balancing of non-(geo)redundant setups, as well as
for geo-replication + migration over short to very long distances. Load balancing and hardware
lifecycle / datacenter defragmentation works via background data migration while your services
keep running.

12

2. Important Concepts

This chapter is short. Recommended reading for everyone is each of the definitions in each
section, even if you think that you already know what each concept means.
In case you notice a difference between your former opinion about a concept and what you

are reading here, then don’t skip the rest of the corresponding section.

Skipping anything in this chapter exposes you to serious risks:

• Misunderstanding of following important parts. This may become expensive. This
guide is about investments and follow-up cost in the range of millions of €.

• Second-order ignorance: you probably don’t know what you don’t know. This is not
only risky in enterprise-critical areas. You can also risk your carreer.

2.1. What is Architecture
Architecture is important for achievement of management goals in companies when they
want to control their own long-term IT stategy. Bad architectures can cause you miss your
management goals, typically in long term, and/or can increase several fundamental risks
for you and your company. Therefore, you need good architecture, and you need some sort of
quality assurance for architecture.
There exist multiple definitions of architecture, and there are several related terms like “com-

puter architecture” and “hardware architecture” and “software architecture” etc etc. Some
versions are attributed to unrelated fields like “landscape architecture” and many others. We
need to hit your real needs as best as possible.
We start with “architecture of anything1”. Important IT-related variants can be found

in http://www.iso-architecture.org/42010/defining-architecture.html. We select a
short comprehensive definition, focusing on three main bullet points:

• its elements: the constituents that make up the system;

• the relationships: both internal and external to the system; and

• the principles of its design and evolution.

The order of these bullet points is important: (1) Make clear (with as less ambiguity as
possible) about which elements you want to talk. (2) Only after having a clear notion of your
elements, you can start talking on relationships. (3) Once the relationships of your elements
are clear, both internal and external ones, only then you can start talking on architectural
principles.

Consequence: you should define the terms you are using for (1) elements, and (2)
relationships, and (3) principles.
1When narrowing down to Software Architecture, we may take a more specific version from https://en.
wikipedia.org/wiki/Software_architecture, but this might foster more misunderstanding under less-
trained staff:

Software architecture refers to the high level structures of a software system and the disci-
pline of creating such structures and systems.

Caution: when certain software architectures (even theoretically good ones) are too abstract such
they are not fully understood by other people, and/or when they are missing important points for achieving
your goals and/or for detection of hidden problems, and/or when introducing unnecessary overhead, they
may work even counter-productive.

13

http://www.iso-architecture.org/42010/defining-architecture.html
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture

2. Important Concepts

Avoid talking about unclear ideas. Invest some effort into making things clear. Otherwise,
the quality of your architecture may lead to confusion or other bad effects, up to millions of €
or $.

It is practically impossible to denote and to define all existing elements / relationships /
principles. Tell only the relevant ones. Conversely, do not forget important ones, at least for
your IT environment and for your company culture. Omissions are potentially dangerous!

Important: soundness and freeness of contradictions are similarly crucial than
in “wrong mathematical theories”. But this isn’t enough. Otherwise this section would be
unnecessary.

Details 2.1: Example: Distributed System

Typical pictures of Distributed Systems are depicted in the following way:

1. Elements are boxes, typically depicting server classes or a class of servers (as
deployed into a datacenter), sometimes also singletons (each by each), augmented
with their (class) names.

2. Relationships are lines, typically depicting (bundles of) network cables, or other
(multiplexed) communication channels. When necessary, they may also get (class)
names, but typically such detail is not always needed for understanding.

3. Principles are communicated as subsequent explanation text, typically in En-
glish. Do not skip important explanations!

Here is a simple example graphics as used in section Definition of Sharding, depicting
the architectural bullet points (1) and (2), while the explanation text (3) can be found
in the referenced section:

´ Shard #1 Shard #3 Shard #nShard #2

....

I n t e r n e t

Shard Gateway / Application Load Balancer

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

or Filesystem or Filesystem or Filesystem or Filesystem

In this example architecture of a certain class of Distributed System, the environment of
the system is depicted as “Internet” without a box. The system elements consist of boxes,
denoted by their inside text, and potentially also named by footers. The relationships
are simple lines, denoting the regular mass communication. Less relevant details like ssh
access for sysadmins is omitted. The dashed separators are used for optional internal
grouping. When important for a certain use case, some numbers depicting quantities
(see https://de.wikipedia.org/wiki/Mengenger%C3%BCst) need to be added (which
is unfortunately not possible in this paper because we don’t talk about concrete instances
here). The only abstract number here is n, while others in units like Petabytes or GiB/s
or similar should be added for quality assurance.

Intuitively, the reader can imagine that this communication structure features the
main property of Sharding as explained in section Definition of Sharding: there is no
communication / cross traffic between different shards. There is no SPOC = Single
Point Of Contention. The shards cannot influence each other. Thus the risk of
catastrophic incidents is reduced.

Unnecessary structural complexity would be an indicator for low quality.

14

https://de.wikipedia.org/wiki/Mengenger%C3%BCst

2.1. What is Architecture

Do not miss the chance for comparing multiple architectural alternatives for
quality!

Pitfall: only compare pictures of architectures when they are really comparable.
The boxes need to refer to comparable items. You cannot check this in 10 seconds! You
will need to invest more time and/or more capable people.

Important for creators of diagrams: do not unnecessarily mix boxes or lines depicted
in the same graphics style, when they are not easily comparable to each other. For example,
do not mix up less distinguishable items from different architecture topics like Distributed
Systems (involving relationships at network level) with ones from OO = Object Orientation
(involving completely uncomparable relationships like inheritance lines). Another example:
mixup of hardware boxes with software boxes (except when you can clearly express the types
of boxes as well as the types of relationships – but beware of the complexity of suchalike
diagrams). Suchalike mix-ups are indicators for low quality, and can easily provoke various
misunderstandings.

Example 2.1: Hypothetical Example of a Misunderstanding

Here is a hypothetical example of a misunderstandable variant of the first graphics. For
illustration, the bad parts are coloured in dark red:

´ Shard #1 Shard #3 Shard #nShard #2

....

I n t e r n e t

Shard Gateway / Application Load Balancer

BigCluster Object Store

Frontend Frontend Frontend Frontend

What is bad here?
This is not only violating the Definition of Sharding because the bottom box is a SPOC
= Single Point of Contention, since multiple shards must not share an unnecessarya

common SPOC [notice that the Internet can also have SPOCs but this is outside your system, and
we cannot influence much of it].
Another problem is that the whole picture wants to explain a Distributed System. How-
ever, the dark red box contains another very complex Distributed System which is
much more structurally complicated than the original sharding model, but the reader
cannot see this. There is a confusion of the abstraction level .
When characterizations like “BigCluster” are omitted, readers can easily become mis-
guided by believing that the Object Store would be a “simple” or “more easy box”.
aNotice: some sort of “Shard Gateway” is unavoidable in general, because it actually belongs to the

networking infrastructure, which is always needed in order to communicate with the “Internet”.
However, a good implementation of a Sharding Architecture needs to invest some brain power
how to make this actual SPOC as good as possible for the actual use case.

Throughout this document, the term “architecture” is strictly separated from “imple-
mentation”. Any of “architecture” or “implementation” can relate to Distributed Systems
and/or to both hard- and software, and may need inclusion of further infrastructure like net-
working.

A certain architecture may havemultiple implementations. Good architectures are allowing
this. Ability for multiple implementations may be a competitive advantage.

15

2. Important Concepts

Omission of important implementation considerations, or single-binding to a certain fixed
enviroment, or even confusion of “architecture” with “implementation” (aka classes vs instances
/ confusion with singletons) is an indicator for low quality.

An implementation is based on a set of technologies2

Unfortunately, certain technologies are not suitable for certain architectures. There may
be restrictions.

Because of hidden restrictions which may show up later, you should not start with
implementations or technologies. Always start top-down with architectural considerations,
while trying to identify potential restrictions as early as possible.

Manager Hint 2.1:

The biggest potential for good solutions is at architectural level. Exchanging
a single component or a technology is typically much easier than changing a whole
architecture, once it has been implemented. Often, changing an architecture is close to
impossible.

Important for quality and usability of software developments: a certain implemen-
tation of software, even when intended as part of a certain architecture, should be able for
multiple instances. Good implementations are constructed for this. Ability for multiple
instances may be a competitive advantage for development teams, provided they are profes-
sional enough for doing this really and in proved good quality.

Do not plan software developments as singletons. Even worse: do not plan suchalike
at architecture level. This would be an indicator for worse quality of a certain architecture.

Long-term success killers: never start an architecture with a particular implemen-
tation and/or with a particular technology in mind. Even worse, never start with a particular
product from a particular vendor (danger of so-called Vendor-Lock-In). Insufficient reason-
ing about fundamental architecture and fundamental laws (e.g. section Optimum Reliability
from Architecture), and/or not seriously considering alternative architectures, is a ma-
jor source of costly ill-designs. Some failure examples may be found in section Example
Failures of Scalability.

Needed skills: confusion of “architecture” with “implementation” and/or “technology”
is another major source of ill-designs, which then often cause major product flaws and/or
operational problems. Be sure to really understand the differences.

Recommended best practice is to (1) look at the problem space, then (2) consider a set
of architectural solution classes, and (3) look at each of the mappings between problem
space and solution space. The complexity of such a mapping is a first hint.

2Architectures are serving as aids for classification of solutions. An implementation is a solution which has
materialized (in contrast to solutions which exist only on paper). Complex solutions / implementations are
typically matching only one architecture. Thus the relationship between architectures and solutions / im-
plementations is typically 1 : n, while the relationship between solutions / implementations and technologies
is n : m in general. In case of a very simple solution, it may exceptionally match multiple architectures, but
this is not typical for classification schemes.

16

2.1. What is Architecture

Details 2.2:

In somewhat more detail: start with architectural requirements for a particular
application area (typically covering multiple use cases), then look at multiple solu-
tion architectures, and finally go down to a set of potential implementations, but
only after the former has been understood. Selection of components and technologies
should be the last step during the first iteration of this method. Then do a quality
check at concept level. Often, such a review will disguise some problems / limitations
etc, which should be treated by further iterations, restarting top-down again.

During this iterative concept work, you should validate your solution(s) several
times, e.g. for compatibility (no conflicts caused by restrictions, etc).

Starting at the bottom with a particular single solution in mind, and/or presuming
a certain technology, is almost a guarantee for a non-optimum solution, or even a failed
project, or even a disaster at company level when enterprise-critical mass data is
involved. Always consider a set of candidate architectures, and for each of them, a set
of solutions / technologies.

Such a comparison needs to be fair, and no biases. For new developments, this
can easily result in killers. Notice that typical software projects have a failure rate about
70%, as can be read in text books from software engineering.

Do not believe that other areas like Distributed Systems are generally much better.
There exists a plethora of more or less failed academic projects from the viewpoint of
industry, depending on important concepts and fundamental laws like Consistency
Models.

A classical killer, but widely unknown, is the failed MIT project which tried to
re-implement the semaphore at Distributed System level. Do not believe that other dis-
tributed re-implementations of other models working well on SMP or NUMA boxes (e.g.
filesystems or object stores) have a much better chance. Not not ignore the plethora
of (more or less) failed projects, whether academic or industrial. Distributed Systems
can easily turn into unexpected snake pits. Otherwise the professors for Distributed
Systems would be overpaid or useless!

Another killer when updating or re-factoring an enterprise-critical productive
system: Never try this via too big and too less architectural changes. Always do
this incrementally and via relatively small architectural changes, whose impact is
revertable (analogously to Change Management best practices, e.g. similar to ITIL).
It would be foolish to apply ITIL-like practices only to the rollout phase after the final
implementation of a certain architecture had been completed. Some parts of ITIL & co
are very helpful for analogous transfer to incremental architecture work.

Do not think in waterfall models. Always work iteratively and evolutionary
by re-considering architecture whenever you find problems / contradictions induced by
restrictions, similar to the spiral modela.

Be extremely cautious when transferring software development methods to storage
architectures, where operations involves masses of hardware. You need to find a balance
between extreme waterfall-like and agileb methods.
aSee https://en.wikipedia.org/wiki/Spiral_model.
bPurely agile methods are less suited for quality ensurance of storage architectures, because they
are tempting people to start with simple approaches before the problem domain has been fully

17

https://en.wikipedia.org/wiki/Spiral_model

2. Important Concepts

understood, increasing the risk of architectural ill-designs. Starting an implementation too
early on basis of an ill-design can easily lead into a dead end. Agile methods are typically
encouraging early deliverables, which can be counter-productive. Example: it is clearly a bad
idea to plan for an early deliverable for some petabytes of storage. Thus architects and managers
are tempted to start small, e.g. a BigCluster architecture with only 3 storage servers. This type
of “early deliverable” cannot detect any scalability problems early enough, see section Example
Failures of Scalability. So you are in a dilemma, whether you like it or not. Although you probably
dislike it, the planning phase of big storage systems is unfortunately more like a waterfall process,
by its very nature. Thus workarounds for the shortcomings of a pure waterfall model are needed.
German readers may also check the V-model XT, as described in https://de.wikipedia.org/wiki/
V-Modell_(Entwicklungsstandard). Unfortunately, the newer XT variant of the V-model is missing
in the corresponding English Wikipedia article (retrieved autumn 2019), misleading readers with
unfortunate opinions like the V-model being too similar to a waterfall model. Notice that the newer
XT variant of the V-model, as well as some other variants (e.g. lecture notes from Professor Jochen
Ludewig / University of Stuttgart), have adopted many ideas from the agile community, such as
rework in loops and cycles, and thus should not be classifed as “linear waterfall” models. In particular,
early quality ensurance of concepts and architectures and rework of architecture as early
as possible is something you definitely should borrow from the V-model and its modern variants,
even if you dislike V-models otherwise.

Serious bugs in an architectural ill-design (examples see section Example Failures of
Scalability) are typically very hard by causing serious limitation and/or impact, and cannot
be fixed by the best implementation, or by the best technology of the world. Be sure to
understand the fundamental difference between architecture and its (multiple / alternative)
implementations, as well as multiple technologies, and their respective restrictions, as well as
their reach.

Manager Hint 2.2: Howto QA = Quality Assurance of Architecture Work

It is a bad idea to delegate quality checks onto big teams and/or to treat (un-
officially) some people as responsible for quality, but in reality some of them having
insufficient skills and/or insufficient experiences on certain classes / parts of archi-
tectural work (e.g. mixup of management experiences with technical or architectural
experiences).

In place of meetings with more than 3 participants, the following is recommended:

1. Identify the right people with the best possible skills and experiences, not only in
the important tasks, but more importantly at architectural work in the application
area. When necessary, include external technical and architectural consultants.

2. Instead of few “quality assurance session(s)” in a format where true discussion and
deep dive into risks etc is unlikely (e.g. for carreer or opportunity or percep-
tional or political(!) reasons) or hard (e.g. due to incompatible skill levels), notice
that QA discussion formatsa are even harder than development. Thus
discussions make only sense when at least

a) private preferences or so-called hidden agendas have been counter-acted
in advance at HR level, and

b) multiple direct personal discussions between the right persons in a
friendly culture but on risks / reliability / scalability / architectural
flaws / cost / etc are possible from at least company-level scope, and

c) there are enough but not too much and not too big (= well balanced) un-
derstandable documents on sufficient architectural alternatives, which had
been reviewed like recommended in Software Engineering.

A (single) slide, reducing a complex matter down to 1 page (or too less
pages) with unclear or non-checkable terms and claims =⇒ then you have a
serious risk you typically know as a manager.

18

https://de.wikipedia.org/wiki/V-Modell_(Entwicklungsstandard)
https://de.wikipedia.org/wiki/V-Modell_(Entwicklungsstandard)

2.2. What is Backup

d) for enterprise-critical work: QA of the QA, e.g. involving external experts in
architecture and important relatives like Software Engineering.

3. Selection among multiple architectural and/or implementation alternatives
should be (1) checked for sufficient QA and (2) risk approved, then (3) de-
cided, and (4) backed by (upper) management.

A leadership style like “the team is posponsible for the (single / best / etc)
solution” is a risk (or almost a guarantee) for non-optimum or even bad long-
term decisions (recall that architectures have typically a lifetime of decades and
are often cumbersome to fix).

aDiscussions in big groups about truth of claims or even about facts are similar to public discussions
about the truth of Einstein’s law. There is a German saying:
Shit is excellent, because millions of flies cannot be wrong.

2.2. What is Backup
A Backup is a copy of your data at a different location. Typically, the copy is intended
for later copyback. There are two distinct operations associated with backup:

1. Creation of backup. This creates a copy, or a new version of a copy. It involves some
network traffic over various distances, e.g in simplest case over a USB cable, or from the
application datacenter to a backup datacenter. Typically, this is done at regular time
intervals, e.g. daily.

2. Restore from backup. This does the opposite of backup creation. It also involves net-
work traffic, but typically in reverse direction. The roles of application datacenter
and backup datacenter do not change. Restore is typically triggered manually, and
typically only after some incident which led to (supposed) data loss.

In practice (with few exceptions3), it is often a bad idea to restore a backup although
there is no real data loss. This would likely overwrite your newest application data with an elder
version, likely leading to data loss. Therefore, classical restore is a potentially dangerous
operation!

Manager Hint 2.3: Summary: structural properties of backup

Backup is asymmetrical. It involves two non-exchangable roles / locations, application
location vs backup location.

Confusion of these roles, or triggering an unnecessary restore is a risk for data
integrity.

Conversely, having no reasonable backup at all is an even higher risk. Backup is a

3Theoretically, a restore operation could be designed more or less idempotent. So only some missing data
would be restored, all else would typically remain unchanged. However, this may violate the semantics of
several applications, e.g. violate the referential integrity of certain databases, and/or may leave back some
“unknown” and/or “outdated” data, potentially even in huge masses. Example: in Shared Hosting Linux,
some old PHP session cookies residing in home directories might be restored, potentially even violating some
security rules. When run regularly via cron jobs, the storage space may be flooded in the long term with
more or less “useless” data and/or inodes, e.g. exceeding the user quota.

Notice: in strict storage semantics, the deletion of data is a valid operation, which should not be
violated except when you are sure that it will not cause any harm. Example: in Shared Hosting Linux, some
customers are creating such masses regularly via their own cron jobs. Their unnecessary restore may become
rather expensive over time.

19

2. Important Concepts

best practice.

2.3. What is Replication
Intuitively, data backup and data replication are two different solution classes, addressing dif-
ferent problems.
However, there exist descriptions where both solution classes are overlapping, as well as their

corresponding problem classes. For example, backup as explained in https://en.wikipedia.
org/wiki/Backup could be seen as also encompassing some types of storage replications ex-
plained in https://en.wikipedia.org/wiki/Replication_(computing).
For this guide, we want a clearer discrimination, for better orientation in the solution jungle.

As a rough comparison of typical implementations, see the following typical differences:

Backup Replication
Timely pattern intervals continuously
Fast handover (planned) no, or cumbersome yes
Fast failover (unplanned) no, or cumbersome yes
Protect for physical failures yes yes
Protect for logical data corruption yes typically no
Disaster Recovery Time (MTTR) typically very slow fast

There are some solutions implementing a mixture, by different combinations of some of these
typical properties. Here we focus on fundamental principles.
Although replication as defined here has much better properties from a risk viewpoint

on enterprise-critical data, there remains a gap in favour of backup: backup is typically im-
plemented as a logical copy, which lowers risks from certain types of data corruption, such
as filesystem corruption, for which only risky repair workarounds like fsck are the last resort
when you don’t have a backup in addition4 to replication.

Details 2.3: Typical Advantages

Typically, backup improves the recoverability, while replication improves the reliability.

Because of these typical differences, enterprise-critical data typically deserves both solution
classes at the same time.

Manager Hint 2.4: Important requirements for replication

A good replication solution is symmetrical. There a two (or more) copies at
different locations. They are either active at the same time (which works reliably only
rack-to-rack over crossover cables, see section Explanation via CAP Theorem), and/or
they need to switch their roles quickly. Switching should have two different triggers:
planned handover, vs unplanned failover in case of an incident.

Symmetry is an important precondition for fast reaction onto incidents. For
enterprise-critical data, this is important for drastically lowering the expectance

4An integrated solution for continuous replication via logical copies would be difficult. There is a concept
mismatch between logical copies and strict consistency requirements posed by fast handover, while at the
same time compensation of logical data corruption would require the opposite of strict consistency. Notice
that logical copies are residing at higher layers, e.g. filesystems or database records, while pure replication
is easier done at block layer. See also sections Performance Arguments from Architecture and Layering
Rules and their Importance. Notice that snapshots at block layer cannot reliably protect against long-lasting
silent corruptions. Even higher-layer ZFS snapshots treated in section Point-in-time Replication via ZFS
Snapshots cannot provide the same protection level as a classical per-inode multi-generation backup onto a
different filesystem type, thus lowering systematical risks from software bugs in filesystem code. In general,
there always remains a residual risk of data loss. The classical solution is simple: just have two or more
different counter-measures in parallel, and spread them over distinct datacenters.

20

https://en.wikipedia.org/wiki/Backup
https://en.wikipedia.org/wiki/Backup
https://en.wikipedia.org/wiki/Replication_(computing)

2.4. What is Location Transparency

value of losses by incidents.

Confusion of solution classes replication vs backup and/or their corresponding
problem classes / properties can be harmful to enterprises and to carreers of responsible
persons.

Hint: the granularity of replication handover / failover is important for maximum
flexibility. See section Flexibility of Handover / Failover Granularities.

2.4. What is Location Transparency
Replication as defined in the previous section works only reasonable fast enough when Location
Transparency is implemented reasonably well, see also section Where to implement Location
Transparency. Here is a brief explanation what it is.
Location Transparency is an extremely important and well-known fundamental principle

in Distributed Systems, and has attracted research for decades.
Simply stated, it means that the location of an object or of a service is never (part of) a

primary key, but any access is via a logical name not depending on the location. Thus the
location may (relatively easily) change at runtime.
There are numerous examples where this fundamental principle is obeyed. Unfortunately,

there are also many examples where it is violated.

Example 2.2: Phone numbers

Phone numbers are not location transparent in general. For stationary phones, they con-
tain a location-dependent prefix. In general, it is not possible to move to a different city
while keeping the old stationary phone number. In case of mobile phones / cellphones,
numbers are “more location transparent”, but even there they are not fully location
transparent: for international calls, they contain prefixes referring to the country, e.g
+1 for US or +49 for Germany. In practice, it is not easily possible to permanently
move from Germany to US, without giving up the old number after a while. In ad-
dition, often the service provider and/or the network technology (D-net vs E-net etc)
may be also encoded in cellphone numbers, e.g. somewhere as an infix. Changing the
provider may have some restrictions. However, for most practical purposes, such as Eu-
ropeans spending their holidays in US, mobile phone numbers are sufficienctly location
transparent.

In practice, location transparency is not just a boolean property. As explained by the
cellphone example, it may have various degrees. In addition, it can refer to different sub-
systems at different architectural layers. Some layers / some components may be (more or less)
location transparent, but others not at all. Thus it is important to mention the layer or the
component when talking about location transparency.
Interestingly, the Wikipedia article https://en.wikipedia.org/wiki/Location_transparency

is an incomplete stub when this section was written (Autumn 2019). It seems that people are
actually paying less attention to it.

Manager Hint 2.5:

Major violations of location transparency are almost always carrying some tech-
nical debt, likely causing future problems and impediments.

Therefore, establishment of reasonable location transparency needs to be seen as
best practice.

21

https://en.wikipedia.org/wiki/Location_transparency

2. Important Concepts

It may happen that somebody thinks there would not be enough time and/or resources
for implemention of certain kinds of location transparency. Although in many cases this is not
really true, there might be some corner cases where it sometimes is true, or close to true.

Manager Hint 2.6:

Investments into location transparency are often longterm investments. Not
doing it will likely decrease your business opportunities and increase your risks
in the long term.

Location transparency is simply a certain type of redirection mechanism, which
automatically follows the current location of a service and/or its storage. It makes
you independent from various placement strategies.

Once you have established location transparency, a multitude of placement
strategies for your services and/or your storage locations is possible. This opens up
more opportunities for higher efficiency.

If anyone is arguing that location transparancy were not needed as a major feature, you should
check whether such a person is really an expert. There needs to be a clear and valid justification
for such an opinion.
Hints for implementation of location transparency are in section Where to implement Loca-

tion Transparency.

2.5. What is HA = High Availability

HA is defined by a single number, denoting the minimum percentage of uptime of a certain
system from a user’s perspective. Some examples:

• 99% availability: a total downtime of more than 87.6 hours per year is not acceptable.

• 99.9% availability: a total downtime of more than 8.76 hours per year is not acceptable.

• 99.99% availability: a total downtime of more than 52.56 minutes per year is not accept-
able.

Do not confuse uptime / downtime with service times or similar. For example, internet
services typically can require some seconds until web pages are appearing on a smartphone.
Thus it does not make sense to define a “downtime” or an “availability” or even a “reaction
time” in units of milliseconds.

HA is a requirement. Requirements are characterizations of the problem space. In
software engineering, requirements are strictly separated from any measures, how a requirement
can be met (solution space). In general, there may be several solutions for achieving a certain
HA percentage.

Manager Hint 2.7:

Some of the potential solutions for the same HA percentage may be much more
expensive than others, sometimes by factors. We will see some examples later.

22

2.6. What is Geo-Redundancy

Example 2.3: Expensive Over-Engineering Pitfalls

Some people are arguing incorrectly, by claiming that any HA solution would need
to be built by hardware redundancy. Some people even believe that redundancy would
be needed at each and every single hardware component, otherwise it would not be HA.
This confuses requirements with solutions. It is wrong in general, because even a certain
degree of hardware redundancy cannot guarantee a certain overall hard+software HA
percentage in general, for example when certain components such as failover software
are not reliable enough. See section Detailed Explanation of BigCluster Reliability for
another counter-example, where addition of more hardware redundancy > k does not
help. Of course, higher degrees of HA are typically(!) built using certain types and
degrees of hardware redundancy, including variants like geo-redundancy. In general,
however, there might be other means for achieving HA, like extremely quick automatic
repair methods, self-healinga systems, etc.
aThis is no joke. For example, certain spacecrafts need to run for years or even for decades, without

any maintenance. Thus it helps enormously when some of their components are self-healing, for
example certain surfaces or shields after a hit by micro meteorites.

2.6. What is Geo-Redundancy

From the technical viewpoint of HA, geo-redundancy belongs to the solution space. From the
viewpoint of government authorities, and/or from owners of a company / rating agencies
determining the business risk and the stock exchange value of a company, it is also a
requirement.

Geo-redundancy means that the risk of certain types of geo-localized physical impacts,
such as earthquakes, floods, terrorist attacks, cascading mass power blackouts, etc, must be
compensated by being able to run at least the core business from another geo-location
within some reasonable timeframe.

Example 2.4: Loss of Datacenters

Here is the basic idea of geo-redundancy between two datacenters A and B during
ordinary operations:

Server 1a

Server 2a

Server 3a

Server 10000a

Server 1b

Server 2b

Server 3b

Server 10000b

..
..
.

..
..
.Replication Network

Datacenter A Datacenter B

geo distance

Here are two possible geo-disaster scenarios which can be compensated by well-
implemented geo-redundancy:

23

2. Important Concepts

Server 1a

Server 2a

Server 3a

Server 10000a

Server 1b

Server 2b

Server 3b

Server 10000b
..

..
.

..
..

.Replication Network

Datacenter A Datacenter B

geo distance

OR not predictable

Server 1a

Server 2a

Server 3a

Server 10000a

Server 1b

Server 2b

Server 3b

Server 10000b

..
..
.

..
..
.Replication Network

Datacenter A Datacenter B

geo distance

On top of these example geo-disasters, which may last several days / weeks / months /
or forever, ordinary indicents may additionally occur at the surviving datacenter.
Real geo disasters have happened several times in history. For example, the 2021 flood
in the German Ahrtal (Ahr valley) has destroyed several local datacenters, even gov-
ernmental ones e.g. from local tax authorities. Some of these datacenters have been
physically lost forever.

Scientists are predicting that the climate change will increase the risk of big
floods. The so-called jet streams are weakening, such that low-pressure zones are typi-
cally moving only slowly, or even can stay resident at the same geo-position for weeks.
This has happened in the Ahrtal. If a similar weather scenario would have rained down
its hundreds of liters per square meter south of Stuttgart, around the Neckar valley, just
a few hundred kilometers away from the Ahr valley disaster, relevant parts of the Ger-
man industry could have been lost, including relevant parts of international companies
like Daimler-Chrysler.

This risk increase is not limited to Europe, but a global risk. Around 2021,
many US citicens have noticed that they are also affected from increased weather risks.
President Biden reacts differently from president Trump. Large parts of the industry,
as well as stock exchange markets are also adapting strategies.

Other geo-disasters like devastating high-magnitude earth quakes can for example
happen in the Rhine valley, which is known for a history of suchalike events around once
per century. The last one in Basel is now ~100 years ago. The next bigger one looks
overdue in statistical average (depending on expected magnitude), and may potentially
happen anywhere in the long rift valley, even near Cologne, or in the Netherlands.

There is no doubt that Japan and many other areas in the Pacific are active earth
quake zones. Even the US has geo disaster zones (e.g. around Yellowstone).

24

2.7. What is Cloud Storage

Implementation of reala geo-redundancy has pitfalls and needs high-grade meth-
ods and skills.

This guide hints you on technical prevention strategies against (partly or full)
datacenter losses, provided you are investing the time to read it carefully.
aSome advocates are trying to sell their so-called “geo-redundant” solutions or strategies although they

cannot actually cope with true geo disasters.

There are some ongoing political discussions about detail requirements for geo-redundancy. The
mimimum distance requirement between suitable geo-locations is seen differently by different
interest groups, and even differently in different countries. Some backgrounds:

• The enormous cost for setup of a new datacenter.

• Several commerical geo-redundancy solution components are more expensive with in-
creasing geo-distance, sometimes by factors, or even unapplicable at all for longer distances
(e.g. bad historical experiences with > 50 km), while another OpenSource component like
MARS does not functionally depend on arbitrary geo distances by construction.

While some NGOs = Non-Governmental Organizations are fighting for a minimum distance
of only 5 km, the German government authority BSI recommends a minimum distance of
200 km between datacenters for critical infrastructures. See https://www.bsi.bund.
de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/
Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5. Although this is only a
“recommendation” officially, certain sectors like banking are actually forced to treat this more
or less like a requirement.
For an observer, it could be interesting how international requirements will evolve, and how

rating agencies will change their rules during the course of the next decades.

Manager Hint 2.8: Opportunities

Notice that not only the same family of requirements can be solved very differently,
but also some combinations of different requirements. This guide explains ways for both
cost reduction and risk reduction at the same time, by combining HA requirements
with geo-redundancy requirements in a clever way, such that the combined solution will
meet both at the same time.
Example: a resulting combined solution is called Football on top of MARS. It pro-
vides additional operational value, such as load balancing via the ability for butterfly,
see section Flexibility of Handover / Failover Granularities.

2.7. What is Cloud Storage

According to a popular definition from https://en.wikipedia.org/wiki/Cloud_storage (re-
trieved June 2018), cloud storage is

(1) Made up of many distributed resources, but still act as one.

(2) Highly fault tolerant through redundancy and distribution of data.

(3) Highly durable through the creation of versioned copies.

(4) Typically eventually consistent with regard to data replicas.

A detailed analysis of consequences from this definition are in sections Suitability of Architec-
tures for Cloud Storage and Architectural Properties of Cloud Storage.

25

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5
https://en.wikipedia.org/wiki/Cloud_storage

2. Important Concepts

2.8. What is SDS = Software Defined Storage

As explained in https://en.wikipedia.org/wiki/Software-defined_storage, SDS is a
marketing term, subsuming a wide variety of offerings from several vendors.
In essence, it can be almost anything from the storage area, where hardware can be treated

independently from software, or at least some software configuration is available.

Example 2.5:

Even a “simple” HDD = Hard Disk Drive device has not only some network interface
(typically SATA or SAS in place of Ethernet), but also contains some software called
firmware, which could (at least potentially) be exchanged independently. Believe it
or not: even such a “simple hardware” device is providing storage virtualization,
although a rather primitive one. For example, it maps logical sector numbers (LBNs) to
physical coordinates like CHS = Cylinder / Head / Sector, or similar. Newer 4k sector
disks can emulate old 512 byte sector formats, etc. Thus such devices would match the
fuzzy Wikipedia description of SDS.

In practice, the term SDS is a tautology because it can mean almost anything from the
storage area, thus the term is not really useful.
In order to talk about SDS in technical terms of architecture, here is an attempt to somehow

narrow it down, and to somehow relate it to Cloud Storage:

SDS (in the sense of this guide) is a Cloud Storage system.

Treating SDS as equivalent to Cloud Storage makes it more useful, but neglects the op-
portunity for defining something useful inbetween of Cloud Storage and “anything”.
Notice that a Wikipedia search “storage as a service” (which could be abbreviated StaaS)

is delivering a redirection to “Cloud Storage”. Another missed opportunity for getting some
useful structure into the wild-growing jungle, and for clearly explaining differences, and for
a fruitful discussion of pro and cons.

Details 2.4: Remark

This is an indicator that the storage area is not really mature. There are more short-
sighted hypes than fundamental concepts. This architecture guide is an attempt to
guidea you through the hype jungle in a structured way.
aGerman saying, semantically translated to English: “You cannot see the forest because there are too

many trees in front of it.”

Manager Hint 2.9: Indirect cost of hypes

Beware of hyped buzzwords like “storage as a service”. It narrows your attention
to network-centric architectures, and distracts your attention from major cost saving
opportunities like LocalSharding (see section Variants of Sharding).

2.9. What is Scalability

Many technical people know that tightly coupled computers like SMP = Symmetric Multi Pro-
cessing systems or NUMA = Non-Uniform Memory Access systems have some scalabily limit,
also called bottleneck (or RAM bottleneck or von-Neumann bottleneck or similar).
Unfortunately, this can induce a common mis-belief : just design a loosely coupled cluster

or grid, and then any scalability limit would be gone; such a system would have “no scalability

26

https://en.wikipedia.org/wiki/Software-defined_storage

2.9. What is Scalability

limits”. Such a belief is fundamentally broken and may induce massive problems and/or
cost.
The fundamental terms “tightly coupled” and “loosely coupled” are important to know,

also for responsibles like managers. They can be found in https://en.wikipedia.org/wiki/
Multiprocessing#Processor_coupling. In 2021, this article mentions an interesting experi-
ence, with some emphasis added by me:

Tightly coupled systems perform better and are physically smaller than loosely
coupled systems, but have historically(!) required greater initial investments and
may depreciate rapidly [...]

Nowadays, the historic part of this experience does not apply anymore. Today’s standard
servers are tightly coupled within their enclosure, for ordinary prices. Servers with more than
100 standard SMP CPUs are not extremely expensive, while even small loosely coupled clusters
are typically much more expensive. In a datacenter, rackspace and network cost are not
neglectible, as well as further contributors to TCO = Total Cost of Ownership.

Some people believe that the term “scalability” would be defined as “there are no limits”.
Such a belief is not only wrong, it is dangerous.

Manager Hint 2.10: Failures and Indirect Cost by ill-usage of “scalability”

or : There is no valid general definition of “scalabilty” for all science areas.
Even when narrowed down to computer science, there is no generally accepted unique
definition. Even in certain sub-areas like storage systems or certain application classes,
the term can easily mislead you in your role as a responsible manager .

For some people like sales persons or so-called “evangelists” or advocates, this
creates an opportunity for their marketing (cf footnote 28 on page 94), and for tearing
out money from your pocket. It may imply further bad effects, e.g. by creation of
impressions (or even un-proved claims) about

• arbitrary(!) scalability of certain architectures / solution classes / products /
etc, and/or

• several further mis-guidings, some of them looking like deliberately not corrected
even when counter-arguments had been published (see examples in section Scala-
bility Arguments from Architecture).

According to many physical laws like limited speed of light or limited density
of matter, “infinite resources” do not exist. Thus:

“Infinite” or “Arbitrary” Scalability does not exist.

A draft of an attempt for a hopefully better defintion of “*scalable” can be found in appendix B
on page 167.

According to Einstein and many other fundamental laws, every system on this globe has
always some scalability limit, somewhere. Even the internet has some limit. Scalability
is always a non-linear behaviour. In general, it cannot be computed or fully predicted due
to unknown influence factors. As a manager, you are trained to deal with “unknowns”. As an
architect, you need to deal with this also.

In order to find a practical limit, you must reach it.

27

https://en.wikipedia.org/wiki/Multiprocessing#Processor_coupling
https://en.wikipedia.org/wiki/Multiprocessing#Processor_coupling

2. Important Concepts

Consequence: there exists no general “unlimited scalability”, only some “currently scalable”
systems which have not yet5 reached their scalability limit.

Details 2.5: Example: Scalability of MARS

The current official scalability limits of MARS are documented in the appendix of
mars-user-manual.pdf. They are following a conservative communication strategy, not
intended for marketing. Further practical experiences for certain hardware are docu-
mented in the ChangeLog. These practical limits are much better, but they are depend-
ing on the released kernel and MARS version, and on many other factors. It is all else
but easy to provide generic information on scalability of a certain more or less generic
product.

Here is a picture of the important Zones of Scalability as explained in section Scalability
Arguments from Architecture:

y

Scaling

Zone

Zone

Limited Regression

x

Satu−

ration

Zone
Zone

|<A. "currently scalable"> |<−C. "limited scalable"−> |<−B. "unscalable"−>

S
c

a
la

b
il

it
y

 L
im

it

Manager Hint 2.11: Importance of Scalability Limits

Do not believe any people who are not aware of the fact that “scalability” of
a certain offering can only be claimed when the Scalability Limit is reported and
checkable for a certain workload and/or workload class and/or application class.

Ensure that you are really talking about a relevant workload and/or (application)
class, fitting your needs.

When you reach a scalability limit for a relevant product operated on system
Si, and when its upgrade to the future workload Wj (definitions see appendix B on
page 167) would become too expensive, your company is risking the danger of loss of
a product line, or potentially even of going out of business.

More details can be found in section Scalability Arguments from Architecture.

2.10. What is an Object Store

The following picture explains the typical Abstract Functionality differences between con-
temporary object store implementations and contemporary filesystem implementations.

5There are some cases where the scalability of a certain system is estimated(!) as so high, such that it will
likely never be reached. Notice: this is not a proof, but just a prediction.

28

2.10. What is an Object Store

Filesystem Functionality

only in Filesystems

only in Object Stores

Typical

Common Functionality

Typical
Object Store Functionality

Caution: there exists a large bandwidth of object store implementations, as well as
filesystem implementations (e.g. academic prototypes vs industrial). The sizes of the above
typical areas cannot tell you too much about implementation efforts as well as maintenance
efforts and other efforts, because other factors like strongly coupled vs loosely coupled
implementations / ease of caching e.g. in Cache Coherence problems / other architectural
differences / Consistency Models / experiences of protagonists /maturity at multiple layers
and on subsystems / size of the developer community e.g. in small vs big projects like the
Linux kernel / common code e.g. among multiple Linux filesystem implementions / etc are
typically much more important. While well-known classical filesystems are mature technology
on tightly coupled local6 servers, object stores often try to be “sexy” and “more intelligent” by
“less functionality at the surface” on loosely coupled BigCluster designs. In reality, the latter are
typically more cumbersome due to less controllable concepts like “eventually consistent”
or high complexity, e.g. in Distributed Systems / at hidden parts / less visible subsystems,
leading to various problems in practice.

More details can be found in section Negative Example: object store implementations mis-
used as backend for block devices / directory or pointer structures / POSIX filesystems.

Manager Hint 2.12: Real Functionality and TCO behind typical Object Stores

Typical object store implementations are approximately nothing else but special
cases of classical fileystems, when looking at the abstract functionality. In reality, their
“additional” functionality is close to neglectible.

In many cases, roughly comparable classical filesystems are more mature, and/or
more reliable, and/or cheaper in terms of TCO = Total Cost of Ownership.

Don’t let fool you from contrary generalized claims. Always check such claims
in detail, and by real experts who really know and can not only explain the differences
both in terms of Abstract Functionality, but also by knowledge and by enough first-
hand experience on implementation details.

When unsure, read the details from section Negative Example: object store im-
plementations mis-used as backend for block devices / directory or pointer structures /
POSIX filesystems.

6For “Distributed Systems”, we don’t count low-level “local” connections like short-distance SAS cables be-
tween disk enclosures and servers.

Attention: some evangelists are wrongly claiming that local storage would be “too small” and/or
“unmanagle” / etc for too many use cases. Notice: contemporary “local” hardware RAID networks can easily
scale up to 1 petabytes or more, and can provide competitive IOPS rates.

29

2. Important Concepts

2.11. What is Sharding

Manager Hint 2.13:

Sharding is an architecture addressing Distributed Systems with a certain horizon-
tal scaling strategy (aka known as scale-out), which has interesting properties for
enterprise-critical workloads (provided that the method is applicable for your use case):

• Minimization of distastrous incidents and good reliability by avoidance of
spreading risks (see section Optimum Reliability from Architecture).

• Well-suited for geo-redundancy.

• High scalability.

• Minimization of TCO = Total Cost of Ownership.

Example picture, intended for use cases like DropBox & co, typically for use by masses of end
users for copies and/or backup of their private filesystem data:

Shard #1 Shard #3 Shard #nShard #2

....

I n t e r n e t

Shard Gateway / Application Load Balancer

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

or Filesystem or Filesystem or Filesystem or Filesystem

An example for another use case (Shared Hosting Linux), productive since years with an SLA
of 99.98% end-to-end for currently ~6 millions of customers on ~6 petabytes of filesystem data
on ~10 billions of files (inodes) can be found in section Positive Example: ShaHoLin storage +
application stack.
A definiton of Sharding (for the context of datacenters e.g. in cloud / hosting / storage

systems & co) can be found in section Distributed vs Local: Scalability Arguments from Ar-
chitecture and its subsection Definition of Sharding.

30

3. Architectural Principles and
Properties

Datacenter architects have no easy job. Building up some petabytes of data in the wrong way
can easily endanger a company, as will be shown later. There are some architectural laws to
know and some rules to follow.

Manager Hint 3.1:

As a responsible manager, you will make architectural decisions, even if you are not aware
of them. Bad decisions, even if you are not aware of its consequences, can endanger
major products, and increase cost by factors. Once you have commited to a certain
architecture, it will be extremely cumbersome to modify it later. Thus you need to get
an architecture right from start. Typically, you will have only one shot.

We need to take a look at the most general possibilities how storage can be architecturally
designed:

Storage

Local Storage Network Storage

Centralized Storage Distributed Storage
1:n n:m

1:1 or 1:k

The topmost question is: do we always need to access bigger masses of (typically unstructured)
data over a network?
There is a common belief that both reliability and scalability could be only achieved this

way. In the past, local storage has often been viewed as “too simple” to provide enterprise
grade reliability, and scalability, and maintainability. In the past, this was sometimes true.
However, this picture has changed with the advent of a new load balancing method called

LV Football, see football-user-manual.pdf.

Manager Hint 3.2:

When Football is combined with a FlexibleSharding architecture (see section Flexi-
bleSharding), practically the same flexibility as promised by BigCluster is possible.

Before looking into storage architectures, we need to consider extremely important top require-
ments first.

3.1. Fundamental Requirements for Geo-Redundancy

Some BigCluster advocates are trying to use their favourite implementation for geo-distribution.
There is a fundamental misunderstanding about geo-redundancy.
It does not suffice to distribute for example a Ceph or Swift cluster over two geo-locations A

and B. Recall the definition of geo-redundancy from section What is Geo-Redundancy: it must
be possible to run (at least) the core business from either A or B, while the respective other

31

3. Architectural Principles and Properties

location B or A is not available for several days or weeks, or even when the other location is
lost forever and needs to be re-constructed physically from scratch.
This also applies to partial unavailability of a few servers, or of a few racks, or of a few

rooms, or of some of the three power phases, or to corresponding partial permanent losses.

Nobody can know in advance whether (parts of) datacenter B will be lost during an
unpredictable geo disaster, or whether it will be A.
Consequence: any replication system claiming to support geo-redundancy must have a re-

covery operation.
Example: in DRBD or MARS, the recovery operation is called (fast) full-sync. It can

be started with commands like drbdadm invalidate or marsadm invalidate, or with replica
creation operations like {drbd,mars}adm join-resource.
Notice: when you have a few petabytes of data, the recovery operation needs to transfer

a non-trivial amount of data over a cross-datacenter bottleneck (cf section Kirchhoff’s Law:
Suitability of Storage Networks), and will take a considerable time, typically weeks, up to
months. During all of this, operation must continue.
Consequence: during recovery, the data must be alterable. In other words, the recovery

must work while the data is being modified by your running applications. Data must remain
logically consistent during all of this.
All of this must be enterprise-grade, meeting some appropriate SLAs. You cannot assume

that a certain storage implementation will reliably be able to cope with geo-failure scenarios,
when it isn’t explicitly constructed and tested(!) for geo-redundancy like MARS is.
In addition to the storage, enough application servers must be present at both locations

A and B, and they need to know where their corresponding data is. When the active side is
lost by a spontanous geo-disaster like an earthquake, all the application servers, their services,
networking functionality, etc, must be successfully restarted at the other location within a
reasonable timeframe. It must be guaranteed that all servers and services are running on the
right corresponding data, with the right IP addresses, etc.
All of this needs prepared processes in advance, for

1. coping with planned handover and unplanned failover scenarios to KTLO = Keep The
Lights On, and

2. Later recovery within a reasonable timeframe.

These are hard requirements. Recommended soft requirements like Ability for Butterfly are
described in section Flexibility of Handover / Failover Granularities.

Never use any replication system inside of VMs! Suchalike attempts are fundamentally
broken. See section Negative Example: Inappropriate Replication Layering.

Manager Hint 3.3: Important Advice on Geo-Redundancy: Time and Cost

When geo-redundancy is required for a certain application class, it must be con-
structed in from the very beginning.
If you believe that geo-redundancy would be an optional feature which could be added
later at any time, you will lose a lot of time and money.
Consequence: any storage strategy in an enterprise must start with the question whether
geo-redundancy is required, or not.
Any error in the requirement will become extremely expensive with respect to a close-
to-optimal solution, typically factor 2 or more for TCO. When selecting an inappropriate
storage+application fundamental architecture like BigCluster, it may be easily much
more.

Never start with a particular solution in mind. Always start with require-
ments.

32

3.2. Architectural Properties of Cloud Storage

3.2. Architectural Properties of Cloud Storage

Manager Hint 3.4: Pitfall: Use Cases for Cloud Storage

The following compatibility table is important for understanding the consequences
from combinations of requirements with solutions:

Solution is
Eventually
Consistent

Solution is
Strictly

Consistent

Task
permits

Eventually
Consistent

OK OK

Task
requires
Strictly

Consistent

OK

Important: from customer view, Eventually Consistent has worse functional prop-
erties than Strictly Consistent. Do not believe any propaganda claiming the opposite.

Do not place the following business tasks on top of Eventually Consistent cloud
storages:

• Email or important documents.

• Financial data, Invoices, Payment records, etc.

• Contracts / legal / etc.

• Security critical / secret data.

• Enterprise-critical data.

• Any other risky data.

Read the following explanation why Cloud Storage allows Eventually Consistent solu-
tions by definition and thus conforms to the left column and its skull symbol:

Brief recall from section What is Cloud Storage. According to https://en.wikipedia.org/
wiki/Cloud_storage and several other definitions in the literature, cloud storage is

(1) Made up of many distributed resources, but still act as one.

(2) Highly fault tolerant through redundancy and distribution of data.

(3) Highly durable through the creation of versioned copies.

(4) Typically eventually consistent with regard to data replicas.

Several cloud storage solutions are eventually consistent with respect to data
access during ordinary operations =⇒ although claimed by advocates, such so-
lutions are actually missing(!) the above definition =⇒ they are actually not cloud
storage. Due to implementation policies and/or due to the famous CAP theorem (see

33

https://en.wikipedia.org/wiki/Cloud_storage
https://en.wikipedia.org/wiki/Cloud_storage

3. Architectural Principles and Properties

section Explanation via CAP Theorem) they may be even missing the standard storage
semantics as explained in academic textbooks / literature on Formal Semantics (outside
the scope of this paper =⇒ ask the real experts).

Regularly missing the standard storage semantics =⇒ such a solution is not even
a “storage” at all. For example, it may deliver mathematically wrong data at any unpre-
dictable time without notice.

Details 3.1: What the Definition of Cloud Storage means

Some people are confusing cloud storage with other types of storage. Please read
the above definition carefully.
Requirement (4) is clearly stating that replicas need not have realtime consistency prop-
erties. Unfortunately, some advocates are incorrectly claiming that replicas would need
to be updated and/or usable for failover in realtimea, otherwise it wouldn’t be cloud
storage. By using a wrong definition at concept or architecture level, it is possible to
screw up whole product lines, at least in the financial dimension: realtime require-
ments are expensive to achieve, leading to unnecessary cost increases up to orders
of magnitude. It is one of the central ideasb of cloud storage to get rid of realtime
requirements at those places where it is reasonable. More on (unnecessary) realtime
requirements and its financial consequences see section Kirchhoff’s Law: Suitability of
Storage Networks.

The requirement (1) “act as one” implies some appropriate type of location trans-
parency (see section What is Location Transparency).

The definition says nothing about the granularity / sizes of the distributed re-
sources. See section Granularity at Architecture for a more detailed discussion of op-
portunities arising from better informed decisions about this.

Notice that the term “network” does not occur in this definition. However, the term
“distributed resources” is implying some(!) kind of network.

The definition does not imply some specific type of network, such as a costly
dedicated storage network which must be capable of transporting masses of IO
operations in realtime. In general, we are free to use other types of networks, such as
cheaper replication networks, which need not be dimensioned for realtime IO traffic,
but are sufficient for background data migration, and even over long distances,
where any network has some bottlenecks. Requirement (4) is even suggesting that
costly realtime requirements are not needed everywhere. See also section Kirchhoff’s
Law: Suitability of Storage Networks.

Often, there are restrictions from technology. Not every architecture as
discussed in this guide can be easily implemented via a certain technology. Example:
when a so-called Vendor Lock-In is binding you to to a certain brand of commercial
storage boxes, certain opportunities will be missed. By going to self-built and self-
administered RAID storage, typically an invest factor between 3 and 10 can be saved
(see section Cost Arguments from Technology). On top of this, about another factor of 2
is possible, about halving your total hardware invest, by use of Linux-based local storage
+ Football in place of network-based commercial storage, provided it is possible for your
use case. See sections Proprietary vs OpenSource and Local vs Centralized Storage.

The definition says nothing concrete about the time scale of operations, except (4)
which is explicitly permitting a relatively coarse timescale for replicas. We are explicitly
encouraged to implement certain operations, such as background data migration, in

34

3.2. Architectural Properties of Cloud Storage

a rather long timescale (from a human point of view). This bears an opportunity for
major cost reduction (see relaxation of realtime requirements in section Kirchhoff’s
Law: Suitability of Storage Networks), as well as improving reliability by decreasing
dependencies from (hidden) SPOFsc = Single Points Of Failure.
aFrom (4) it becomes clear that failover in realtime to a strictly consistent replica is explicitly not

requested. Requiring suchalike in addition would lead to a contradiction with the above definition.
This extends to eventually consistent. Even when respecting the CAP theorem (see section Expla-
nation via CAP Theorem) by prefering A in front of C, realtime requirements for failover to an old
version / replica are not implied. A realtime interpretation of A simply does not make sense in the
presence of (3) and (4). In order to remain honest and fair, the timescale requirements for achieving
A must not artificially tightened stronger than those implied by (4).

bDistribution is mentioned in requirements (1) and (2). According to the CAP theorem and its sister
theorems, distribution is even an antagonist to realtime requirements.

cSeveral people appear to work with the assumption that networks are available all the time. Although
minor network outages can be compensated very well, there remains a residual risk for a major
outage, similar to what happened in Fukushima. Thus such an attitude can endanger both companies
and carreers.

Example 3.1: In-Datacenter storage network failures

It is clear that a failure of a classical storage network will halt all services depending on
it. Some people believe that realtime storage networks cannot be avoided, in order to
react at varying load situations, and are running much faster due to load distribution.
This is not the full picture:

1. Football plus FlexibleSharding can achieve a similar level of elasticity.

Example 3.2: Long-distance replication network failures

Football on top of MARS for background LV migration over both short
and geo-distances. When the replication network is down, it will just pause
for a while, and MARS will automatically resume once the network is up
again. Football can be configured to also resume the higher-level migration
process, when necessary.

2. Load distribution is essentially nothing else but a variant of data striping. If
you really need it for performance reasons, you can often do similarly with certain
types of local RAID, such as RAID-10 or RAID-60, and with a variety of RAID
parameters. Notice that any kind of data striping, whether at block level or at
object level, is coming with some costa.

3. LocalStorage is even faster (when using a comparable technology yielding the same
size), because IO does not involve any dedicated storage network at all. Therefore,
it is also more reliable (when using comparable technology). See also section
Kirchhoff’s Law: Suitability of Storage Networks.

4. Reorg tasks: these can occur in all top-level architectures. In general, not all op-
erations can run in realtime, by construction. For example, increasing the number
of replicas in an operational Ceph cluster, already containing a few hundreds of
terabytes of data, will not only require additional storage hardware, but will also
take a rather long time, implied by the very nature of bigger reorganisational tasks.

aFor a given redundancy degree k, reliability is reduced by striping. In case of RAID, this is
well-known since decades. Unfortunately, in case of BigCluster some misleading “propaganda” was
blurring the public opinion for many years. Notice that the BigCluster analysis in section Detailed
Explanation of BigCluster Reliability is showing up some parallels to the well-known reliability loss
caused by RAID striping, when some granularity differences (block vs object level etc) are ignored.

When geo-redundancy = some minimum distance between datacenters for survial of

35

3. Architectural Principles and Properties

geo-disasters like earthquakes or floods is added to (2) as an additional requirement (see
also section What is Geo-Redundancy), some further consequences will arise. For example,
the German government authority BSI recommends a minimum distance of 200 km between
datacenters for critical infrastructures1. Over suchalike distances, realtime storage networks
cannot be used anymore in general. Thus some kind of “migration” of data over long distances
will be needed anyway.

Manager Hint 3.5:

Since data migration is needed anyway over long distances, there is an opportunity
for saving cost and increasing reliabilty + flexibility all at the same time.

Manager Hint 3.6:

Basic idea behind Football on top of a Sharding model: minimize the distances
between your storage spindles and the corresponding data processing.
When background data migration is automated properly, real-time storage networks can
become superfluous, or at least the corresponding realtime IO traffic can be drastically
reduced.
When minimization is well dimensioned, a pair of storage + application server residing
in the same geo-location can be collapsed into a single box. This is not only amajor
cost reducer, it also improves reliability because there are less components which
can fail.

Manager Hint 3.7:

Unfortunately, this opportunity is easily missed if both system architects and
responsible managers are just requiring only DR = Disaster Recovery over long distances,
instead of requiring the ability for butterfly (see section Flexibility of Handover /
Failover Granularities).

Details 3.2:

Essentially, suchalike minimum requirements can be easily interpreted as “everything
has to be doubled” in order to survive any geo-disastera. This would double cost in
comparison to certain kinds of fully locally redundant architectures, missing the oppor-
tunity for splitting much of the overall redundancy into two geo-locations, instead of
doubling virtually everything.

Some people are arguing that doubling were unavoidable, which is incorrect in
general, as Football can demonstrate as a positive counter-example. See section Cost
Arguments from Architecture.

Counter-productive cost arguments are sometimes heard when geo-redundancy is
discussed about, without considering newer possibilities such as Football. As explained
in section Flexibility of Handover / Failover Granularities, the granularity of failover
should not be required as a coarse failover of a full datacenter, but explicitly be
required as fine-grained cross-geo failover + handover at VM level, or at a
similar granularity (c.f. section Granularity at Architecture). This will force people

1See https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_
HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5

Some press comments on this: https://www.it-finanzmagazin.de/
bsi-rechenzentren-entfernung-bafin-84078/

36

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Standort-Kriterien_HV-RZ/Standort-Kriterien_HV-RZ.pdf?__blob=publicationFile&v=5
https://www.it-finanzmagazin.de/bsi-rechenzentren-entfernung-bafin-84078/
https://www.it-finanzmagazin.de/bsi-rechenzentren-entfernung-bafin-84078/

3.2. Architectural Properties of Cloud Storage

to think about wide-area distribution of resources instead of plainly doubling them
(once againb).
aA geo-disaster like an earthquake will typically last for weeks, if not months, until it is fully repaired.

During such a period, a single surviving datacenter must be capable of providing “good enough”
SLAs. These disaster-SLAs can be lower than usual. For example, in place of an ordinary 99.98%
availability, 98% may be a sufficient target during such a geo-disaster. By unnecessarily requiring
much more during a very rare corner case, you can easily explode the cost, even beyond doubling,
without reasonable benefit during ordinary operations.

bExample: commercial storage boxes from NetApp, IBM, etc already have some local redundancy,
typically doubling the amount of physical disks you are actually buying when you buy a single
storage box. Typically, the amount of physical disks is not directly reported as a KPI, although it
is major cost producer. When introducing geo-replication, you will likely need to buy double the
number of boxes, resulting in a total of about 4x the capacity at the physical layer. In contrast,
MARS + Football can often be built on top of local RAID-6. As pointed out in section Cost
Arguments from Architecture, this leads to only about 2.2x the physical capacity you will need to
buy. In addition, the rackspace is much lower when using local storage, reducing the number of
servers to deploy and administer, and reducing networking cost by omission of dedicated storage
networks.

Manager Hint 3.8:

Important keyword for flexible cross-geo distribution: ability for butterfly, see
section Flexibility of Handover / Failover Granularities.

There is a tradeoff between the effort for implementation of per-VM flexibility, and
hardware cost savings. Sometimes arguments are heard that a high level of flexibility would be
too costly. Although this might be true in some relatively small corner cases, the picture can
rapidly change when thousands of servers and/or petabytes or storage are involved.

Manager Hint 3.9:

Doubling the overall cost for big datacenters instead of intelligently geo-distributing
resources, is likely much more cost intensive in the long term than investing once into
intelligent abilities of the company like Football, which can then scale up (more
details see section Scalability Arguments from Architecture).

As a consequence from sufficiently fine-grained handover + failover, the above definition
of cloud storage can be met at geo-datacenter level, i.e. the distributed resources according
to (1) will be distributed over multiple geo-redundant locations / datacenters. As pointed out
in section Cost Arguments, sometimes this may be even cheaper than building certain types of
local redundancy inside the same datacenter.

Details 3.3:

The famous CAP theorem (see section Explanation via CAP Theorem) is one of
the motivations behind requirement (4) “eventually consistent”. This is not an accident.
There is a reason for it, although it is not a hard requirement.
Strict consistency is not needed for some applications running on top of cloud stor-
age, e.g. less crucial application data. In addition, the CAP theorem and some other
theorems cited at https://en.wikipedia.org/wiki/CAP_theorem are telling us that
Strict Consistency would be difficult and expensive to achieve at global level in a big
and/or long-distance Distributed System, and at the cost of other properties. However,
classical local Unix or Linux filesystems have already implemented Strict Consistency
(aka POSIX semantics), more of less for free. More detailed explanations are in section
Explanation via CAP Theorem.

37

https://en.wikipedia.org/wiki/CAP_theorem

3. Architectural Principles and Properties

3.3. Suitability of Architectures for Cloud Storage

Details 3.4:

There are some consequences from the above definition of Cloud Storage (see section
Architectural Properties of Cloud Storage), for each of our high-level storage architec-
tures:

Distributed Storage, in particular BigCluster architectures (see section Distributed
vs Local: Scalability Arguments from Architecture): many of them (with few
exceptions) are conforming to all of these requirements. Typical granularity are
objects, or chunks, or other relatively small units of data.

Distributed Storage is the growground where Cloud Storage was invented.

Many contemporary BigCluster implementations are not really supporting
geo-distribution of masses of objects over long distances, in the sense of well-
proven use cases (maturity). Small object granularity and/or strict consistency
on top of unreliable objects are worsening the effects of the CAP theorem and its
sister theorems. Thus object-based architectures are typically only suited for local
(non-geo) operations.
Example: at the moment (mid 2019), Amazon AWS is offering object replication
only over campus distances, which cannot meet the requirements from BSI.

Centralized Storage: does not conform to (1) and to (4) by definitiona. By introduction
of synchronous or asynchronous replication, it can be made to almost conform, ex-
cept for (1) where some concept mismatches remain (probably resolvable by going
to a RemoteSharding model on top of CentralStorage, where CentralStorage is
only a sub-component). Typical granularity is replication of whole internal storage
pools, or of filesystem instances.

In general, CentralStorage architectures are a mismatch to Cloud Stor-
age, by their very nature. Healing suchalike concept mismatches may be close to
impossible, or at least very tricky and costly.

Adding asynchronous replication to commercial storage boxes will not only
double the cost, which are anyway at a very high starting level (see section Cost
Arguments from Technology). In addition, the handover granularity (see sec-
tion Flexibility of Handover / Failover Granularities) may not meet the optimum.

LocalStorage, and some further models like RemoteSharding (see section Variants of
Sharding)
There is some historical belief that cloud storage cannot be reasonably built on
top of them. When newer developments and opportunities are taken into account,
this has changed. Here are some examples, mentioning some example components:

(1) can be achieved at LV granularity with Football (see
football-user-manual.pdf), which creates a Big Virtual LVM Pool.
Football is in mass production at 1&1 Ionos since August 2018.

(2) can be achieved at disk granularity with local RAID, and at LV granularity
with DRBD or MARS. Both are in mass production since several years.

(3) can be achieved at LV granularity with LVM snapshots, and/or ZFS (or other
filesystem) snapshots, and/or above filesystem layer by addition of classical
backup.

(4) at least Eventually Consistent or better can be alternatively achieved by
one of the components

38

3.3. Suitability of Architectures for Cloud Storage

(4a) DRBD, which provides Strict Consistency during connected state,
but works only reliably with passive crossover cables over short dis-
tances (see CAP theorem in section Explanation via CAP Theorem).

DRBD violates any type of consistency within your replicas dur-
ing (automatic) re-sync, and thus does not fully comply with the above
definition of cloud storage in a strong sense. You may argue at a coarse
time granularity scale in order to “fix” this.

(4b) MARS, which works over long distances and provides two different
consistency guarantees at different levels, both at the same time:

locally: Strict Consistency at local LV granularity, also within each
of the LV replicas.

globally: Eventually Consistent between different LV replicas (global
level).
The CAP theorem (see section Explanation via CAP Theorem) says
that Strict Consistency is not possible in general at unplanned
failover during long-distance network outages (P = Partitioning Tol-
erance), when A = Availability is also a requirement.

However, in case of a planned handover, MARS is also Strictly
Consistent at a global level, but may need some extra time for catch-
ing up.
Notice: global Strict Consistency is also possible at a coarse
timescale, in accordance with the CAP theorem, if you decide to
sacrifice A = Availability during such a network incident by simply
not executing a failover action. Just wait until the network outage is
gone, and MARS will automatically resumeb everything ASAP, and
thus you are using MARS only as a protection against fatal storage
failures / unplanned disasters.
Notice: A = Availability is not generally required by the above def-
inition of cloud storage, because from a user’s perspective it would
not generally make sense in the global internet where connection loss
may anyway occur at any time. Thus it is a valid operational strat-
egy to not fail-over your LVs during certain minor, or even during
certain types of major network outages (e.g. when failover would not
improve much).
Notice: long-term disaster tolerance (e.g. perpetual loss of some
storage nodes during an earthquake) is not modeled by the CAP
theorem, but is more or less required by (2) and (3) from the above
definition of cloud storage.

BigCluster architectures are creating virtual storage pools out of physically dis-
tributed storage servers. For fairness reasons, creation of a big virtual LVM pool, must
be considered as another valid Cloud Storage model, matching the above definition of
Cloud Storage. The main architectural difference is (1) granularity, as explained in
section Granularity at Architecture, and (2) the stacking order of sub-components
(cf. section Layering Rules and their Importance).
aNotice that sharding on top of CentralStorage is no longer a CentralStorage model by definition, but

a RemoteSharding model according to section Variants of Sharding.
bThis automatic MARS behaviour is similar to the behaviour of DRBD in such situations, when DBRD
can automatically go to disconnected-like state, and you are later manually or automatically resum-
ing the DRBD connection for an incremental re-sync. MARS does everything automatically because
it has no firmly built-in assumptions about the actual duration of any network communication.

39

3. Architectural Principles and Properties

Football is creating location transparency inside of the distributed virtual LVM pool.
This is an important (though not always required) basic property of any type of clusters and/or
grids.

3.4. Kirchhoff’s Law: Suitability of Storage Networks
When storage networks are used at certain architectures, they will have some impact which is
widely under-estimated. Disregarding this impact can lead to serious problems, up to major
project failures, and may induce high cost for problem compensation.
The most important fundamental law for any type of network is Kirchhoff’s first law

(see https://en.wikipedia.org/wiki/Kirchhoff’s_circuit_laws), shortly called Kirch-
hoff’s law. It does not only hold in electrical engineering, but also in information theory,
and in computer networking2.

The sum of all actually successful3 ingoing data flows into an abitrary sub-network,
or into a single network compenent (e.g. a router or a switch) equals the sum of all
actually outgoing traffic flows.

For simplicity, the following graphics shows only one way of an actual full-duplex data flow:

15 MBit/s

20 MBit/s

20 MBit/s

10 MBit/s

15 MBit/s

(Sub−)

Network

Kirchhoff’s law is a very universal natural law. It holds in many places at the same time.
It is not only valid for each and every single network switch and/or router (independently from
each other), but also for complete sub-networks, and even approximately for the internet as a
whole.

Example 3.3: Datacenter Coupling of 2,000 Servers each

Typical servers have uplinks with a capacity of 10 GBit/s. For coupling of 2,000 servers
in datacenter A with another 2,000 servers in datacenter B, such that anyone can (at
least potentially) talk to anyone else, a lot of intermediate switches and backbone wires
are needed. Typically, backbones and datacenter interconnects are built with 100 GBit/s
technology. The following graphics displays the wire capacities:

.
.
.

2000 * 10 GBit/s

.
.
.

2000 * 10 GBit/s2 * 100 GBit/sDatacenter A Datacenter B

Notice: 2,000 uplinks with a capacity of 10 GBit/s each are summing up to a total
uplink capacity of 20,000 GBit/s, which is bigger than the backbone capacity of 200

2In strong sense, Kirchhoff’s law is only valid when there is no internal traffic between network switches /
routers, and between internal and external nodes. In practice, ICMP and similar traffic is very low, typically
only a few percent or permille (as long as there are no major misconfigurations or attacks). Therefore, we
can neglect these special cases and treat Kirchhoff’s law as approximately valid.

3In the presence of low-level communication errors or packet loss, there may be some unsuccessful traffic, which
need not obey Kirchhoff’s law. However, these flows do not contribute to the overall functionality provided
by the network. Thus they can be ignored in this high-level architectural consideration.

40

https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

3.4. Kirchhoff’s Law: Suitability of Storage Networks

GBit/s by a factor of 100. Now Kirchhoff’s law comes into play: the actual data flow is
limited to 200 GBit/s, due to the bottleneck inbetween the two datacenters.
In other words, the Network Overprovisioning Factor = NOF is 20,000 / 200 =
100 in this examplea.

A network bottleneck with a ratio of 1:100 means: if only 1% of the servers would
be sending data with full speed, the whole network would be already at its limits.

In practice, network traffic is almost never equally distributed, but varies heavily
over time. Timely bursts are occurring regularly, flooding their respective uplinks.
If such bursts are occurring at only 1% of the servers, queueing theory (see https:
//en.wikipedia.org/wiki/Queueing_theory) will come into play: somewhere in the
overall system, spontanous queues will start to form.

Queueing theory says that any queue will grow indefinitely whenever the arrival
rate λ is permanently higher than the departure rate µ. During permanent overload,
this is approximatelyb the case. As a consequence from those spontanous queues forming
anywhere in the complex system, network latencies will rise up. Example, observed in
practice: depending on the number of machines causing traffic jam by overload, iSCSI
latencies may climb up from tenths of milliseconds, sometimes up to several seconds
(measured with blktrace and visualized with blkreplay).
This is also called jitter (see https://en.wikipedia.org/wiki/Jitter), or PDV =
Packet Delay Variation.

iSCSI and similar TCP-based protocols are known for over-reacting on jitter
produced by spontanous queues, since their internal queueing discipline is FIFO-like.
Result of too high latencies / jitter: customers will be dissatisfied with their application
behaviour.

Often a “rescue” comes from the application burst behaviour: when bursts are
relatively short with respect to pauses between bursts, the resulting latencies may be
less disturbing, because the queues will get a chance to drain. However, the network will
depend on the application behaviour, and thus will become flaky = unreliable
in general. When it “appears to work”, you are just in good luck. Since application
behaviour is non-predictable in general, your luck may change at any time, forming a
risk from a management perspective.

In general, a network dimensioned with NOF � 1 is not capable of carrying
realtime traffic. Consequently, storage networks must not be built in such a way.
aIn general, the NOF must be computed for each pair of (sender,receiver). Only in very symmetric

corner cases, like explained here for didactic reasons, the NOF is globally unique.
bIn practice, queues are limited, and congestion control algorithms will also limit their length (see
TCP window sizes etc).

Many network protocols from the storage area, like iSCSI, NFS, glusterfs, etc, are heavily
reacting at PDV / jitter produced by spontanous queues. Notice that Kirchhoff’s law is the
real reason behind the observation that these protocols are often working over point-to-point
connections (e.g. crossover cables) where NOF=1, but often show up some problems in complex
networks when NOF � 1.

Example 3.4: NOF of a Storage Network

In the following example, we assume to have a dedicated storage network, interconnecting
200 clients to a high-speed storage server. This time, Kirchhoff’s law tells us that the
network overprovisioning factor is “only” NOF = 10:

41

https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Jitter

3. Architectural Principles and Properties

.
.
.

200 * 10 GBit/s 2 * 100 GBit/sStorage Network High

Disk

Speed

Now the question is: is this type of network capable of realtime IO traffic? Will this
storage network be reliable?

There is a clear answer: NO. With an overprovisioning factor of 10, it is possible to
overload the storage network by forming spontanous queues, for example when more than
10% of all servers are reading or writing big chunks of data. Suchalike can happen very
easily, for example when masses of page cache data are dirtified in a very short time in
the Linux kernel. See the example story in section Example Failures of Scalability where
customers pressing the “save” button were inducing spontanous page cache dirtifications
in masses. Another possibility are databases with a huge number of transaction commits
running in parallel. Although each single commit may involve a relatively low number of
IOs, huge masses of them may also lead to network congestion during peaks. Database
administrators will confirm that commits are very sensitive to PDV / jitter.

The only reliable way to achieve realtime capabilities in a storage network would
be lowering the overprovisioning factor down to NOF ≈ 1.

Except when using crossover cables rack-to-rack, this would make the storage
network very expensive, as soon as some hundreds or thousands of servers need to be
coupled with storage boxes over a routed network.

Details 3.5: Pitfalls: VLANS and ROCEv2 and Spine-Leaf Architectures

As mentioned in this guide at several places, realtime storage networks should always
be built as physically separate networks, in order to lower the NOF as much as
possible. Here are some common pitfalls which may easily turn out counter-productive:

1. VLANs and other methods for network virtualization are a method for isola-
tion of multiple sources of traffic from each other. As a result, realtime storage
network traffic can be non-functionally disturbed by other traffic, as soon as they
are sharing some physical resources. Unfortunately, (internal) customers cannot
see the reasons for this, because the virtual network structures are isolating them
from each other functionally, although the disturbance is at non-functional level.

As said: realtime storage networks should always be built as physically sep-
arate networks, each by each, and over shortest possible physical distances.
Their NOF should be as low as possible. Consequently, VLANS are not necessary,
since there would be an 1:1 ratio between virtual and physical LANs.

2. At the moment (2020), a hype cycle is starting with new network protocols like
ROCEv2 claiming (or at least psychologically suggesting) that they would be able
to guarantee predictable / realtime behaviour over conventional IP networks. Do
not believe in such hypes. Kirchhoff’s law is a natural law, which is stronger than
any human-made hype. Notice that Kirchhoff’s law does not depend on details
of traffic congestion control, whether packet loss can be observed somewhere, or
whether it cannot be observed anymore because congestion control is hiding the
effect. ROCE and siblings should get their chance to demonstrate their merits in

42

3.4. Kirchhoff’s Law: Suitability of Storage Networks

reducing packet loss overhead, caused by classical IPv4 congestion control algo-
rithms (by shifting congestion control down in the OSI reference model to some
lower layers). However, these new protocols cannot work miracles with respect
to Kirchhoff’s law.

3. Notice that the NOF is a relative measure. It does not change, for example when
you upgrade your uplinks from old-style 1 GBit/s to contemporary 10 GBit/s and
also upgrade your switches and bockbones from old-style 10 GBit/s to contempo-
rary 100 GBit/s, while keeping all other parameters like numbers of servers etc.
Intuitive explanation: by increasing the total uplink capacity, you are also increas-
ing competition. Not only your server, but all of your neighbor servers can also
grasp more network bandwidth, thus competing at the upgraded backbone in a
similar way than before.

4. Network topologies (see https://en.wikipedia.org/wiki/Network_
topology) can have a tremendous impact onto the NOF. For example, star-ring
hybrida topologies or generalizations like spine-leaf topologies and many other
models are used for avoiding the hardware cost of a full mesh O(n2) network,
when n servers are interconnected with each other such that anyone can (at
least potentially) talk to anyone else (see also section Scalability Arguments from
Architecture). The idea is to use only a small number of parallel spines, for
reduction of O(n2) hardware cost. However, such topologies increase the risk of
producing indirect cost in a different dimension: they tend to worsen the NOF by
asymmetryb in the actual load distribution, such that spontanous bottlenecks
may arise unexpectedly.

aClassical star topologies have a central hub, which can easily become a bottleneck in itself. In general,
its internal “collapsed backbone” bandwidth must also be considered when computing the NOF. This
also applies to generalizations like spine-leaf topologies.

bExample: spine-leaf wires look symmetric on paper. However, the servers are typically attached to
the network in clusters or in other types of local aggregates. When the leafs are interconnected via
a ring-like bus structure, different segments of the bus-like wheel may be loaded differently. This is
like a bicycle wheel, where some external weights are non-centrically attached onto the spines in an
asymmetric manner. In a network, this may easily create hot spots in the space dimension, which
come on top of the timely load peaks mentioned above.

Details 3.6: Varieties of NOF

It must be stressed that there exists no global NOF limit for all types of applications
and workloads and networks. Here is an extreme example where a rather huge NOF can
be tolerated in practice:

.
.
.

.
.
.

2000 * 10 GBit/s2 * 100 GBit/s

Internet Backbone

(WAN via Internet Xchange)

Mobile Network

Global
Datacenter Network

Service Provider

2,000,000,000 * 0.001 GBit/s

Although each single cellphone has a rather low data rate (1 MBit in this example), there
are huge numbers of them spread over the world. In this example, we have 2 billions of
them, leading to a grand total uplink capacity of 2,000,000 GBit/s. By assuming that
the internet backbone would be totally dedicated to this type of application (no other
shareda traffic occurring there), the NOF would be 2,000,000 / 200 = 10,000. Although
this is a really huge overbooking, it does typically work in practice (as long as no DDOS
attacks from bot nets are mixing up the scene). Why aren’t there similar problems in
practice than with the above storage network example?

The key point is: smartphone users do not expect realtime behaviour. The latencies

43

https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_topology

3. Architectural Principles and Properties

in their local radio networks are anyway in the range of 100ms, sometimes up to seconds,
e.g. when the radio signal strength is bad. Mobile users are adapted to such mobile
network behaviour, without complaining in huge masses. Thus, adding a few more ms
latency produced by the internet backbone and/or by the datacenter network will not
make a big difference to them. They are humans, where an additional latency of 100ms
or more can be tolerated, since reading and understanding the web pages will take even
longer.

In contrast, a NOF of 10,000 would be completely unbearable in a loaded pro-
duction realtime storage network. This is a striking example that realtime requirements
versus non-realtime requirements can make a huge difference, requiring totally different
technical means / solutions.
aBy assuming that the shared backbone lines are occupied by 10%, the effective backbone bandwidth

would drop to 20 GBit/s. As a result, the NOF would rise to 100,000 in this example.

Storage networks are typically carrying realtime traffic. For them, low NOF values are
a must, otherwise PDV / jitter may easily grow too high. In some cases, like attempts to deliver
full SSD performance to external customers, the NOF requirements might be even lower
than 1. Notice that NFS or iSCSI workloads may have a high internal parallelism degree,
even for a single customer (see some captured real-life workloads from www.blkreplay.org).
Queueing theory suggests that a NOF of 0.7 or lower might be required in order to make the
performance impact of a non-local storage network “invisible”.

In addition to throughput requirements, the NOF is a major influence factor at the
price tag of a storage network. When mixing realtime traffic with ordinary bulk network
traffic, you will pay the low NOF also for the ordinary traffic part. This may easily lead to
another cost increase, or the PDV / jitter could grow higher than expected. Therefore, do not
mix realtime traffic with ordinary traffic.

Details 3.7: Workarounds against PDV / Jitter in Storage Networks

Here are some countermeasures, in descending order of effectiveness, specifically for
storage networks:

1. Simply avoid realtime traffic over IP-based networks (and other types of non-
realtime capable networks). For example, use MARS + Football on LocalStorage.
Do not use realtime traffic requesters like NFS or iSCSI or DRBD etc.

2. Do not build monolithic network topologies / structures, and avoid traf-
fic sharing. Storage networks, when unavoidable, should always be built as a
multitude of dedicated and small (local) islands, according to the sharding
principle (see section Definition of Sharding).

3. Check whether there is traffic whose timely behaviour can be improved. For ex-
ample, do not start nightly backups all in parallel and all at the same time, but
smear them over a larger time window.

4. Check whether upgrading of outdated network technology to a contemporary stage
may help for improving the NOF. Also, changing the network topology in the right
direction might help if you know what you are doing.

Blindly upgrading hardware, or “throwing with hardware”, has never been
a good strategy. First check whether other measures mentioned earlier can do it
not only much cheaper, but also much better.

5. Do not over-estimate the potential of network scheduling. You may try better

44

www.blkreplay.org

3.4. Kirchhoff’s Law: Suitability of Storage Networks

congestion control algorithms (e.g. try ROCEv2 whether it really helps), and/or
use classical traffic shaping with an appropriate classification of realtime traf-
fic. However notice: Kirchhoff’s law cannot be circumvented. Whenever you are
improving the PDV / Jitter of one traffic class somewhere via packet scheduling,
you will necessarily worsen the PDV of another traffic class at the same place.

Details 3.8: Potential Benefits of Network Packet Scheduling

Here is a schematic explanation of the zones where scheduling (in general) can improve
things. It also holds for the special case of network packet scheduling for a given storage
network:

������
������
������

������
������
������

���������
���������
���������

���������
���������
���������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

����
����
����

����
����
����

overloadcongestion
threshold threshold

0%

zone zone zone zone

nobrainer dangerous incident inoperable

100%
loaded

actual incident threshold

relative load

1. As long as the congestion threshold is not exceeded, you typically won’t need a
sophisticated scheduling algorithm. Practically any type of (reasonable) schedul-
ing will do it, even FIFO. Simply because there is nothing relevant which needsa
to be scheduled. By definition of the so-called “nobrainer zone”, congestion is so
low that the effort for implementation of a sophisticated scheduling algorithm and
its supporting infrastructure will not pay off. In general, the congestion threshold
depends on the application and its requirements. When hard realtime behaviour
would be required, the threshold might be very low, e.g. at 10% or less. For ordi-
nary non-realtime applications with a well-behaving distribution function, classical
queuing theory as well as practical experiences are suggesting that the congestion
threshold may be around 30%. Sometimes even 50% or more is bearable (see the
above example characterization of requirements for mobile phone users).

2. Next comes the overload threshold. It is characterized by a simple property: once
it is exceeded, even the very best scheduling algorithm in this universe (which
would be able to predict the futureb) will not be able to help anymore. For
ordinary non-critical workloads, queueing theory predicts that this point is around
70%. For realtime-critical workloads heavily reacting onto PDV, it may be how-
ever much lower.

The yellow zone is the only one where scheduling can be beneficial. Improve-
ments by better scheduling algorithms will not change the size of the zone, but
will move the actual incident threshold a little bit rightwards. Depending on the
concrete use case, the size of the yellow zone may be big, or rather small. In
general, its size may depend on further factors like the inherent parallelism degree
of the application workload, and on further factors mentioned in section Influence
Factors at Scalability.

Warning: in some corner cases, the size of this zone might be even near zero.
Do not invest huge amounts of money into scheduling unless you have determined
its size ≈ potential in advance.

3. The incident zone is characterized by the queuing behaviour, where queues and

45

3. Architectural Principles and Properties

their effects are dominating the scene. Scheduling cannot help here much more,
the system is simply overloaded too much.

4. The last zone is easy to understand: you cannot permanently povide less resources
to your applications in weighted average than is necessary for providing the service
/ its SLA.

Notice: this looks like a rather static model. In practice, DDOS attacks and
other dynamic runtime behaviour, such as PDV peaks resulting from a high NOF, may
completely change the game. Thus the graphics has to be interpreted as a dynamic one.
The point “100% loaded” must not be determined according to unweighted average be-
haviour, but according to your concrete SLAs applied to your concrete load distribution,
or approximately due to near-worst-casec behaviour.

When your input application workload (as such) has some load peaks which are
higher than the average load by several orders of magnitude, scheduling will typically
not help much more. Typical iSCSI workloads from external customers are behaving
like this (e.g. when many of them are starting their nightly backups around the same
time, and it is not prevented by contract plus some governance). In simplest case, load
peaks may result from reboots with cold caches. Your complex shared storage network
needs to be dimensioned according to the load peaks, in order to prevent a few “pig
customers” or a DDOS attack from missing your SLAs, or from tearing down masses
of ordinary customers. This means expensive over-engineering by factors. In the
context of factors by orders of magnitude, the relative size of the yellow zone does not
play a big role anymore. Your money pocket needs to be deep anyway.

Do not trust some frequently heard arguments, claiming that you just would
need huge masses of customers, then the total load distribution would become smooth.
This need not apply to peaks. As observed at ShaHoLin, where several thousands of
customers are concentrated onto each LXC container, the average IOPS demand of a
container is around 70, while load peaks can easily go up to several thousands of IOPS.
This is about 2 orders of magnitude.

ShaHoLin’s storage doesn’t suffer from Kirchhoff’s law and all the other problems
discussed in this section, since it uses LocalStorage. Load balancing is done via MARS
+ Football, which has no realtime requirements onto the network.

Typical real-life timely load distributions aren’t purely Gaussian or Markov. They
are a mixture of many influences. Among them is Zipf’s law, which means exponential
distribution within some boundaries.

Of course, you might artificially limit your customer’s IOPS in such a way that
expensive over-engineering is avoided. But then you have given up the above goal of high
performance, and in some sense you have relaxed the “realtime requirements” onto your
storage network. Consequently, you shouldn’t buy expensive SSDs anymore in massesd.
aNotice: packet scheduling makes only sense when there currently is a spontanous queue. When no

queue has formed at a certain point in time, no elaborate scheduling decision is necessary at all:
whenever a packet arrives, just serve it directly without delay.

bThere are academic papers on realtime scheduling with pre-assumptions on predictability, such that
solutions exist where the overload theshold is near 100%. I have never seen such a case in practice,
at least not in the area of storage networks. In practice, details of application behaviour timings are
not predictable.

cCaution TCO waste: blindly taking worst-case behaviour in place of well-defined SLAs is a major
pitfall. When peak behaviour is spanning a few orders of magnitude (e.g. exponentinal distributions
according to Zipf’s law), and when there are no well-defined SLAs such that extreme but short peaks
can be ignored, TCO may be worsened by factors due to over-engineering.

46

3.5. Layering Rules and their Importance

dThis may be a TCO pitfall. Some people are apparently using SSDs for compensation of a fraction
of problems, which are most likely caused by their high-NOF storage network.

Manager Hint 3.10: Advice on Storage Networks

For each type of application workload behaviour, the storage network overprovi-
sioning factor NOF is an important key parameter, following from Kirchhoff’s law.
When it grows too high for a certain use case, the incident rate will grow.

Depending on storage network topology, low NOF can turn out very expensive.
Do not neglect its influence at business cases!

Do not build monolithic storage networks. Never build a storage network as a
non-dedicated / shared network. Never mix realtime storage IO traffic with ordinary
traffic, because it would induce a risk that both traffic types can disturb each other.
Never use VLANs or similar network virtualization techniques for storage networks,
which can easily create such a traffic-type mix on the physical wires.

This guide shows you a solution: how to get rid of realtime-capable storage
networks at all. Load balancing via background data migration (e.g. using Football)
does neither require realtime IO behaviour, nor does it require a dedicated storage
network. In addition, background data migration traffic is VLAN / spine-leaf friendly
and can be combined with traffic shaping.

3.5. Layering Rules and their Importance
Complex systems are composed of several layers. In this section, we will learn how to organize
them (close to) optimally.

Manager Hint 3.11:

Non-optimal layering is a major cause of financial losses, decreased reliability
/ increased risk, worse scalability, etc.

Well-designed systems can be recognized as roughly following Dijkstra’s famous layering rules,
originating from his pioneer THE project. Wikipedia article https://en.wikipedia.org/
wiki/THE_multiprogramming_system is mentioning an important principle behind Dijkstra’s
layers, in section “Design”:

higher layers only depend on lower layers

The original article http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF resp
https://dl.acm.org/citation.cfm?doid=363095.363143 contains very interesting informa-
tion, and is a highly recommended reading. The introduction and the progress report is relevant
for today’s managers, optionally the “design experience”, and certainly the conclusions. The
section “System hierarchy” is relevant for today’s system architects, while the rest is mostly of
historical interest for OS and kernel specialists. Reading the relevant parts after more than
50 years is extremely well-invested time. Dijkstra provides solutions for invariant problems
which are facing us today with the same boring ignorance, even after 50 years. The heart of
his conclusions is timeless.
Dijkstra’s methodology has been intensively discussed4 by the scientific OS community, and

has been generalized in various ways to what folklore calls “Dijkstra’s layering rules”. Here is a
condensed summary of its essence:
4An important contribution is from Haberman, by clarifying that there exist serveral types of hierarchies.

47

https://en.wikipedia.org/wiki/THE_multiprogramming_system
https://en.wikipedia.org/wiki/THE_multiprogramming_system
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF
https://dl.acm.org/citation.cfm?doid=363095.363143

3. Architectural Principles and Properties

• Layers should be viewed as abstractions.

• Higher layers should only depend on lower layers.

• Each layer should add some new functionality.

• Trivial conclusion by reversing this: Regressions should be avoided. A regression is
when some functionality is lost at a higher layer, although it was present at a lower layer.

This sounds very simple. However, on a closer look, there are numerous violations of
these rules in modern system designs. Some examples will follow in the next subsections.

The term “functionality” is very abstract, and deliberately not very specific5. It is inde-
pendent from any implementations, programming languages, or programming / user interfaces,
or other matters of representation.

The same functionality may be accessible viamultiple different interfaces. Thus a different
interface does not imply that functionality is (fundamentally) different.

Nevertheless, people are often confusing functionality with interfaces. They think that
a different interface must provide a different functionality. As explained, this is not correct in
general.

Manager Hint 3.12: Pitfalls from Confusion of “Excellent Slides” with Reality

Confusion of interfaces with functionality can be exploited by so-called marketing
drones and other types of advertising (e.g. aquisition of venture capital), in order to
open your money pocket.

As a responsible manager, you should always check the functionality behind a
certain product and its interfaces: what is really behind the scenes?

For enterprise-critical “marketing slides” & co: checks of abstract functionality
aren’t enough in many cases. Find the right experts for additional checks of the real
functionality (for existing and/or future implementations / hardware / etc).

3.5.1. Negative Example: object store implementations mis-used as
backend for block devices / directory or pointer structures /
POSIX filesystems

Several object store implementations have two or more high-level layers, each possibly decom-
posable into several sub-layers.

Manager Hint 3.13: Pitfalls from Disregarding Nested Sub-Layers

Simple slides can be produced when the top layers are small and look “easy”, but
the real functionality is hidden in nested sub-layers.

At least the high-level layers of object stores are typically following the client-server paradigm,
where servers and clients are interconnected via some O(n2) storage network (see section Dis-
tributed vs Local: Scalability Arguments from Architecture).

5Elder schools of software engineering know that design processes must necessarily start with unspecific
terms, in order to start to bridge the so-called semantic gap.

48

3.5. Layering Rules and their Importance

We start by looking at the internal architecture of certain OSD = Object Storage Device (see
https://en.wikipedia.org/wiki/Object_storage) implementations. Some publications are
treating them more or less as black boxes (e.g. as abstract interfaces). Certain people are
selling this as an advantage.
However, we will check this here. Thus we need to take a closer look at the internal sub-

architecture of certain OSD implementations:

Server Exports

Interface + Adaptors

Local

Object Functionality

Local

Caching Layer

Local

Drivers

+ Hardware

Block Device

Local

POSIX Filesystem

The crucial point is: several OSD implementations are internally using filesystems for creating
the object abstraction.

Details 3.9: OSD implementation strategies

For implementors, filesystems seem to be a temptinga shortcut strategy. Implementing
their own object store functionality on top of block devices, which could easily take some
years or decades until mature enough for production use. Linus Torvalds, for example,
is measuring the maturity cycles of filesystem implementations in units of decades, not
in years. Pure object stores would need to solve similar fundamental problems, like frag-
mentation problems, which is a science in itself. Thus existing kernel-level filesystem
implementations are often just re-used for OSDs. They seem to be already there, “for
free”.
However, at architectural level, they are not for free. They are violating Dijkstra’s
layering rules by causing regressions.
At abstract functionality level: passive objects, and even some associated rich metadata,
are more or less nothing else but restricted files, optionally augmented with POSIX
EAs = Extended Attributesb.

• Object IDs can be trivially mappedc to filenames / pathnames. At abstract
functionality level, there is almost no difference between pathnames and object
IDs, with the exception that pathnames are more general, e.g. by allowing deep
nesting into subfolders.

• Newer versions of certain Linux-based filesystems can even automatically generate
random object keys, and even atomically (= free of race conditions when executed
concurrently). Example: supply the option O_TMPFILE to open(), followed by
linkat().

• While filesystems are translating file IDs = pathnames into file handles before
further operations can be carried out, object stores are typically skipping this
intermediate step from a user’s viewpoint. The user needs to supply the object
ID for any operation.

In the implementation, this can lead to considerable runtime overhead,
because ID lookup functionality similar to open() has to be re-executed for each
operation. In contrast, valid file handles are directly referring to the relevant kernel
objects in RAM, without need to search for a filename again. Extreme example:

49

https://en.wikipedia.org/wiki/Object_storage

3. Architectural Principles and Properties

consider the total runtime overhead by repeatedly appending 1 byte to an object
in a loop.

• Consequently, certain file operations associated with file handles are missing in
pure object stores, such as lseek(), as well as many other operations.

• Concurrency functionality of a POSIX-compliantd filesystem is much more elab-
orated than actually needed by an object store. Examples: fine-grained locking op-
erations like flock() are typically not needed in pure object stores. The rename()
operation, including its side effects onto concurrency, would even contradict to the
fundamental idea of immutable object IDs.

• Shared memory functionality. Filesystems need to support mmap() and relatives.
This is inevitable in modern kernels like Linux, for hardware MMU-supported exe-
cution of processes, employing the COW= Copy OnWrite strategy. See fork()
and execve() syscalls, and their relatives. In general, shared memory can be used
by several processes concurrently, and on sparse files. Filesystem implementors
need to spend a considerable fraction of their total effort on this. Concurrency
on shared memory, together with SMP plus NUMA scalability to a contemporary
degree, is what makes implementation really hard, and why there are only rela-
tively few people in the world mastering this art. As a responsible manager, please
compare with Dijkstra’s remarks on required skill levels for serious OS work.

Object stores are typically lacking shared memory functionalities com-
pletely. Thus they are not suited as a core componente of a modern OS.

In comparison, creating a different interface for an already existing sub-
functionality, and optionally adding some metadata harvesters and filters, is re-
quiring lowerf skills and effort.

• Several less-used functionalities, like hardlinks etc.
aLinux kernel implementations of filesystems need typically at least 10 years, if not 20 years to be

considered “mature” enough for mass production on billions of inodes. Search the internet for
remarks from Linus Torvalds.

bPosix EAs = Extended Attributes implementations as provided by classical filesystems are providing
roughly the same functionalities as passive augmented object metadata. Even active metadata
is possible, e.g. by separate processes run by metadata indexing tools like Akonadi or miner or
baloo. With such a standard addendum, classical filesystems can also be used for providing active
functionality.

cExample: random hex key 0123456789ABCDEF can be trivially mapped to a path
/objectstore/0123/4567/89ABCDEF in an easily reversible way (bijective mapping)

dPOSIX requires strict consistency for many operations, while weaker consistency models are often
sufficient (but not required) for object stores.

eYears ago, certain advocates of object stores have claimed that filesystems would be superseded by
object stores / OSDs in future. This is unrealistic, due to the lack of mentioned basic functionalities.
When missing functionality would be added to object stores, they would turn into filesystems, or
into so-called “hybrid systems”. Consequently, there is no clue in claiming that object stores are
forming a fundamental base for operating systems. They are essentially just a special case, optionally
augmented with some active functionality, which in turn should be attributed to a separate layer,
independently from filesystems or object stores.

fRoughly, computer science students should be able to do that after a 1 semester OS course.

Obviously, these functionalities are lost at the object layer and/or latest at the exports interface.
Thus we have identified a Dijkstra regression.

As explained in the detail box: trivial differences in an interface, such as usage of
intermediate file handles / or not, or near-trivial representation variants like pathnames vs
object IDs, are no valid6 arguments for claiming differences in the abstract functionality in the

6Arguing with trivial syscall combinations or trivial parameter passing can be observed sometimes. As a
responsible manager, you should draw another conclusion: someone arguing this way is likely fighting for a
particular political interest in an unfair manner, and/or possibly demonstrating a poor skill level.

50

3.5. Layering Rules and their Importance

sense of Dijkstra.

Manager Hint 3.14: Real functionality behind object stores

Conclusion: passive object stores are approximately nothing else but a special
case of fileystems.

Here is the picture from section What is an Object Store once again:

Filesystem Functionality

only in Filesystems

only in Object Stores

Typical

Common Functionality

Typical
Object Store Functionality

Now let us look at some active functionality of some object stores, such as automatic collection
of rich metadata, or filtering functionality on top of them: are suchalike functionalities really
specific for object stores?
There is a clear answer: NO.

Example 3.5: Active Functionality in Linux on top of Filesystems

For example, Akonadi, miner, baloo, and similar standard Linux tools (and several
multimedia frameworks like gstreamer) are indexing the EXIF metadata of images, or
metadata of mp3 songs, videos, etc, residing in a classical filesystem.

Do not draw wrong conclusions from the fact that the classical Unix Philosophy (see
https://en.wikipedia.org/wiki/Unix_philosophy) has a long tradition of decomposing
functionality into separate layers, such as the distinction between passive filesystems and ac-
tive metadata indexing. When some object advocates are merging these separate layers into one,
and/or presenting some impressive slides, this is not an advantage. In contrary, there are
disadvantages like hidden cartesian product multiplications occurring at (nested) architecture
level, and possibly also in implementations.

Manager Hint 3.15: Real implementation value of OSDs =⇒ business value

For responsibles: when certain advocates are claiming that functionality mergers,
such as more or less trivial combinations of filesystem sub-functionality with some
metadata harvesters, are constituting some new product, be cautious. It is about your
money, or about your company’s money.
While it might be a “new” product from the perspective of end customers, you should
check the technical effort for “implementing” the “new” functionality. There are cases
where more than 90% functionality is already there. When it is from OpenSource, do
not pay a lot of money for some more or less trivial adaptors.

When more than 95% of functionality is already there for free, beware of costly
blown-up architectural ill-designs, such as O(n2) client-server BigCluster architectures.

Dijkstra’s layering rules can be used as tools for analyzing this, and for discovery

51

https://en.wikipedia.org/wiki/Unix_philosophy

3. Architectural Principles and Properties

of technical debt by unfortunate layering, causing further cost and trouble in the long
term.

When augmented metadata functionality is present (whether actively or passively), it
should not be viewed as an integral part of object stores, but as an optional addendum.

Reason: rich metadata is conceptually independent from both filesystems and object
stores.
You may wonder what is the damage caused by Dijkstra regressions at object stores.
We now look at a certain mis-use of object stores, which has been unfortunately advocated

by object store advocates several years ago. Some advocates appear to have learned from
bad experiences with suchalike setups (see examples in section Explanations from DSM and
WorkingSet Theory), no longer propagating suchalike mis-uses anymore, but to focus on more
appropriate use cases for native object stores instead.
We continue by looking at the client part of distributed block devices / distributed filesystems

on top of OSDs, and/or on top of distributed object stores, or similar.
In general, POSIX-like semantics are not necessarily needed for each and every use case.

See section Architectural Properties of Cloud Storage for some examples where POSIX or
transactional databases are typically really needed. Examples for unneeded POSIX are “simpler”
or “less critical“ use cases, like (parts of and/or native) Docker / Kubernetes applications etc,
e.g. for developers or similar customers.
Filesystem-like functionality typically needed by developers (and their users) are for example

“directory-alike” index functionality on file names or object names, or similar. Full POSIX
semantics is typically only required when a certain parallelism degreemust be delivered, while
certain types of race conditions must be hidden from the end user.

Strict Consistency is only a subset of POSIX, and may remain critical even by some
weaker use cases like backends for DropBox & co, or even by some non-POSIX-like use cases
e.g. like banking or stock exchange marketplaces etc. Do not misinterpret the following
picture where (POSIX-like) is written in parentheses. The parantheses do not imply that
Strict Consistency can be dropped. See section Architectural Properties of Cloud Storage.
We start the next example picture with a more elaborate filesystem semantics on top of

pure object stores. The following example would require POSIX compliance7 for some top-level
applications like Apache webhosting with ssh access, while some other applications would’t
require it necessarily:

Distributed

Distributed

Block Device

Network Redirection

(POSIX−like) Filesystem

+ Aggregation + Distribution

It should catch your eyes that both block-device and filesystem functionality is re-appearing
once again, although it had been already implemented at OSD level. Obviously, there are two
more Dijkstra regressions.

Do not over-stress the fact that now we are creating distributed block-devices, or dis-
tributed filesystems in place of local ones. This does not imply that a BigCluster architecture
is needed on top an O(n2) storage network, or that random replication inducing further prob-
lems and serious reliability problems (see section Reliability Arguments from Architecture) is
needed. There are near-trivial alternatives at architecture level, see Variants of Sharding.

71&1 Ionos has made the experience that a near POSIX-compliant filesystem called nfs did not work correctly,
causing customer complaints, because it is not fully POSIX-compliant.

52

3.5. Layering Rules and their Importance

There is another (fourth) Dijkstra regression in further sub-layers, not depicted here.
Distributed block devices are typically storing 4k sectors or similar8 fixed-size entities in the
object store, although objects are capable of varying sizes. Thus objects and their dynamic
key indirection mechanisms are “misused” for a restricted use case where array-like virtual data
structures would be sufficient. When some petabytes of block device data are created in such
a way, a massive overhead9 is induced.

As explained in section Architectural Properties of Cloud Storage, do not place Strictly
Consistent filesystems and/or object stores on top of Eventually Consistent object stores.
Suchalike is very dangerous at risk level. Even when you would have the time (measured
in decades) and the money and the top-grade developer skills to get this implemented and
tested for enterprise grade and rolled out to operations, you could be investing into a Dijkstra
regression. Other aspects are in section Potentially Negative Example: layering directory-alike
structures on top of billions of eventually consistent objects.

Manager Hint 3.16:

Some damages caused (or at least supported) by Dijkstra regressions:

• Risk from ill-belief that Eventually Consistent would be sufficient for a certain
use case, and/or risk from stacking Strictly Consistent (hidden) sub-systems on
top of other Eventually Consistent (hidden) sub-systems.

• Increased invest. Further reasons like doubled effort are explained in section
Cost Arguments from Architecture.

• Increased operational cost, both manpower and electrical power. Example:
certain Ceph OSD implementations have been estimated as roughly consuming 1
GHz CPU power and 1 GB RAM per spindle. Even when newer versions are imple-
mented somewhat more efficiently, there remains architectural Dijkstra overhead
as explained above.

• Decreased reliability / increased risk, simply caused by additional com-
plexity introduced by Dijkstra regressions. Further reasons are explained in sec-
tion Reliability Arguments from Architecture.

• Decreased total performance, simply induced by regression overhead. Some
more reasons can be found in sections Explanations from DSM and WorkingSet
Theory and Performance Arguments from Architecture.

• Limited scalability as explained in sections Scalability Arguments from Archi-
tecture and Explanations from DSM and WorkingSet Theory is further worsened
by Dijkstra regressions.

3.5.2. Positive Example: ShaHoLin storage + application stack

ShaHoLin = Shared Hosting Linux at 1&1 Ionos. It is amanaged product, i.e. the sysadmins
can login anywhere as root. Notice that this has some influence at the architecture. In general,
layers dealing with unmanaged products need to be constructed somewhat differently.
ShaHoLin’s architecture does not suffer from Dijkstra regressions, since each layer is adding

new functionality, which is also available at higher layers, or at least provides functionality.

8Mapping of multiple 4k sectors onto a smaller number of bigger objects (e.g. 128k) opens up another tradeoff,
called false sharing. This can lead to serious performance degradation of highly random workloads.

9For example, an xfs inode has a typical size of 256 bytes. When each 4k sector of a distributed block device
is stored as 1 object in an xfs filesystem consuming 1 inode, there is not only noticable space overhead. In
addition, random access by large application workingsets will need at least two seeks in total (inode + sector
content). Disregarding caching effects
, this just doubles the needed worst-case IOPS. When taking the lookup fuctionality into account, the

picture will worsen once again.

53

3. Architectural Principles and Properties

Because of this, and by using a scalability principle called Sharding (see sections Definition
of Sharding and Variants of Sharding), architectural properties are close to optimal.

Details 3.10: ShaHoLin Layering

The following bottom-up description explains some granularity considerations at each
layer:

1. Hardware-based RAID-6, with an internal sub-architecture based on SAS network-
inga. The newest LSI-based chip generation supports 8 GB fast BBU cache, which
has RAM speed. Depending on the number of disks, this creates one big block
device per RAID set. Current dimensioning (2019) is between ≈15 TB on 10 fast
spindles in a small pizza box, and 48 large-capacity slower spindles with a total
capacity of ≈300 TB, spread over 3 RAID sets. This is somewhat conservative;
with current technology higher capacity would be possible, at the cost of lower
IOPS.

2. LVM = Logical Volume Management. This is provided by the dm = device mapper
infrastructure of the Linux kernel, and by the standard LVM2 userspace tools. It
is sub-divided into the following sub-layers:

a) PV = Physical Volumes, one per RAID set, with practically the same size /
granularity.

b) VG = Volume Group. All PVs ∼= RAID sets are merged into one local storage
pool. Typical sizes are between 15 and 300 TB, depending on hardware class.
Very old hardware may have only ≈3 TB, but these machines should go EOL
soon.

c) LV = Logical Volumes, one per VM ∼= LXC container instance. Typical sizes
are between ≈300 GB and ≈40 TB. When necessary, the size can be dynam-
ically increased during runtime. Typical number of LVs per physical machine
(also called hypervisor) is between 3 and 14 (or exceptionally only 1 on very
small old hardware).

The number of LVs per hypervisor can change during operations by
moving around some LVs ∼= VMs ∼= LXC containers via Football (see
football-user-manual.pdf). This is used for multiple purposes, such as
decommissioning of old hardware, or load balancing, or for physical reorga-
nizations, e.g. defragmentation of racks in some of the datacenters.

3. Replication layer for achieving geo-redundancy (see sections What is Geo-
Redundancy and Fundamental Requirements for Geo-Redundancy) using the
OpenSource project MARS (see https://github.com/schoebel/mars/docu/
mars-manual.pdf). MARS is the base for planned handover, and for unplanned
failover. Each LV can be switched over individually (ability for butterfly, see
Flexibility of Handover / Failover Granularities). In addition to geo-redundancy,
MARS provides the base for LV migration during operations via Football (see
https://github.com/schoebel/mars/docu/football-user-manual.pdf). The
number of replicas is typically between 2 and 4, where higher replication degrees
are only used temporarily, or for compensation of near-defective / unreliable hard-
ware instances.

4. Filesystem layer, typically xfsmounted locallyb. This layer is extremely important
for getting the granularities right: typically, each xfs instance contains several
millions of customer inodes and/or files. In some cases, the number can climb up
to several tenths of millions. Reason: shared webhosting has to deal with myriads
of extremely small customer files, intermixed with a lower number of bigger files,
up to terabytes in a handful of scarce corner cases.

5. LXC containers ∼= VMs. Each of them has a publicly visible customer IP address,
which is shared by all of its customers (typically a few hundrets up to several

54

https://github.com/schoebel/mars/docu/mars-manual.pdf
https://github.com/schoebel/mars/docu/mars-manual.pdf
https://github.com/schoebel/mars/docu/football-user-manual.pdf

3.5. Layering Rules and their Importance

tenthousands per container). Upon primary handover / failover, this IP is handed
over to the sister datacenter via BGP = Border Gateway Protocol. Upon Football
migrations, this IP is also retained, but just automatically routed to a different
physical network segment.

6. Application layer. Here are only some important highlights:

a) Apache, spawning PHP via suexec. One Apache instance per LXC container
is typically sufficient for serving thousands or tenthousands of customers.

Some surprising detail: fastcgi is deliberately not used at the mo-
ment, because security / user isolation is considered much more impor-
tant than a few permille(!) of performance gain by saving a few fork() +
execve() system calls. While the Linux kernel is highly optimized for them,
typical PHP applications like Wordpress are poorly optimized, for example
by clueless runtime inclusion of ≈120 PHP include files, cluelessly repeated
for each and every PHP request. Even when OpCache is enabled, this costs
much more than any potential savings by fastcgi.

b) EhB = Enhanced Backup. This is a 1&1-specific proprietary solution, sup-
porting a grand total of ≈10 billions of inodes. It is also organized via the
Sharding principle, but based on a different granularity. In order to parallelize
daily incremental-forever backups, several measures are taken. Among others,
customer homedirectories are grouped into 49 subdirectories called hashes in
1&1-slang. Both backups and restores may run in parallel, independently for
each hash, and distributed over multiple shards. Hashes are thus forming an
intermediate granularity between xfs instances, and a grand total of ≈9
millions of customer home directories.

aCertain advocates are overlooking the fact that SAS busses are a small network, just using the SAS
protocol in place of TCP/IP. When necessary, the SAS network can be dynamically extended, e.g.
by addition of external enclosures.

bOnly on a few old machines, which are shortly before EOL, /dev/mars/vm_name is exported via iSCSI
and imported into some near-diskless clients. This is an old architectural model, showing worse
reliability (more components which can fail), and higher cost (more hardware, more power, more
rackspace, etc). Due to iSCSI, IOPS are much worse than with pure LocalStorage. Contrary to
some old belief, it is not much more flexible. The ability for butterfly is already sufficient for rare
exceptional overload situations, or for sporadic hardware failures. Since Football also works on the
old iSCSI-based architecture, load balancing etc does not need to be done via iSCSI.

3.5.3. Negative Example: Inappropriate Replication Layering

Several people have independently tried to use MARS within VMs. This may look like a
reasonable idea, but has a number of disadvantages:

1. It contradicts to Dijkstra’s layering rules.

2. It ignores the operational recommendations for MARS.

VM replication and Dijkstra. Please be aware Dijkstra’s layering is not a restriction of MARS,
but a fundamental issue for any kind of replication mechanism.
In general, creation of a separate replication layer at bare metal is the strongly rec-

ommended solution by Dijkstra, e.g. using dedicated storage boxes, or directly replicating at
hypervisor hardware when using local storage (e.g. at ShaHoLin).
Dijkstra’s layering rules are implying that an actively running VM can never replicate it-

self into another VM, at least not its entire10 internal state. Trying to do so would lead
to an endless nesting recursion11 of runtime state. Dijkstra’s rules are clearly forbidding

10Being unable to replicate the entire VM state is also a violation of the blackbox principle.
11A replicator replicating itself would change the state of the VM by its replication activity, triggering another

replication, which in turn would trigger another replication, and so on.

55

3. Architectural Principles and Properties

cyclic layering. Therefore, replication must always be considered as a separate layer, and not
intermixed with other layers.

This isn’t specific for MARS and its heavy statekeeping in /mars. Dijkstra’s rules also
apply to any other replication system.

In addition to formal layering rules, resource management can easily become a hell when
based on virtual resources instead of on physical ones.

Another outbreak of the hell will happen on highly over-provisioned VM farms when
masses of VMs are starting their (geo-redundant) recovery phase after a disaster (see section
Fundamental Requirements for Geo-Redundancy) all in parallel12. This is not limited to DRBD
or MARS full-sync, it is also a problem for any other replication system trying to be operated in
overprovisioned VM environments. Hypervisor-level sysadmins have no control over internals
of external customer VMs, and thus cannot temporarily suspend the massive IO and network
traffic. Limiting the IO is no good solution, since it will also sacrifice ordinary application
performance. Simply do replication right, by implementing it at the right layer of the
Dijkstra hierarchy.

Operational environment conditions for MARS. With respect to MARS: not only for perfor-
mance reasons and for resource allocation reasons, MARS is explicitly constructed for running
on bare metal solely13. A single storage-level or hypervisor-level MARS instance can share
a single /mars filesystem instance for multiple resources, while a multitude of per-VM /mars
instances would induce a waste of storage space by factors. See also description of hardware
requirements in mars-user-manual.pdf.

Sysadmin Perspective.

Example 3.6: Why Replication inside of VMs is a Bad Idea™

I never heard of anyone who tried to use DRBD productively inside of VMs. Appar-
ently, sysadmins understand that this would be a bad idea, worsening performance
over-proportionally and unpredictablya, since the passive side would have to react in
realtime, and for each single IO request. People seem to understand that realtime
behaviour cannot be expected from ordinary VMs. Often they already had a bad ex-
perience, such as huge performance differences between para-virtualized device drivers
and physical hardware drivers, both running on so-called “virtual hardwareb”. Some-
times, the latter cannot run reliablyc under KVM/qemu, other than for non-critical or
minor workstation loads. Even then, they often work as a CPU burner.

For unknown reasons, a few people seem to expectd that MARS would be able to
work miracles there.
aTheoretical foundation: queueing theory. VMs are introducing several queues into workloads, which

did not exist without them. In addition, it becomes impossible to guarantee a maximum service
time.

bThe term “virtual hardware” is a contradiction in itself. It simply isn’t hardware at all. Hardware is
something which creates an “Outch” when falling down onto your feet.

cStandard problem: missed interrupts, or interrupts not delivered in-time.
dFrom a management perspective, this looks like a broken expectation management.

User Perspective.
12In contrast, a single /mars instance at storage or hypervisor layer will automatically limit the sync parallelism

degree to some reasonable value. In addition, sync is easily controllable by sysadmins.
13A minor exception is functional component testing inside of KVM (as opposed to end-to-end system testing,

aka integration testing, and as opposed to non-functional testing). This can be done inside of KVM, provided
that /dev/mars/mydata is not used for further sub-virtualization (except lightweight containers like Docker
& co), and only for non-critical test loads.

56

3.5. Layering Rules and their Importance

Details 3.11: End users messing around with IPs

I don’t know of any virtualization platform where ordinary VM users can easily
configure and use BGP themselves. Therefore, geo-redundant replication setups under
VMs would lack location transparency, and provide a crippled user experience.

Leaving geo-replication and BGP handover to be managed by end users would be
a bad idea. Apart from skills and from a management hell to be mastered by end users,
it would be a waste of IP addresses. When external VM customers would need to
control BGP themselves, at least 3 public IP addresses would be needed: each of both
non-location-transparent VMs running in parallel would require at least 1 public IP for
external ssh access etc, which is 2 in total, and a third public IP for BGP handover,
carrying the workload traffic. Notice that public IPv4 addresses are a scarce resource.

A good virtualization platform must provide full location transparency of the VMs,
without user intervention. Only a single public IP per VM is then required, which automatically
follows the current geo-location of the single per-user14 VM instance running at the same time.
This is already standard for local VM handover in the same datacenter. No serious VM user
would accept manual IP renumbering work, or responsibility for routing changes, when his
VM is suddenly running on a different hypervisor, just because another customer used some
more RAM, or because some hardware went defective. For unknown reasons, a few people
are however expecting15 a similar effort and similar skills from their (internal or external) VM
customers as soon as geo-redundancy comes into play.

BGP or a sister protocol is a must16 for geo-redundant VMs. It should be automatically
controlled by the storage or by the hypervisor layer, instead of by end users. When storage
and hypervisors are anyway managed by sysadmins, users should not notice where their VM
is currently running (see What is Location Transparency). In addition, managed geo-control
may become a sold feature. Customers can then trigger automatic handover of the geo-location
with a single click (provided that both locations are healthy).

Management Perspective.

Details 3.12: OPEX Cost Savings by Managed Geo-Location Transparency

When using a geo-redundant RemoteSharding or FlexibleSharding model, passive-
side hypervisors do not carry any workload. Thus they may be powered off, until they
are needed again. Only the corresponding passive storage boxes need to remain powered
all the time.
However, this can only work when managed geo-location transparency is implemented.
Otherwise, end users would get a pair of VMs instead of a single VM, running all the
time, in order to be able to manage geo-redundancy themselves.

Manager Hint 3.17: Manager Briefing

Never accept a proposal to use MARS or any other replication system inside of VMs.
Insist on fully managed geo-location transparency from the viewpoint of VM
users. It is even considerably cheaper at OPEX, since unnecessary doubling of the

14At the passive / secondary side, only the LV replica is updated. No VM is started there. Thus no additional
VM is requiring CPU and RAM resources. In contrast, 2 non-location-transparent VMs responsible for
replication would essentially double the necessary compute resources. In addition, total disk space
allocation for multiple /mars instances instead of a shared one would be much higher. All of these would
result in a massive cost increase.

15From a management perspective, this looks like a broken expectation management.
16The 1&1 Ionos ShaHoLin setup (see section Positive Example: ShaHoLin storage + application stack) is a

striking example that BGP and its control by hypervisors is possible in large scale.

57

3. Architectural Principles and Properties

number of concurrently running VM instances is avoided.
Do not call any VM system “geo-redundant” if it misses this simple standard requirement.
It should not require any political discussions at all (since local location transparency is
standard at local VM farms for decades).

Managed BGP makes you independent from the OS running inside of VMs. For example,
Windows guests will become geo-redundant without modification.

3.5.4. Potentially Negative Example: layering directory-alike structures
on top of billions of eventually consistent objects

The following example is about a potentially planned system, which could be deducable from
Dijkstra and/or contemporary belief. We are not discussing direct violations17 of Disjtra’s rules
(which are discussed e.g. in section Negative Example: object store implementations mis-used
as backend for block devices / directory or pointer structures / POSIX filesystems), but here we
discuss a potential misinterpretation of Dijkstra by ignoring some important non-functional
properties.
When directory structures are implemented straight-forward on top of object stores for bil-

lions of objects, there will be a risk from fundamental problems which are known by filesystem
and database implementers and their experienced architects, provided they also know the The-
ory of Databases and/or the Theory of Filesystems as published in the traditional research
field about filesystems and databases. For example, a huge bulk of academic research activ-
ity was historically invested into OODB = Object Oriented DataBases, while contemporary
implementations like Kassandra & co are typically contradicting to (or ignoring) some of their
results. Another huge bulk can be found in traditional VLDB = Very Large DataBases.
The following explanation is referring to very big eventually consistent object stores (see

section What is an Object Store), independently from local vs distributed types of object stores.
What is one of the important fundamental problems of directory-alike data structures (among

a long list of other fundamental problems to be solved)?
Situation: data structures are living inside of objects which contain pointers or refer-

ences to other objects. These may also contain some more pointers or references to further
objects, in a transitive manner.
Typical userspace programmers will not notice a problem here. For example, Java enthusiasts

or Python enthusiasts are using references all the time, but they are using their pointers in the
virtual address space of a userspace process. These processes are typically much smaller
than billions of objects. In practice, their relatively few long-living objects are stored either in

(a) databases, or

(b) in POSIX-aware local filesystems plus some object-oriented import / export layers.

Result: these programmers will likely confirm that they (almost) never have seen a fundamental
problem caused by their persistence model (a) or (b) where some of their relatively few objects
are living for a longer time than their userspace processes are typically living.
Why does such a relatively small object pointer structure typically work in practice, at least

when using (a) or (b) (with few exceptions)?

Details 3.13: Hints for Risk Reduction

(a) Traditional databases are following the well-known ACID = Atomicity +
Consistency + Isolation + Durability principle. There is an easily usable commit
operation which ensures this by definition.
(b) POSIX filesystems are lacking the I = Isolation property, but they can typically

17In general, (distributed) object stores can be constructed without major violations of Dijktra’s rules. However,
some contemporary implementations may have some problems in this area, see section Negative Example:
object store implementations mis-used as backend for block devices / directory or pointer structures / POSIX
filesystems. Important: Distributed Systems (aka loosely coupled systems) are much more complicated
to program and operate than tightly coupled systems.

58

3.5. Layering Rules and their Importance

provide sufficient A = Atomicity + C = Consistency + D = Durability properties for
important use cases.

Reason: some ACID databases must be able to run on top of some classical filesys-
tems. Thus some members of the OS = Operating System community were traditionally
supporting the needs of some members of the database community (and some old com-
puter science members were even members of both communities in the good old times).
More details can be found in the old literature.

Now comes the 1 million € or $ question:

(c) What is the problem if you want to reliably store pointer-like or other referential
structures in millions or billions of eventually consistent objects, containing pointers
or references to other eventually consistent objects?

We leave the answer to this question as an exercise to the reader. Hint: large parts of a
correct answer are already mentioned above.

Another fact is also important: by definition, true “eventually consistent” does deliberately
not provide (or omit for performance reasons) POSIX-like semantics and/or POSIX operations
like global sync() or their weaker sisters fsync() or msync(), at least for each client instance
(which is often equivalent to “in the whole cluster”), and at least by default.

Manager Hint 3.18: Required Skills for Projects using References on top of Eventually
Consistent Object Stores

Do not accept important enterprise-level projects which placemasses of complex
pointer or reference structures on top of eventually consistent object stores. You
may become confronted with some of the following potential problems:

• Dangling Pointers, also called Referential Integrity in databases (references
to non-existing or lost or even wrong objects, potentially belonging to other cus-
tomers, thus breaching privacy / security / isolation / etc).

• Dangling Objects (unused / unreachable objects forgotten to free, filling up your
storage space over time).

• False Sharing problems.

• Endless Loops / Cycles in long reference chains.

• When active-active parallel writes to logically shared data in distributed object
stores are possible: beware of split brain (see CAP theorem) and/or some neces-
sary locking (e.g. usage of distributed lock managers) leading to systematic
deadlocks and/or Transaction Aborts similar to OODBs, see also Transac-
tion Theory in the database literature. Notice that Distributed COW =
Copy on Writes may correspond to some known transactional abort behaviour of
MVDB = MultiVersion DataBases, even when not distributed, also described
in the literature on Transaction Theory. There are known solutions, but they may
increase the total effort for reaching certain SLAs.

• Further classical problems from the old database and filesystem literature, like
unexpected data loss requiring an equivalent of database recovery and/or fsck.
Beware of running suchalike on some billions of objects in a BigCluster shared
pool. Notice that sharding architectures are requiring less effort, because there is
no error propagation between relatively small pools.

59

3. Architectural Principles and Properties

Exception: under certain circumstances, you might accept such a project proposal
when your staff has the proven skills and experiences with (a) writing and main-
taining an ACID database, or (b) writing and maintaining at least a journalling(!)
filesystem.

If so, insist on an acceptable project plan with appropriate fallback strategies,
and on competitive TCO. There may be further requirements from company level, such
as geo-redundancy, typically imposing further conditions and implying serious pitfalls
(cf section Fundamental Requirements for Geo-Redundancy).

3.6. Granularity at Architecture

There are several alternative implementation technologies for (cloud) storage systems. They
can be classified according to the granularity of their basic transfer units.

3.6.1. Granularities for Achieving Strict Consistency

End users are always expecting strict consistency18 from a storage system. Whenever they
are “saving” several “things” to a (cloud) storage system in a particular order, they are expecting
to always retrieve the newest version of each of them, afterwards.

Anyone who claims that “eventually consistent” & co would be sufficient for end users:
beware of reputation problems, e.g. articles in test magazines / postings in social media /
shitstorms / etc. We are talking about expectations from end-user customers. The customer
is king and thus decides on your success!
Consequences at technical level: here are the most important architectural differences between

object-based storages and LV-based (Logical Volume) storages, provided that you want to cover
comparable use cases:

Strict Consistency required Objects LVs
Granularity small (typically KiB) huge (several TiB)
Number of instances very high low to medium
Native consistency model weak strict
Typical access random keys named
Update in place no / yes yes
Resize during operation no / yes yes
Object support native on top of
LV support on top of native
Filesystem support on top of on top of
Scalable at cluster both cluster and grid
Location distances per datacenter / on campus long distances possible
Centralized pool management per cluster Football uniting clusters
Easy sharding support cumbersome yes

As explained in sections Potentially Negative Example: layering directory-alike structures
on top of billions of eventually consistent objects and Reliability Arguments from Architecture
and Explanations from DSM and WorkingSet Theory, there are known problems with object
storage’s consistency model when higher aggregates like LVs or filesystems are requiring
strict consistency, but are built on top of objects which are only eventually consistent due
to their inherent nature.
18For an overview of consisteny models, see https://en.wikipedia.org/wiki/Consistency_model. While strict

consistency is the most “natural” one as expected by humans, most other models are only of academic interest.

60

https://en.wikipedia.org/wiki/Consistency_model

3.7. Flexibility of Handover / Failover Granularities

3.6.2. Granularity for Achieving Eventually Consistent
This section is not about expectations from end users. It is about implementation-specificweak
consistency models, such as eventually consistent, see https://en.wikipedia.org/
wiki/Consistency_model#Eventual_consistency, or several other weak consistency models
and their variants.
The following table reflects use cases for “native” object storage, where eventually consistent

(or similar) is sufficient, or at least claimed to be sufficient:

Eventually Consistent sufficient Objects LVs
Granularity medium (1 object = 1 file) huge (several TiB)
Number of instances medium to very high low to medium
Typical access random keys named + random
Update in place possible, less common yes
Object support native on top of
Scalable at cluster both cluster and grid
Location distances per datacenter / on campus long distances possible
Typical operation mode active - active active - passive
Centralized pool management per (big) cluster Football uniting clusters
Easy sharding support possible but expensive yes

3.7. Flexibility of Handover / Failover Granularities
This section is also relevant for networking departments and theirmanagement in a bigger
enterprise.
There are two important properties of replication handover / failover:

1. Timely behaviour: how fast can it be done?

2. What is the granularity: which are the items that can be switched?

3. Physical distance: both geo-redundancy (see section What is Geo-Redundancy) and
cross-datacenter replication, even when the latter is only over short distances, are requiring
different network support than simple handover / failover in the same rack.

All of these aspects are only reasonable to implement via Location Transparency. Location
Transparency has been introduced in section What is Location Transparency. Here we look
into some details how to implement it.

3.7.1. Where to implement Location Transparency

Details 3.14: Where location transparency makes sense or not

In general, it is not necessary to implement location transparency everywhere, for
each and every single component / subsystem. The art of system architecture consists
of knowing

1. where it is needed,

2. where it is beneficial for future growth / future reqirements in multiple dimensions,

3. where it is (or will be) too expensive to pay off in the mid-term future, using
current technology, but nevertheless cheap provisions for its later introduction can
be prepared, and

4. where its lack can be easily (or even trivially) compensated by location trans-
parency at another layer, such that a particular component does not need to be
constructed with location transparency, but nevertheless the overall system is suf-
ficiently location transparent, and

61

https://en.wikipedia.org/wiki/Consistency_model#Eventual_consistency
https://en.wikipedia.org/wiki/Consistency_model#Eventual_consistency

3. Architectural Principles and Properties

5. when there are multiple choices where to implement it, knowing which will be the
best one for a familiy of use cases, and finally

6. how to implement it. For example, a common misconception is to be-
lieve that storage must always reside at a storage network. Football (see
football-user-manual.pdf) demonstrates that sufficienta location transparency
can be achieved on top of local storage, while expensive and performance-eating
dedicated storage networksb are not generally necessary for achieving location
transparency.

aThere could be arguments that Football’s background migrations might be too slow or might take
too long for certain use cases. Notice that BigCluster also needs data migration during operations,
e.g. upon replacement of physical disks. When the FlexibleSharding model (see section Flexible-
Sharding) is combined with Football, it provides practically the same timescale and flexibility than
BigCluster.

bAnyway, realtime storage networks cannot span long distances. Thus they are not suitable for achiev-
ing location transparency in a geo-redundant setup.

In the definition of Cloud Storage in section Architectural Properties of Cloud Storage,
the requirement “act as one” is implying some appropriate type of location transparency of the
resources.

Manager Hint 3.19:

Consequence: any system not sufficiently implementing location transparency of
the customer’s resources (visible layer from outside) should not be called “Cloud Storage”
or a “Cloud Product” when location transparency is not sufficient from the viewpoint of
customers.

In the rest of this section, we concetrate on cross-datacenter replication scenarios, including
geo-redundancy.

3.7.2. Granularity of Cross-Datacenter and Geo-Redundant Handover /
Failover

Typical management buzzwords like DR = Disaster Recovery or CDP = Continuous Data Pro-
tection are neglecting the granularity of the data units to be protected by replication, and the
ability for quick service19 handover due to maintenance reasons such as power supply mainte-
nance. The following table explains some differences when granularity aspects like replication
at physical volume (PV) aka physical disk level versus logical volume (LV) resp filesystem level
are taken into account:

19In the table, “Backup” means that only the data is replicated into a different datacenter. In difference,
“Replication” means that both the data and the necessary compute resources are available in two datacenters.
See also sections What is Backup and What is Replication.

62

3.7. Flexibility of Handover / Failover Granularities

Method Disadvantages Advantages

Backup at FS level

no real data consistency

logical copyno handover / failover
no load balancing
no CDP / high MTTR

Backup via FS snapshots

handover cumbersome some point-in-time consistencyno real load balancing
medium to high MTTR logical copydelayed consistency

Replication at PV granularity

whole clusters switch

easier to setupno load balancing
physical copy
medium MTTR

Replication at LV granularity physical copy

load balancing between LVs
easy migration / Football
full handover consistency
low MTTR

In order to implement good flexibility of handover / failover, the network infrastructure (as well
as other infrastructures) must support it. Here are levels of flexibility, in ascending order:

0. (completely inflexible) Statically assigned IP addresses at each server and at both of 2
datacenters, and in particular for customer traffic. This is typical for contemporary
backup solutions. As a consequence, any handover / failover attempt would need massive
sysadmin work, even if there were enough CPU and RAM power at the target datacenter.
Switching whole datacenters or bigger server farms would take days, if not weeks, to
manually reconfigure. Consequence: sysadmins will heavily dislike such type of work
(acceptance problem of geo-redundancy).

Some people think this can be easily done at DNS level. Just update all of your publicly
visible DNS records to point to the new IP addresses. However, DNS updates have serious
drawbacks for public internet traffic. Although there exists a field TTL = Time To Live for
limiting the caching period of DNS clients, this field is ignored by many clients / DNS caches
throughout the world. In practice it will take days, if not weeks, until the last client has got
the new IP address, even if you try to speed this up by setting a TTL of 1 minute. It simply
does not work as expected.

Dynamic routing protocols at AS = Autonomous Systems level are your friend, such as
BGP = Border Gateway Protocol. For any serious cross-datacenter scenarios and/or
geo-redundancy, it is a must. If you don’t have the ability for dynamic routing at the ap-
propriate granularity, you should better not claim that you are geo-redundant. If handover
/ failover takes far longer than acceptable by customer expectations / SLAs (typically minutes),
you are not really geo-redundant from the viewpoint of your customers.

1. (inflexible) Manual or semi-automated routing at datacenter uplink level. Here the cus-
tomer traffic is always routed to the same IP visible from outside, while there is a separate
static IP per server for sysadmin ssh access. The customer traffic routing needs to be
changed globally for the complete traffic to any of two datacenters, and thus is very in-
flexible. This model protects only against a full datacenter loss, but almost nothing else.
Unfortunately, this model appears very simple to implement, so both staff and chief execu-
tive managers are sometimes preferring this “simple” model, although it causes headaches
at operational level when really needed.

2. (medium flexibility) Dynamic routing of customer traffic at the granularity of building
blocks, or even per hypervisor / physical server. When automated appropriately,
switchover is a matter of minutes, or even seconds.

63

3. Architectural Principles and Properties

Manager Hint 3.20: Requirements for networking

Starting with this level of flexibility, BGP = Border Gateway Protocol or similar
network protocols are a must.

Anyway, when you have the effort of BGP implementation for this level,
consider to do it right from scratch. Also support the following better levels
from the network side of the company.

3. (flexible) Dynamic routing of each VM / LV / resource, individually. This has massive
advantages: in case of overload, DDOS attacks, etc, you can quickly load-balance into a
so-called butterfly runtime configuration: half of your VMs belonging to the same
hypervisor is running in datacenter A, while the other half is running in datacenter B. In
the following illustration showing one hypervisor per datacenter, green color denotes the
active (primary) side, while white means passive (secondary):

LV1 LV2 LV3 LV4 LV1 LV2 LV3 LV4

Datacenter A Datacenter B

H
y
p
e
r

B

H
y
p
e
r

A

During butterfly, each of your hypervisor iron has to carry only half of the ordinary
workload. For comparison, here is the normal situation where only datacenter A would
be active:

LV1 LV2 LV3 LV4 LV1 LV2 LV3 LV4

Datacenter A Datacenter B

H
y
p
e
r

B

H
y
p
e
r

A

In the above butterfly configuration, you have essentially doubled the available CPU
and RAM power, when compared to the ordinary situation where side B does not
carry any application workload. This is a tremendous aid for survival of certain types of
incidents, such as (unhandled20) DDOS attacks.

4. (most flexible) In addition to dynamic routing at VM level, the VMs themselves are loca-
tion transparent (see section What is Location Transparency). They may transparently
migrate to another hypervisor, possibly residing in another building block, or even resid-
ing in a different datacenter. In its most general form, the number of replicas may be
different for each VM, and may change dynamically, adapting to any needs.

Manager Hint 3.21: Recommended flexibility

The ability for butterfly is relevant at CTO level. It is a massive risk reducer,
even at company and at stock exchange value level.
In order to really get it implemented in its best form, CTOs should clearly require

Location Transparency at Application Level

It means that not only your servers, but also your services can run in any of more than
1 datacenter, without notice by your customers.

20There is no 100% DDOS protection. Attackers are continuosly improving their methods. Catching all types
of novel patterns is not possible in general.

64

3.7. Flexibility of Handover / Failover Granularities

The location of your services is no longer a primary key, but a dependent runtime attribute
which may change at runtime. Of course, your databases, your dashboards, your monitoring,
and other surrounding tools, must also be able to properly deal with location transparency.

Example 3.7: Ability for butterfly

1&1 Ionos ShaHoLin = Shared Hosting Linux has implemented the ability for butterfly
via BGP location transparency on thousands of servers, and on several petabytes of
data. See Positive Example: ShaHoLin storage + application stack.

65

4. Architectures of Cloud Storage /
Software Defined Storage

This chapter compares several architectural alternatives with each other. In order to not get
lost in the jungle of numerous implementations and their features, the description focuses
on architecture (see section What is Architecture) wherever possible. Nevertheless, principal
behaviour of implementations are also discussed.

4.1. Performance Arguments from Architecture

4.1.1. Performance Penalties by Choice of Replication Layer
Some people think that replication is easily done at filesystem layer. There exist lots of cluster
filesystems and other filesystem-layer solutions which claim to be able to replicate your data,
sometimes even over long distances.
Trying to replicate several petabytes of data, or some billions of inodes, is however a much

bigger challenge than many people can imagine.
Choosing the wrong layer (see section Layering Rules and their Importance) for mass data

replication may get you into trouble. Layer selection is much more important than any load
distribution argument as frequently heard from certain advocates. Here is an architectural-level
(cf section What is Architecture) explanation why replication at the block layer is more easy
and less error prone:

Replication at Block Level vs FS Level

MARS Presentation by Thomas Schöbel-Theuer

Apache, PHP,
Mail Queues, etc

Page Cache,
Dentry Cache, ...

Filesystem Layer

Caching Layer

Block Layer

xfs, ext4, btrfs, zfs, …
vs nfs, Ceph, Swift, ...

2 Operation Types (r/w)
~ 1.000 Ops / s

Userspace
Application Layer

Hardware Hardware-RAID,
BBU, ...

1:100 reduction

K
er

n
el

sp
ac

e

Potential Cut Point A
for Distributed System

Potential Cut Point C
for Distributed System

Potential Cut Point B
for Distributed System

~ 25 Operation Types
~ 100.000 Ops / s

LVM,
DRBD / MARS

++ replication of VMs for free!

DSM = Distributed Shared Memory
=> Cache Coherence Problem!

The picture shows the main components of a standalone Unix / Linux system. It conforms to
Dijkstra’s layering rules explained in section Layering Rules and their Importance.
In the late 1970s / early 1980s, a so-called Buffer Cache had been introduced into the

architecture of Unix. Today’s Linux has refined the concept to various internal caches such
as the Page Cache (for data) and the Dentry Cache (for metadata lookup).

66

4.1. Performance Arguments from Architecture

All these caches serve one main purpose1: they are speeding up your application while re-
ducing the load onto the storage by exploitation of fast RAM. For the vast majority of typical2
workstation or server applications, which typically show good locality of reference, a well-
tuned cache can yield high cache hit ratios, typically 99%. In some cases (as observed in
practice) even more than 99.9%.
Now start distributing the system over long distances. There are potential cut points A and

B and C3.
Cut point A is application specific, and can have advantages because it has knowledge of the

application. For example, replication of mail queues can be controlled much more fine-grained
than at filesystem or block layer.
Cut points B and C are generic, supporting a wide variety of applications, without altering

them. Cutting at B means replication at filesystem layer. C means replication at block layer.
When replicating at B, you will notice that the caches are below your cut point. Thus you will

have to re-implement distributed caches, and you will have to maintain cache coherence.

Manager Hint 4.1: Distributed vs local caching vs spindle load distribution

In best case, distributed caching can never be any better than local caching (under
comparable conditions). In worst case, distributed caching can however drastically
slow down performance instead of improving it. The effect is kown in DSM =
Distributed Shared Memory research. It is related to thrashing, and may be called
distributed thrashing.

Local caching in shared RAM does not suffer from additional distribution effects.
In best case, it can yield up to several orders of magnitude of performance (depending on
the workingset behaviour of your application workload). The worst case isn’t worse than
necessary: well-implemented local caches cooperating with the kernel process scheduler
can limit some effects of local RAM thrashing, in case they should appear.

In contrast to local shared RAM caching, frequently heard spindle load distribu-
tion arguments can only re-distribute the already existing performance of your spindles,
but cannot magically “create” new sources of performance out of thin air. Anyway, their
potential is only about 1 order of magnitude.

Therefore, invests into local RAM for shared caching by the kernel may easily pay
off better than invests into a storage network.

Spindle load distribution can be also achieved via local RAID-10, but typically
much cheaper and more performant due to lower distances between the spindles and the
application RAM.

Compared to local RAID storage, spindle load distribution over a dedicated realtime storage
network is typically costing some performance, by introduction of additional latencies and
potential bottlenecks (see section Kirchhoff’s Law: Suitability of Storage Networks).
When replicating at C, the Linux caches are above your cut point. Thus you will receive much

1Another important purpose is providing shared memory for syscalls like mmap().
2Of course, there exist some exceptions. For example, capturing 100GBit network traffic in realtime and
then writing such a massive data stream to a local disk will not profit from local caching, but is slowed
down by the overhead of contemporary kernel memory architectures. See for example Christoph Lameter’s
presentation at LCA2020. In this case, data is never accessed twice, thus the locality of reference is at
it’s worst-case extreme, where caching cannot help by concept. At implementation level, a solution is to
use Direct IO on big physical memory chunks. Direct IO is designed for bypassing the page cache of the
kernel, and can co-exist with other applications utilizing the caches. Suchalike corner-case exceptions are
strengthening Denning’s WorkingSet theory (see section Explanations from DSM and WorkingSet Theory),
since the observed behaviour is predicted by his theory.

3In theory, there is another cut point D by implementing a generically distributed cache. There exists some
academic research on this, but practically usable enterprise-grade implementations are rare and not wide-
spread.

67

4. Architectures of Cloud Storage / Software Defined Storage

less traffic at C, typically already reduced by a factor of 100, or even more. This is much more
easy to cope with. Local caches and their SMP scaling properties can be implemented much
more efficiently than distributed ones. You will also profit from journalling filesystems like
ext4 or xfs. In contrast, truly distributed4 journalling is typically not available with distributed
cluster filesystems.
A potential drawback of block layer replication is that you will be typically limited to active-

passive replication. An active-active operation is generally not impossible at block layer (see
combinations of DRBD with ocfs2), but less common, and less safe to operate. For example,
Linbit does not recommend the active-active mode as supported by DRBD, while the newer
MARS feature called “Prosumer Device” can do it also for non-critical or non-performant pur-
poses, but this is also not recommended for block-level coupling of active-active filesystems
like ocfs2 when highly loaded, or when any non-predictable split-brain (see unavoidability in
section Explanation via CAP Theorem) cannot be easily resolved at higher layers.
This limitation / disrecommendation isn’t necessarily caused by the choice of layer. It is

simply caused by the laws of physics: communication is always limited by the speed of light.
A distributed filesystem is essentially nothing else but a persistent DSM = Distributed
Shared Memory.

Details 4.1: Pitfalls for Managers and Architects

When designing or comparing architectures or implementations, do not skip
reading section Explanations from DSM and WorkingSet Theory, even if it looks to you
like an “academic” explanation. These explanations are about important reasons for
project failures, and explaining why Distributed Systems are generally harder
than Local Systems.

Some decades of research on DSM have shown that there exist applications / workloads where
the DSM model is inferior to the direct communication paradigm. Even in short-distance /
cluster scenarios. Long-distance DSM is extremely cumbersome.
Therefore: you simply shouldn’t try to solve short or long-distance communication

needs via communication over shared filesystems. Even simple producer-consumer scenarios
(one-way communication) are less performant (e.g. when compared to plain TCP/IP) when it
comes to distributed POSIX semantics. There is simply too much synchronisation overhead
at metadata level.

Manager Hint 4.2:

If you want mixed operations at different locations in parallel: split your data set into
disjoint filesystem instances (or database / VM instances, etc). Then you should achieve
the ability for butterfly, see section Flexibility of Handover / Failover Granularities.

All you need is careful thought about the appropriate granularity of your data sets (such as
well-chosen sets of user homedirectory subtrees, or database sets logically belonging together,
etc). An example hierarchy of granularities is described in section Positive Example: ShaHoLin
storage + application stack. Further hints can be found in sections Granularity at Architecture
and Variants of Sharding.

Sharding (see section Definition of Sharding) implementations like ShaHoLin (see section
Positive Example: ShaHoLin storage + application stack) are essentially exploiting the scala-
bility of SMP = Symmetric MultiProcessing, nowadays typically going into saturation around
≈ 100 hardware CPU threads for typical workloads, which is executed by hardware inside of
your server enclosure. In contrast, DSM-like solutions are trying to distribute your application
workload over longer distances, involving relatively slow system software instead of hardware
acceleration. Therefore, SMP is preferable over DSM wherever possible.

4In this context, “truly” means that the POSIX semantics would be always guaranteed cluster-wide, and even
in case of partial failures. In practice, some distributed filesystems like NFS don’t even obey the POSIX
standard locally on 1 standalone client. We know of projects which have failed right because of this.

68

4.1. Performance Arguments from Architecture

Replication at filesystem level is often by single-file granularity. If you have several millions
or even billions of inodes, you may easily find yourself in a snakepit. See also Example Failures
of Scalability.

Manager Hint 4.3: Conclusion

Active-passive operation over long distances (such as between continents) at block
layer is an advantage . It keeps your staff from trying bad / almost impossible things,
like DSM = Distributed Shared Memory over long distances.

4.1.2. Performance Tradeoffs from Load Distribution
A frequent argument from BigCluster advocates is that the so-called Random Repliction would
provide better performance. This argument isn’t wrong, but it does not hit the point.
As analysed in section Similarities and Differences to Copysets, load distribution isn’t a

unique concept bound to BigCluster or to Random Replication. Load distribution has been
used since decades at a variety of RAID striping methods.
RAID striping levels like RAID-0 or RAID-10 or RAID-60 are known since decades, forming

a mature technology. Also known since the 1980s is that the size of a single striped RAID set
must not grow too big, otherwise reliability will suffer too much. Larger RAID systems are
therefore split into multiple RAID sets.
This has some intresting parallels to the BigCluster reliability problems analyzed in section

Detailed Explanation of BigCluster Reliability, and some workarounds, e.g. as discussed in
section Similarities and Differences to Copysets.
Summary: both RAID striping and random replication methods are limited by the funda-

mental law of storage systems, see section Optimum Reliability from Architecture, in a similar
way.
A detailed performane comparison at architcture level between random replication of variable-

sized objects and striping of block-level sectors is beyond the scope of this architecture guide.
However, the following should be be intuitively clear from section Layering Rules and their
Importance and from Einstein’s laws of the speed of light:

Fine-grained load distribution over short distances and/or at lower layers has a
bigger performance potential than over longer distances and/or at higher layers.

In other words: local SAS busses are capable of realtime IO transfers over very short distances
(enclosure-to-enclosure), while an expensive IP storage network with NOF � 1 isn’t realtime
(due to congestion control and/or packet loss, see section Kirchhoff’s Law: Suitability of Storage
Networks). SAS busses are constructed for dealing with requirements arising from RAID, and
have been optimized for years / decades.

Manager Hint 4.4: Advice for performance-critical workloads

Besides local SSDs, also consider some appropriate RAID striping at your (Lo-
cal)Sharding storage boxes for performance-critical workloads. It is not only cheaper
than BigCluster load distribution methods, but typically also more performant (on
top of comparable technology and comparable dimensioning). Tradeoffs of various
parameters and measurement methods for system architects are described at http:
//blkreplay.org.

RAID-6 is much cheaper5 than RAID-10, and can also provide some striping with respect
to (random) reads. However, random writes are slower. For read-intensive workloads, the
striping behaviour of RAID-6 is often sufficient. A tool for comparsion of different RAID setup
alternatives can be found at http://www.blkreplay.org.
5Several OSDs are also using SAS or similar local IO busses, in order to drive a high number of spindles.
Essentially, random replication is involving two different types of networks at the same time. This also
explains why such a combination must necessarily induce some performance loss.

69

http://blkreplay.org
http://blkreplay.org
http://www.blkreplay.org

4. Architectures of Cloud Storage / Software Defined Storage

4.2. Distributed vs Local: Scalability Arguments from
Architecture

Datacenters aren’t usually operated for fun or for hobby. Scalability of an architecture (cf section
What is Architecture) is important, because it can seriously limit your business. Architectural
ill-designs can grow extremely cumbersome and costly.
Some enterprise system architects are starting with a particular architecture in mind, called

“Big Cluster”. There is a common belief that otherwise scalability could not be achieved:

Badly Scaling Architecture: Big Cluster

MARS Presentation by Thomas Schöbel-Theuer

U
s

e
r

9
9

9
9

9
9

Internet O(n*k)

U
s

e
r

1
4

U
s

e
r

1
3

U
s

e
r

1
2

U
s

e
r

11

U
s

e
r

1
0

U
s

e
r

9

U
s

e
r

8

U
s

e
r

7

U
s

e
r

6

U
s

e
r

5

U
s

e
r

4

U
s

e
r

3

U
s

e
r

2

U
s

e
r

1

...

...

F
ro

n
te

n
d

 9
99

F
ro

n
te

n
d

 6

F
ro

n
te

n
d

 5

F
ro

n
te

n
d

 4

F
ro

n
te

n
d

 3

F
ro

n
te

n
d

 2

F
ro

n
te

n
d

 1

Internal Storage (or FS) Network

x
 2

 fo

r
g

e
o-

re
d

u
nd

an
cy

...
S

to
ra

g
e

99
9

S
to

ra
g

e
6

S
to

ra
g

e
5

S
to

ra
g

e
4

S
to

ra
g

e
3

S
to

ra
g

e
2

S
to

ra
g

e
1

O(n^2) REALTIME Access

like cross-bar

The crucial point is the storage network: n storage servers are interconnected with m = O(n)
frontend servers. The argument of BigCluster advocates is that this would be advantagous for
achieving desired properties like scalability, failure tolerance, etc. We will check this argument.
According to the idea behind BigCluster, any of the m frontends needs to access any of the

n storages in realtime. Thus the storage network must be dimensioned for O(n ·m) = O(n2)
network connections, potentially running in parallel. Even if the total network throughput
is scaling only with O(n), nevertheless O(n2) network connections have to be maintained at
connection oriented protocols and at various layers of the operating software. The network
must be able to switch the packets from n sources to m destinations (and their opposite way
back) in realtime.

Manager Hint 4.5:

The O(n2) cross-bar functionality in realtime makes the storage network compli-
cated and expensive, while decreasing grand-total reliability and thus increasing risk
(see also section Kirchhoff’s Law: Suitability of Storage Networks).

Details 4.2:

Factors increasing the risk and cost of storage networks:

• In order to limit error propagation from other networks, the storage network is
often built as a physically separate = dedicated network.

• Because dedicated storage networks are heavily reacting to high latencies and
packet loss (see section Kirchhoff’s Law: Suitability of Storage Networks), they

70

4.2. Distributed vs Local: Scalability Arguments from Architecture

often need to be dimensioned for the worst case (load peaks, packet storms,
etc), needing one of the best = typically most expensive components for reducing
latency and increasing throughput. Dimensioning to the worst case instead of
an average case plus some safety margins is an expensive overdimensioning /
over-engineering which has their own pitfalls.

• When multipathing is required for improving fault tolerance of the storage net-
work itself, (parts of) these efforts may easily double, and induce further pitfalls.

• When geo-redundancy is required (see section What is Geo-Redundancy), and
when it is possible with a certain BigCluster implementation at all, the total effort
may easily double another time because in cases of disasters like terrorist attacks
the backup datacenter must be prepared for taking over for multiple days or weeks.

A wide-spread pitfall is incorrect belief about section What is Geo-
Redundancy and its fundamental requirements.

There are certain products marketed as “geo-redundancy is possible” while
actually not matching the requirements for true geo-redundancy.

In general, storage networks won’t work over long distances (see section Kirchhoff’s Law:
Suitability of Storage Networks). Even it would be possible for a certain use case, asymmetry
problems would be introduced into an architecture which is conceptually symmetric by its
very nature. Thus, and generally in n : m relationships, failover granularities are tending to
stick to coarse. Finer granularites as discussed in section Flexibility of Handover / Failover
Granularities are much more difficult to achieve, if possible at all.
Fortunately, there is an alternative called “Sharding Architecture” or “Shared-nothing

Architecture”.

Definition of Sharding Notice that the term “Sharding” originates from database architecture
https://en.wikipedia.org/wiki/Shard_(database_architecture) where it has a slightly
different meaning than used here. Our usage of the term “sharding” reflects slightly different
situations in some webhosting companies6, and can be certainly transferred to more application
areas.
Our more specific use of the term “sharding” has the following properties, all at the same

time:

1. User / customer data is partitioned. This is similar to database sharding. However, the
original database term also allows some data to remain unpartitioned. In webhosting,
suchalike may exists also, but typically only for system data, like OS images, including
large parts of their configuration data. Suchalike system data is typically replicated to
thousands of nodes from a central “golden image” in an offline fashion, e.g. via regular
rsync cron jobs, etc. Typically, it comprises only of few gigabytes per instance and is
mostly read-only with a slow change rate, while total customer data is typically in the
range of some petabytes with a higher total change rate. For smaller n in the range of a
few hundreds of shards, sysadmins are typically prefering more convenient tools like Chef
or puppet & co.

2. The system has (almost7) no single point of contention, and thus the partitions
are completely independent from each other, like in shared-nothing architectures
https://en.wikipedia.org/wiki/Shared-nothing_architecture. However, the orig-
inal term “shared-nothing” has also been used for describing replicas, e.g. DRBD mirrors.

6According to https://en.wikipedia.org/wiki/Shared-nothing_architecture, Google also uses the term
“sharding” for a particular “shared-nothing architecture”. Although our above definition of “sharding” does
not fully comply with its original meaning, a similar usage by Google probably means that our usage of the
term is not completely uncommon.

7In general, there are some more natural single points of contention, such as the physical space of a datacenter,
which might be destroyed by an explosion, for example.

71

https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture

4. Architectures of Cloud Storage / Software Defined Storage

In our context of “sharding”, the shared-nothing principle only refers to the “no single
point of contention” principle at partitioning level, which means it only refers to to the
partitioning of the user data, but not to their replicas.

3. Shared-nothing replicas (e.g. in the sense of some DRBD descriptions) may be also present
(and in fact they are at 1&1 Shared Hosting Linux), but these replicas are considered
orthogonal to sharding. Customer data replicas form an independent dimension called
“replication layer”. The replication layer also obeys the shared-nothing principle in original
sense, but it is not meant by our term “sharding” in order to avoid confusion8 between
these two independent dimensions.

Conceptual separation of replication from sharding has some advantages. For example,
control over the replication degree k can be more fine-grained than at physical shard level. For
example, both DRBD and MARS are supporting this, by allowing a different number of replicas
for each logical resource.
The sharding architecture does not need a dedicated storage network in general, at least

when built and dimensioned properly. Instead, it should have (but not always needs) a so-
called replication network which can, when present, be dimensioned much smaller because
it does neither need realtime operations nor scalabiliy to O(k · n) or O(n2):

Well-Scaling Architecture: Sharding

MARS Presentation by Thomas Schöbel-Theuer

U
s

e
r

9
9

9
9

9
9

Internet O(n*k)

U
s

e
r

1
4

U
s

e
r

1
3

U
s

e
r

1
2

U
s

e
r

11

U
s

e
r

1
0

U
s

e
r

9

U
s

e
r

8

U
s

e
r

7

U
s

e
r

6

U
s

e
r

5

U
s

e
r

4

U
s

e
r

3

U
s

e
r

2

U
s

e
r

1

...

x
 2

 fo

r
g

e
o-

re
d

u
nd

an
cy

...

S
to

ra
g

e
+

 F
ro

n
te

n
d

 9
99

S
to

ra
g

e
+

 F
ro

n
te

n
d

 6

S
to

ra
g

e
+

 F
ro

n
te

n
d

 5

S
to

ra
g

e
+

 F
ro

n
te

n
d

 4

S
to

ra
g

e
+

 F
ro

n
te

n
d

 3

S
to

ra
g

e
+

 F
ro

n
te

n
d

 2

S
to

ra
g

e
+

 F
ro

n
te

n
d

 1

++ local scalability: spare RAID slots, ...

+
+

+
 b

ig
 s

ca
le

 o
u

t
 +

+
+

=> method really scales to petabytes

Smaller Replication Network for Batch Migration O(n)
+++ traffic shaping possible

Sharding architectures are extremely well suited when both the input traffic and the data is
already partitioned. For example, when several thousands or even millions of customers are
operating on disjoint data sets, like in web hosting where each webspace is residing in its own
home directory, or when each of millions of mySQL database instances has to be isolated from
its neighbour. Masses of customers are also appearing at cloud storage applications like Cloud
Filesystems (e.g. Dropbox or similar).
Even in cases when any customer may potentially access any of the data items residing in

the whole storage pool (e.g. like in a search engine), sharding can be often applied. The trick
is to create some relatively simple content-based dynamic switching or redirect mechanism in
the input network traffic, similar to HTTP load balancers or redirectors.

8Notice that typically BigCluster architectures are also abstracting away their replicas when talking about
their architecture.

72

4.2. Distributed vs Local: Scalability Arguments from Architecture

Only when partitioning of input traffic plus data is not possible in a reasonable way, big
cluster architectures as implemented for example in Ceph or Swift (and partly even possible
with MARS when restricted to the block layer) may have a use case.

Manager Hint 4.6:

When sharding is possible, it is the preferred model due to reliability and cost and
performance reasons.

Another good explanation can be found at http://www.benstopford.com/2009/11/24/
understanding-the-shared-nothing-architecture/.
Here is a simple example architecture for internet-based object stores / filesystems (dif-

ferences explained in section What is an Object Store), here intended for similar use cases like
DropBox & co (which are typically used by masses of end users for copies and/or backup of
their private filesystem data):

Shard #1 Shard #3 Shard #nShard #2

....

I n t e r n e t

Shard Gateway / Application Load Balancer

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

Frontend

Object Store

Local

or Filesystem or Filesystem or Filesystem or Filesystem

4.2.1. Variants of Sharding

LocalSharding The simplest possible sharding architecture is simply putting both the storage
and the compute CPU power onto the same iron.

Example 4.1: Dimensioning of 1&1 Shared Hosting Linux (ShaHoLin)

We have dimensioned several variants of this.

1. We are using 1U pizza boxes with local hardware RAID controllers with fast
hardware BBU cache and ~ 10 local disks for the majority of LXC container
instances where the “small-sized” customers (up to ~100 GB webspace per
customer) are residing. Since most customers have very small home directo-
ries with extremely many but small files, this is a very cost-efficient model.

2. Less than 1 permille of all customers have > 250 GB (up to 2TB) per home
directory. For these few customers we are using another dimensioning variant
of the same architecture: 4U servers with 48 high-capacity spindles on 3
RAID sets, delivering a total PV capacity of ~300 TB, which are then cut
down to ~10 LXC containers of ~30 TB each.

3. (currently in planning stage) An intermediate dimensioning between both
extremes could save some more cost, and hopefully improve reliability even
more, due to better pre-distribution of customer behaviour. The so-called
midclass could be dimensioned as 90 TB per 2U pizza box, roughly on 12
spindles. It would carry the customers between ~50 and ~250 GB webspace
each.

73

http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/

4. Architectures of Cloud Storage / Software Defined Storage

In order to operate this model at a bigger scale, you should consider the “container foot-
ball” method as described in section 4.2.3 and in football-user-manual.pdf.

RemoteSharding This variant needs a (possibly dedicated) storage network, which is however
only O(n) in total. Each storage server exports a block device over iSCSI (or over another
transport like MARS’ prosumer device) to at most O(k) dedicated compute nodes where
k is some constant.

Details 4.3: Hint 1

It is advisable to build this type of storage network with local switches and no
routers inbetween, in order to avoid O(n2)-style network architectures and traffic.
This reduces error propagation upon network failures. Keep the storage and the
compute nodes locally close to each other, e.g. in the same datacenter room, or
even in the same rack.

Details 4.4: Hint 2

Additionally, you can provide some (low-dimensioned) backbone for excep-
tional(!) cross-traffic between the local storage switches. Don’t plan to use any
realtime cross-traffic regularly, but only for clear cases of emergency! See also
explanation of NOF in section Kirchhoff’s Law: Suitability of Storage Networks.

In this model, a shard typically consists of one storage node plus k + 1 or k + 2
compute servers, introducing some additional failure redundancy within such a shard,
while retaining the “no single point of contention” property between the shards (according
to section Definition of Sharding).

FlexibleSharding This is a dynamic combination of LocalSharding and RemoteSharding, dy-
namically re-configurable, as explained below.

BigClusterSharding The sharding model can also be placed on top of a BigCluster model,
or possibly “internally” in such a model, leading to a similar effect. Whether this makes
sense needs some discussion. It can be used to reduce the logical BigCluster size from
O(n) to some O(k), such that it is no longer a “big cluster” but a “small cluster”, and
thus reducing the serious problems described in section Reliability Arguments from
Architecture to some degree.

Details 4.5: Some use cases for BigClusterSharding

This could make sense in the following use cases:

• When you already have invested into a big cluster, e.g. Ceph or Swift,
which does not really scale and/or does not really deliver the expected re-
liability. Some possible reasons for this are explained in section Reliability
Arguments from Architecture and subsection Explanations from DSM and
WorkingSet Theory.

• When you really need a single LV which is necessarily bigger than can be
reasonably built on top of local LVM. This means, you are likely claiming
that you really need strict consistency as provided by a block device on
more than 1 PB with current technology (2018). Examples are very big
enterprise databases like classical SAP (c.f. section 4.6), or if you really
need POSIX-compliance on a single big filesystem instance. Be conscious
when you think this is the only solution to your problem. Double-check or
triple-check whether there is really no other solution than creating such a
huge block device and/or such a huge filesystem instance. Such huge SPOFs
are tending to create similar problemsa as described in section 4.3 for similar

74

4.2. Distributed vs Local: Scalability Arguments from Architecture

reasons.
aRunning fsck or its Windows equivalents on huge filesystems is certainly no fun.

Details 4.6:

When building a new storage system, be sure to check the following use cases. You
should seriously consider a LocalSharding / RemoteSharding / FlexibleSharding model
in favor of BigClusterSharding when ...

• ... when more than 1 LV instance would be placed onto your “small cluster”
shards. Then a {Local,Remote,Flexible}Sharding model could be likely used
instead. Then the total overhead (total cost of ownership) introduced by a
BigCluster model but actually stripped down to a “SmallCluster” implementation
/ configuration should be examined separately. Does it really pay off?

• ... when there are legal requirements that you can tell at any time where your
data is. Typically, this is all else but easy on a BigCluster model, even when
stripped down to SmallCluster size.

4.2.2. FlexibleSharding

Notice that MARS’ new prosumer device feature (formerly called remote device, like a kind
of replacement for iSCSI) can not only be used for a RemoteSharding model, but could also be
used for implementing some sort of “big cluster” model at block layer. However, consider the
warnings for certain use cases from section Explanations from DSM and WorkingSet Theory.
If you deserve a very similar level of flexibility as promised by BigCluster, read on.

Models re-introducing some kind of O(n2) “big dedicated storage network”, considering the
potential connections, and O(n) considering the actual realtime connections during runtime,
are not the preferred model for MARS operations in large scale. Following is a compromize,
which tries to minimize the NOF explained in section Kirchhoff’s Law: Suitability of Storage
Networks.

The basic idea is that each server can (as far as necessary) operate both in server and in
client role, both at the same time, and individually for each resource.

Manager Hint 4.7:

Following is a super-model which combines both the “big cluster” and sharding models
at block layer in a very flexible way, without fully depending on O(n) realtime network
connections. The result is a similar flexibility than promised by BigCluster.

The following example shows only two servers from a pool consisting of hundreds or thousands
of servers:

75

4. Architectures of Cloud Storage / Software Defined Storage

Flexible MARS Sharding + Cluster-on-Demand

MARS Presentation by Thomas Schöbel-Theuer

VM1 VM2VM1

LV1

Hypervisor

LV3LV2

RAID

VM3 VM4

Hypervisor

LV5LV4

RAID

VM5

ISCSI
or
MARS
remote
device

any hypervisor works in client and/or server role
and preferably locally at the same time

The main difference to BigCluster is to use iSCSI or the MARS prosumer device only where
necessary. Preferably, local storage is divided into multiple Logical Volumes (LVs) via LVM,
which should be directly used locally by Virtual Machines (VMs), whenever possible. At abstract
architectual level, detail technologies KVM/qemu vs filesystem-based local LXC containers
make no real difference9.
In the above example, the left machine has relatively less CPU power or RAM than storage

capacity. Therefore, not all LVs could be instantiated locally at the same time without causing
operational problems, but some of them can be run locally. The example solution is to excep-
tionally(!) export LV3 to the right server, which has some otherwise unused CPU and RAM
capacity.
Notice that local operations of VMs doesn’t produce any storage network traffic at all. There-

fore, this is the preferred runtime configuration.
Only in cases of resource imbalance, such as (transient) CPU or RAM peaks (e.g. caused by

DDOS attacks), and only when the ability for butterfly (see section Flexibility of Handover
/ Failover Granularities) is not available10 or is not sufficienct, only then the following fallback
strategy is used: Some VMs or containers may then be run somewhere else over the network.
In a well-balanced and well-dimensioned system, this will be the vast minority, and should
be only used for dealing with timely load peaks, unforeseeable customer behaviour, etc.

Manager Hint 4.8:

Running (geo-)redundant VMs directly on the same servers as their storage
devices is a major cost reducer.

You simply don’t need to buy and operate 2 · (n+m) servers, but only about 2 · (max(n,m)+
m · ε) servers, where ε corresponds to some relative small extra resources needed by MARS.
In addition, shared memory can be exploited more efficiently.

In addition to this and to reduced networking cost, there are further cost savings at power
consumption, air conditioning, Height Units (HUs), number of HDDs, operating cost, etc as
9A way for abstracting many details between KVM and LXC is for example provided by libvirt.

10This may happen when a disaster has already destroyed one of your datacenters, and thus you are forced to
run in the surviving datacenter.

76

4.2. Distributed vs Local: Scalability Arguments from Architecture

explained in section Cost Arguments.

4.2.3. Principle of Background Migration
The sharding model needs a different approach to load balancing of storage space than the
big cluster model. There are serveral possibilities at different layers, each addressing different
granularities, starting from finest to coarsest:

• Moving per-customer data, typically at filesystem or database level via rsync or
mysqldump or similar.

Example 4.2: Fine-grained migration of customer home directories

At 1&1 Shared Hosting Linux, we have about 9 millions of customer home directo-
ries. We also have a script movespace.pl using incremental tar or rsync for their
moves. Now, if we would try to move around all of them this way, it could easily
take years or even decades for millions of extremely small home directories, due
to overhead like DNS updates etc. However, there exist a small handful of large
customer home directories in the terabyte range. For these, and only for these,
it is a clever idea to use movespace.pl because thereby the size of a LV can be
regulated more fine grained than at LV level.

• Dynamically growing the sizes of LVs during operations.

Example 4.3: Medium-grained extension of LVs

Football’s expand operation roughly does the following: lvresize followed by
marsadm resize followed by xfs_growfs or some equivalent filesystem-specific
operation.

• Moving whole LVs via MARS + Football, as shown in the following example:

Flexible MARS Background Migration

MARS Presentation by Thomas Schöbel-Theuer

VM1 VM2VM1

LV1

Hypervisor

LV3
primary

LV2

RAID

VM3 VM4

Hypervisor

LV5LV4

RAID

VM5

ISCSI
or
MARS
remote
device

=> any hypervisor may be source or destination of some LV replicas at the same time

LV3’
secondaryMARS replication

Any # replicas
k=1,2,3,… dynamically
creatable at any time
and anywhere

77

4. Architectures of Cloud Storage / Software Defined Storage

The idea of Football’s migrate operation is to dynamically create additional LV replicas for
the sake of background migration.

Example 4.4: using MARS as replication engine

• If not yet done, you should transparently introduce MARSa into your LVM-based
stack. If you don’t want more than k = 1 replicas in general, you can use the
so-called “standalone mode” of MARS.

• Optionally: once you have MARS in place, you may use iSCSI or the MARS
prosumer device or another means for exporting /dev/mars/lv3 to another hy-
pervisor. This might be the same hypervisor you want to migrate the data to, or it
could be another machine. This is not generally needed, but it help for achieving
a similar elasticity than promised by BigCluster.

• Now, for the sake of migration, you just create an additional replica at your target
server via marsadm join-resource. Optionally, this may be the same server where
the remote VM is already running at the moment. Wait until the additional
mirror has been fully synced in background, while your application is continuously
running and while the content of the LV is modified in parallel by your ordinary
applications running inside the VM.

• Then you do a primary handover to your mirror (or to any of multiple mirrors).
This is usually a matter of seconds. Newer versions of the prosumer device will
allow this without shutdown of your VM. With standardb iSCSI, you will typically
have to shortly shutdown the VM and to restart it a few seconds later.

• Once the application is running again at the old location or at another location,
you may delete the old replica via marsadm leave-resource and lvremove.

• Finally, you may re-use the freed-up space for something else (e.g. lvresize of
another LV followed by marsadm resize followed by xfs_growfs or similar). Or,
you may later migrate another (smaller) LV to this server, in order to re-use of
the free space, or similar.

• For the sake of hardware lifecycle, you may run a slightly different strategy:
evacuate the original source server completely via Football, and eventually decom-
mission it.

• In case you already have a redundant LV copy somewhere else, you may run a
similar procedure, but starting with k = 2 replicas, and temporarily increasing
the number of replicas to either k′ = 3 when moving each replica step-by-step, or
you may even directly go up to k′ = 4 in one step, thereby moving pairs at once.
Example: the latter variant is the default in the ShaHoLin configuration variant
of Football, internally called Tetris.
Technical details: see football.sh in the football/ directory of MARS, which
is a checkout of the Football sub-project, and football-user-manual.pdf.

• When already starting with k ≥ 3 LV replicas in the starting position, you may
have the luxury of using a lesser variant. For example, we have some mission-
critical servers at 1&1 Ionos which are running k = 4 replicas all the time on
relatively small but important LVs for extremely increased safety. Only in such
a case, you may have the freedom to temporarily decrease from k = 4 to k′ = 3
and then going up to k′′ = 4 again, before starting primary handover. This has
the advantage of requiring less temporary storage space for swapping some LV
replicas.

aWhen necessary, create the first MARS replica with marsadm create-resource on your already-
existing LV data, which will be retained unmodified, and restart your application again.

bThere are some iSCSI features like ALUA which should be able to handover an active session to
another storage box without interruption. However, the corresponding Linux documentation looks
very sparse, and the maturity status for Linux initiators / targets is unclear at the moment.

78

4.3. Reliability Arguments from Architecture

4.3. Reliability Arguments from Architecture
A contemporary common belief is that big clusters and their random replication methods
would provide better reliability than anything else. There are some practical observations at
1&1 and its daughter companies which cannot confirm this.
Similar experiences are part of a USENIX paper about copysets, see https://www.usenix.

org/system/files/conference/atc13/atc13-cidon.pdf. Their proposed solution is differ-
ent from the solution proposed here, but interestingly their problem analysis part contains
not only similar observations, but also comes to similar conclusions about random replication.
Citation from the abstract:

However, random replication is almost guaranteed to lose data in the common
scenario of simultaneous node failures due to cluster-wide power outages. [emphasis
added by me]

Stimulated by practical experiences from truly less disastrous scenarios than mass power out-
age, theoretical explanations were sought. Surprisingly, they clearly show by mathematical
arguments that LocalSharding is superior to BigCluster under practically important precon-
ditions.
We start with an intutitive explanation. A detailed mathematical description of the model

can be found in appendix A on page 165.

4.3.1. Storage Server Node Failures
4.3.1.1. Simple Intuitive Explanation in a Nutshell

Block-level replication systems like DRBD are constructed for LV or disk failover in local re-
dundancy scenarios. Or, when using MARS, even for geo-redundant failover scenarios. They
are traditionally dealing with pairs of servers, or with triples, etc. In order to get a storage
incident with them, both sides of a DRBD or MARS small-cluster (also called shard in section
Definition of Sharding) must have an incident at the same time.
In contrast, the random replication concept of big clusters is spreading huge masses of

objects over a huge number of nodes O(n), with some redundancy degree k denoting the number
of object replicas. As a consequence, any k node failures out of O(n) will make some objects
inaccessible, and thus produce an incident. For example, when k = 2 and n is equal for both
models, then any combination to two node failures occurring at the same time will lead to an
incident:

Reliability of Architectures: NODE failures

MARS Presentation by Thomas Schöbel-Theuer

...

...

...

...

=> no customer-visible incident

DRBD or MARS
simple pairs

Big Storage Cluster
e.g. Ceph, Swift, ...

k=2 replicas not enough
 => INCIDENT because objects are randomly

distributed across whole cluster

need k >= 3 replicas here

2 Node failure => ALL their disks are unreachable

Low probability for hitting the same pair,
even then: only 1 shard affected

=> low total downtime

Higher probability for hitting any 2 nodes,
then O(n) clients affected

=> much higher total downtime

same n O(n2) network

79

https://www.usenix.org/system/files/conference/atc13/atc13-cidon.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-cidon.pdf

4. Architectures of Cloud Storage / Software Defined Storage

Manager Hint 4.9:

Intuitively, it is easy to see that hitting both members of the same sharding pair at the
same time is less likely than hitting any two nodes of a big cluster. Therefore, sharding
provides better reliability, when built on top of comparable technology.

In addition: even when 1 shard out of n shards has an incident, the other n − 1 shards will
continue to run. In contrast, when a BigCluster has an incident, all application instances are
affected, due to uniform object distribution.

Manager Hint 4.10:

Another advantage of sharded pairs is smaller incident size.

If you are curious about some more details and more concrete behaviour, read on.

4.3.1.2. Detailed Explanation of BigCluster Reliability

The following analysis shows up some parallels to the well-known reliability loss caused by
RAID striping. The main difference is granularity: variable-sized objects are used in place of
fixed-size blocks. Therefore, this section is in reality about a fundamental property of data
distribution / striping.
It is only formulated in terms of BigCluster and random replication for didactic reasons,

because in the context of this architecture guide we need to compare with LocalSharding.
For the sake of simplicity, the following more detailed model is based on the following as-

sumptions:

• We are looking at storage node failures only. As observed from practice, this is the most
important failure granularity for causing incidents.

• Disk failures are regarded as already solved (e.g. by local RAID-6 or by the well-known
compensation mechanisms of big clusters). Only in case they don’t work, they are mapped
to node failures, and are already included in the probability of storage node failures.

• We only look at data replication with a redundancy degree of a relatively small k. CRC
methods are not modeled across storage nodes, but may be present internally at some
storage nodes, e.g. RAID-5 or RAID-6 or similar methods, or may be present internally
in some hardware devices, like SSDs or HDDs. Notice that distributed CRC methods
generally involve very high overhead, and won’t work in realtime across long distances
(geo-redundancy).

• We restrict ourselves to temporary / transient failures, without regarding permanent
data loss. Otherwise, the following differences between local-storage sharding architec-
tures and big clusters would become even worse. When loosing some physical storage
nodes forever in a big cluster, it is typically all else but easy to determine which data of
which application instances / customers have been affected, and which will need a restore
from backup.

• Storage network failures (parts, or as a whole) are ignored. Otherwise a fair comparison
between the architectures would become difficult. If they were taken into account, the
advantages of LocalSharding would become even bigger.

• We assume that the storage network (when present) forms no bottleneck. Network im-
plementations like TCP/IP versus Infiniband or similar are thus ignored.

This is roughly equivalent to NOF = 1 as explained in section Kirchhoff’s Law:
Suitability of Storage Networks. Although technically possible, this can grow extremely
expensive.

80

4.3. Reliability Arguments from Architecture

• Software failures / bugs are also ignored11. We are only comparing architectures here,
not their various implementations (see What is Architecture).

• The x axis shows the number of basic storage units n = x from an application perspec-
tive, meaning “usable storage” or “net amount of storage”. For simplicitiy of the model,
one basic application storage unit equals to the total disk space provided by one physical
storage node in the special case of k = 1 replicas.

Stated simply, this means that there is exactly 1 LV = 1 PV per each application
unit present at the x axis. So we have a total of exactly x LVs. Of course, you might
create a more elaborate model by introduction of some constant l ≥ 1 for a grand total of
l · x LVs on top of x = n PVs, but we don’t want to complexify our model unnecessarily.

Attention! when increasing the number of replicas k, the total number of storage
nodes needs to be increased accordingly. Typically, you will need to deploy k ·n phys-
ical storage nodes in order to get n net storage units from a user’s perspective.

Attention! k has a strong influence at the price tag of any of the competing ar-
chitectures. You cannot assume an “infinite amount of money”. Therefore, only relatively
small k are bearable for business cases.

• As already stated, we assume that the number of application instances is linearly scaling
with n. For simplicity, we assume that the number of applications running on the whole
pool is exactly n. Of course, you might also introduce some coupling constant here, but
don’t complexify the model unnecessarily.

• We assume that the storage nodes are (almost completely) filled with data (sectors with
RAID, and/or objects with BigCluster). Otherwise, the game would be pointless on
empty clusters / shards.

• We assume that the number of sectors / objects per storage node is “very large”. Some
examples: a logical volume of 4 TB has 1,000,000,000 sectors or object, each 4 KB in size.
A physical storage node providing 40 TB of storage will then provide 10 billions of sectors
/ objects.

• For the BigCluster architecture, we assume that all objects are always distributed to
O(n) nodes. We will later discuss some variants where it is distributed to less nodes.
This assumption is only for explaining the principal behaviour of data distribution
/ striping, and also for one of its variants called random replication. For simplicity of
the model, we assume a distribution via a uniform hash function. In general, the principal
behaviour would also work for many other distribution functions, such as RAID striping,
or even certain non-uniform hash functions over O(n) nodes. As discussed later, totally
different hash functions (e.g. distributing only to a constant number of nodes) would no
longer model a BigCluster architecture in our sense.
In the below example, we assume a uniform object distribution to exactly n nodes. Notice
that any other n′ = O(n) with n′ < n will produce similar results for n′ → ∞, but may
be better in detail for smaller n’.

• When random distribution / random replication methods are used at BigCluster object
stores, we assume that for any pair (or k-tuple) of storage nodes, the total number of
objects is so high that there always exists some objects which are present at all of the
nodes of any pair / k-tuple for any reasonable (small) k. This means, we assume not only
uniformity in random replication, but also that the total number of objects is practically
“infinite” compared to relatively small practical values of k.

For mathematically interested readers: be careful when trying to argue with the

11When assuming that the probability of bugs is increased by increased architectural complexity, a
LocalSharding model would likely win here also. However, such an assumption is difficult to justify, and
might be wrong, depending on many (unknown) factors.

81

4. Architectures of Cloud Storage / Software Defined Storage

probability to hit some object intersection for some given k-tuple of storage nodes while
n is a growing parameter. Even when such a single probability is declining with growing
both k and n, and even when the single probability for the existence of an intersection
somewhen gets lower than 1, this has an impact onto the total12 incident probability of
the whole BigCluster. In general, the number of such tuples is growing with O(

(
k·n
k

)
) =

O((k · n)!), which is even worse than an exponential growth. So, don’t forget to sum up
all probabilities even if a single one appears to be “neglectible”.

• For the LocalSharding architecture, called DRBDorMARS in the following graphics, we
assume that only local storage is used. For higher replication degrees k = 2, . . ., the
only occurring communication is among the pairs / triples / and so on (shards), but no
communication to other shards is necessary (cf Definition of Sharding).

The following assumptions are not part of the model, but are simplifying the below example
graphics. You may choose other parameter values than the following ones, without changing
the principal behaviour of the model, but then the example would become less intuitive for
humans.

• For simplicity of the example, we assume that any single storage server node used in either
architecture, including all of its local disks, has a reliability of 99.99% (four nines). This
means, the probability of a storage node failure is uniformly assumed as p = 0.0001.

• This means, during an observation period of T = 10, 000 operation hours, we will have a
total downtime of 1 hour per server in statistical average. For simplicity, we assume that
the failure probability of a single server does neither depend on previous13 failures nor on
the operating conditions of any other server. It is known that this is not true in general,
but otherwise our model would become extremely complex.

• More intuitively, our observation period of T = 10, 000 operation hours corresponds to
about 13 months, or slightly more than a year.

• Consequence: when operating a pool of 10,000 storage servers, then in statistical aver-
age there will be almost always one node which is failed at the moment. The overall
behaviour is like a “permanent incident” which has to be solved by the competing storage
architectures.

• Hint: the term “statistical average” is somewhat vague here, in order to not confuse
readers14. A more elaborate statistical model can be found in appendix A on page 165.

Let us start the comparison with a simple corner case: plain old servers with no further redun-
dancy, other than their local RAIDs. This naturally corresponds to k = 1 replicas when using
the DRBDorMARS architecture.
Now we apply the corner case of k = 1 replicas to both competing architectures, in order to

shed some spotlight at the fundamental properties of the architectures.
Under the precondition of k = 1 replicas, a failure at any one of the n servers has two possible

ways to influence the downtime from an application’s perspective:

1. LocalSharding (DRBDorMARS): downtime of 1 storage node only influences 1 application
unit depending on 1 basic storage unit. This is the case with the DRBDorMARS model,
because there is no communication between shards, and we assumed that 1 storage server
unit also carries exactly 1 application unit.

2. BigCluster: here the downtime of 1 storage node will tear down more than 1 application
unit, because any of the application units have spread their storage to more than 1 storage
node via uniform hashing (see assumptions above).

12Mathematical probabilties are always about a huge number of repetitions of a certain experiment. Even
when a single “failure experiment” does not always lead to an incident from a customer’s perspective, it can
contribute to the overall incident probability, when there is a chance, even when the chance is very low.

13Mathematically, we are using some Poisson process model here. Of course, it would be possible to use more
sophisticated models, but this might turn out as a major research undertakement.

14The problem is that sometimes more servers than average can be down, and sometimes less. Average values
should not be used in the mathematical model, but exact ones. However, humans can often better imagine
when provided with “average behaviour”, so we use it here just for ease of understanding.

82

4.3. Reliability Arguments from Architecture

For ease of understanding, let us zoom into the special case n = 2 and k = 1 for a moment.
These are the smallest numbers where you already can see the effect. In the following table,
we denote 4 possible status combinations out of 2 servers A and B, where the cells are showing
the number of application units influenced:

LocalSharding (DRBDorMARS) A up A down
B up 0 1

B down 1 2

BigCluster A up A down
B up 0 2

B down 2 2

What is the heart of the difference? While a single node failure at LocalSharding (DRBDor-
MARS) will tear down only the local application, the teardown produced at BigCluster will
spread to all of the n = 2 application units, because of the uniform hashing and because we
have only k = 1 replica.
Would it help to increase both n and k to larger values?
Let us first stay at k = 1, looking at the behaviour when n → ∞. The generalization to

bigger redundancy degrees k will follow later.
In the following graphics, the thick red line shows the behaviour for k = 1 PlainServers (which

is the same as k = 1 DRBDorMARS) with increasing number of storage units n, ranging from
1 to 10,000 storage units = number of servers for k = 1. Higher values of k ∈ [1, 4] are also
displayed in different colors, but we will discuss them later. All lines corresponding to the same
k are drawn in the same color. Notice that both the x and y axis are logscale:

1e-15

1e-10

1e-05

1

100000

1e+10

 1 10 100 1000 10000 100000

Thin Solid = Probability of SOME SERVICE incident
Dashed = SIZE argument = objects are completely independent

Ex
pe

ct
ed

 A
ve

ra
ge

 S
ER

VI
CE

 D
ow

nt
im

e
[h

ou
rs

 p
er

 ~
ye

ar
]

BASIC STORAGE-SERVER UNITS = PAIRS or TRIPLES etc = Application Instances

SERVICE_Comparison_of_Reversible_StorageNode_Failures

available-uptime-limit
PlainServers-with-Local-RAID

BigCluster-1-Replica
DRBD-or-MARS-2-Replica

BigCluster-2-Replica
BigCluster-2-Replica-SizeWeighted

DRBD-or-MARS-3-Replica
BigCluster-3-Replica

BigCluster-3-Replica-SizeWeighted
DRBD-or-MARS-4-Replica

BigCluster-4-Replica
BigCluster-4-Replica-SizeWeighted

First, we look at the red lines, corresponding to k = 1. The behaviour of the thick red line
should be rather clear in double logscale: with increasing number of servers at the x axis, the
total downtime y is also increasing. This forms a straight line in double logscale, where the
slope is 1 (proportional to n), and the distances between the start of the other colored lines are
multiples of 1/p for the given incident probability p.
Next, we are looking at the thin solid red line for BigCluster k = 1. Why is it converging

against the dotted grey line around n = 10000?

At n ≥ 10000 servers, there is a “permanent incident”. In statistical average, there is
approximately always some server down. Due to k = 1 replica, the whole cluster will then be

83

4. Architectures of Cloud Storage / Software Defined Storage

down from a user’s perspective. The thin dotted grey line denotes the total number of operation
hours to be executed for each n, so this is the limes line we are converging against for big enough
n.
This does not look nice from a user’s perspective. Can we heal the problem by deploying

more replicas k?
Let us look at the green solid lines, correponding to k = 2 replicas. Why is the thin green

BigCluster line also converging against the same dotted limes? And why is this happening
around the same point, around n ≈ 10000?

When you want to operate n = 10000 application instances with a replication degree of
k = 2 replicas, then you will need to deploy k ·n = 20000 storage servers. When you have 20000
storage servers, in statistical average about 2 of them will be down at the same time. When
k = 2 servers are down at the same time, again the whole cluster will be down from a user’s
perspective. Thus the green line is also converging against the grey dotted limes line, roughly
also around n ≈ 10000.
Why is the green thicker DRBDorMARS line much better?
In double logscale plot, it forms a parallel line to the corresponding red line. The distance is

conforming to 1/p. This means that the incident probability for hitting both members of the
same shard is improved by a factor of 10,000.
Finally, we look at all the other solid lines in any color. All the thin solid BigCluster lines

are converging against the same limes line, regardless of replication degree k, and around the
same n ≈ 10000. Why is this the case?
Because our BigCluster model as defined above will distribute all objects to all servers

uniformly, there will almost always exist some objects for which no replica is available at almost
any given point in time. This means, you will almost always have a permanent incident
involving the same number of nodes as your replication degree k, and in turn some of your
objects will not be accessible at all. This means, at around x = 10, 000 application units you
will loose almost any advantage from increasing the number of replicas. Adding more replicas
will no longer help at x ≥ 10, 000 application units.
Notice that the solid lines are showing the probability of some incident, disregarding the size

of the incident.
What’s about the dashed lines showing much better behaviour for BigCluster?

Under some further preconditions, it would be possible to argue with the size of incidents.
However, now a big fat warning.

Manager Hint 4.11: Size-weighted incident probabilities

When you are responsible for operations of thousands of servers, you should be very
conscious about preconditions for size-weighted downtime probabilities (dashed lines).
Otherwise you could risk both the health of your business, and your career.

Details 4.7: Some preconditions for size-weighted incident probabilities

In short:

• When your application, e.g. a smartphone app, consists of accessing only 1 ob-
ject at all during a reasonably long timeframe (say once per day), you can safely
assume that there is no interdependency between all of your objects. In
addition, you have to assume (and you should check) that your cluster operating
software as a whole does not introduce any further hidden / internala inter-
dependencies. Only in this case, and only then, you can take the dashed lines
arguing with the number of inaccessible objects instead of with the number of
distorted application units.

• Whenever your application uses bigger structured logical objects, such as

84

4.3. Reliability Arguments from Architecture

filesystems or block devices (cf section Negative Example: object store implemen-
tations mis-used as backend for block devices / directory or pointer structures
/ POSIX filesystems), and/or whole VMs / containers requiring strict consis-
tency, then you will get interdependent objects at your big cluster storage
layer.
Practical example: experienced sysadmins will confirm that even a data loss rate
of only 1/1,000,000 of blocks in a classical Linux filesystem like xfs or ext4 will
likely imply the need of an offline filesystem check (fsck), which is a major inci-
dent for the affected filesystem instance.
Theoretical explanation: servers are running for a very long time, and filesystems
are typically also mounted for a long time. Notice that the probability of hitting
any vital filesystem data roughly equals the probability of hitting any other data.
Sooner or later, any defective sector in the metadata structures or in freespace
management etc will stop your whole filesystem, and in turn will stop your appli-
cation instance(s) running on top of it.
Similar arguments hold for transient failures: most classical filesystems are not
constructed for compensation of hanging IO, typically leading to system hangs.

Blindly taking the dashed lines will expose you to a high risk of error. Practical
experience shows that there are often hidden dependencies in many applications, often
also at application level. You cannot necessarily see them when inspecting their data
structures! You will only notice some of them by analyzing their runtime behaviour,
e.g. with tools like strace. Notice that in general the runtime behaviour of an arbitrary
program is undecidable. Be cautious when drawing assumptions out of thin air!

Conversely, the assumption that any unaccessible object will halt your applica-
tion, might be too strong for some use cases. Therefore, some practical behaviour may
be inbetween the solid thin lines and the dashed lines of some given color. Be extremely
careful when constructing such an intermediate case. Remember that the plot is in
logscale, where constant factors will not make a huge difference. The above example
of a loss rate of 1/1,000,000 of sectors in a classical filesystem should not be extended
to lower values like 1/1,000,000,000 without knowing exactly how the filesystem works,
and how it will react in detail. The grey zone between the extreme cases thin solid vs
dashed is a dangerous zone!
aSeveral distributed filesystems are separating their metadata from application data. Advocates are

selling this as an advantage. However, in terms of reliability this is clearly a disadvantage. It
increases the breakdown surface. Some distributed filesystems are even centralizing their metadata,
sometimes via an ordinary database system, creating a SPOF = Single Point Of Failure. In case
of inconsistencies between data and metadata, e.g. resulting from an incident or from a software
bug, you will need the equivalent of a distributed fsck. Suchalike can easily turn into data loss
and other nightmares, such as node failures during the consistency check, for example when your
hardware is flaky and produces intermitting errors.

Manager Hint 4.12:

As a manager, if you want to stay at the safe side, simply obey the fundamental
law as explained in the next section:

4.3.2. Optimum Reliability from Architecture
Another potential argument from influencers could be: don’t distribute the BigCluster objects
to exactly n nodes, but to less nodes. Would the result be better than DRBDorMARS-like
LocalSharding?
Actually, several BigCluster implementations are doing similar measures, in order to

workaround problems analyzed in the previous subsections of Reliability Arguments from Archi-

85

4. Architectures of Cloud Storage / Software Defined Storage

tecture. There are various terms for suchalike measures, like placement groups (Ceph), copysets
(Facebook), buckets (generic object stores), etc.
When distributing to O(k′) nodes with some constant k′, we have no longer a BigCluster

architecture, but a mixed BigClusterSharding form in our terminology.
As can be generalized from the above tables, the reliability of any BigCluster on k′ > k

nodes is always worse than the reliability of LocalSharding on exactly k nodes, where k is
also the redundancy degree. In general:

The LocalSharding model is the optimum model for reliability
of operation, compared to any other model truly distributing
its data and operations over truly more nodes, like Remote-
Sharding or BigClusterSharding or BigCluster does.

There exists no better model because shards consisting of exactly k nodes where k is the
redundancy degree, are already the smallest possible shards under the assumptions of section
4.3.1.2. Any other model truly involving k′ > k nodes for distribution of objects at any shard
is always worse in the dimension of reliability. Thus the above sentence follows by induction.

Manager Hint 4.13:

The above sentence is formulating a fundamental law of storage systems. An
intuitive formulation for humans:

Spread your per-application data to as less nodes as pos-
sible.

This includes unnecessary spreading between dedicated client and server machines, in
place of local storage. Thus LocalSharding is the best architectural model.

This is intuitive: the more nodes are involved for storing the same data belonging to the same
application instance (i.e. belonging to the same LV), the higher the risk that any of them can
fail.

Consequence: the concept of random replication15 tries to do the opposite of this,
by its very nature. Thus:

Manager Hint 4.14:

The concept of random replication does not work as expected.

This does not imply that random replication does not generally work at all. Section
Explanations from DSM and WorkingSet Theory mentions a few use cases where it appears
to work in practice. However, after investing a lot of effort / energy / money into a very
complicated architecture and several implementations, the outcome is worse = non-optimal
in the dimension of reliability.

There exist some workarounds as discussed in section Similarities and Differences to Copy-
sets. These can only patch the most urgent architectural problems, such that operation remains
bearable in practice. They cannot fix the Dijkstra regression overhead explained in section
Negative Example: object store implementations mis-used as backend for block devices / direc-
tory or pointer structures / POSIX filesystems. The above plot explains why even workarounds
are far from optimal for a given fixed16 redundancy degree k.
15A very picky argument might be: random distribution could be viewed as orthogonal to random replication,

by separating the concept “distribution” from the concept “replication”. Then the above sentence should be
re-formulated, using “random distribution” instead. However notice than random replication + distribution
on exactly n ·k nodes would degenerate, since it no longer is really “random”, but only has the freedom degree
of a “permutation”.

16As explained in section Cost Arguments from Architecture, several BigCluster best practices are typically
requiring k = 3 replicas. Some advocates have taken this as granted. For a fair comparison with Sharding,
they will need to compare with k = 3 LV replicas.

86

4.3. Reliability Arguments from Architecture

Manager Hint 4.15: Real storage management cost from workarounds

There was an original promise from BigCluster advocates years ago: near-zero technical
management effort for storage. Just add an arbitrary number of new storage nodes to
the storage network, at more or less arbitrary physical locations, and done. The rest
should have been configured and load-balanced automatically.
This promise has been fulfilled only partly. In addition to increased CAPEX cost from
at least k = 3 replica, workarounds like placement groups (and internal modelling
of physical placement hierarchies like segments / rooms / racks and physical network
topologies) are inducing OPEX cost: some human effort for dimensioning of hardware
and placement / planning will remain, at least in bigger installations.
So an original BigCluster USP = Unique Selling Point does not really work as originally
expected, due to fundamental laws of storage systems.

Manager Hint 4.16: Summary from a management viewpoint

Under comparable conditions for big installations, random replication is requiring
more invest than Sharding (e.g. more client/server hardware and an O(n2) realtime
storage network), in order to get a worse result in the risk dimension.

4.3.3. Error Propagation to Client Mountpoints

This section deals with a pathological setup. Best practice is to avoid such pathologies.

The following is only applicable when filesystems or whole object pools (buckets) are
exported over a storage network, in order to be mounted in parallel at O(n) mountpoints
each.

In other words: somebody is trying to make all server data available at all clients. In spirit,
this is also some BigCluster-like way of thinking. It just relates to the filesystem layer, c.f.
section Performance Arguments from Architecture.

In such a scenario, any problem / incident inside of your storage pool and/or their the storage-
side filesystem instances (e.g. exported via NFS & co) will be spread to O(n) clients, leading
to an increase of the incident size by a factor of O(n) when measured in number of affected
mountpoints. Notice that this may be different from the number of clients.

Notice the slopes in the following plot. Some are correponding to n2, and thus are even
worse than in the previous plot:

87

4. Architectures of Cloud Storage / Software Defined Storage

1e-15

1e-10

1e-05

1

100000

1e+10

1e+15

 1 10 100 1000 10000 100000

Thin Solid = MOUNTPOINTS affected
Dashed = SIZE argument = objects are completely independent

Ex
pe

ct
ed

 A
ve

ra
ge

 M
O

UN
TP

O
IN

TS
 D

ow
nt

im
e

[h
ou

rs
 p

er
 ~

ye
ar

]

BASIC STORAGE-SERVER UNITS = PAIRS or TRIPLES etc = Application Instances

MOUNTPOINTS_Comparison_of_Reversible_StorageNode_Failures

available-uptime-limit
PlainServers-with-Local-RAID

BigCluster-1-Replica
DRBD-or-MARS-2-Replica

BigCluster-2-Replica
BigCluster-2-Replica-SizeWeighted

DRBD-or-MARS-3-Replica
BigCluster-3-Replica

BigCluster-3-Replica-SizeWeighted
DRBD-or-MARS-4-Replica

BigCluster-4-Replica
BigCluster-4-Replica-SizeWeighted

As a result, we now have a total of O(n2) mountpoints = our new basic application units17.

The problem is worse than explained in section Explanations from DSM and WorkingSet
Theory, or in Example Failures of Scalability where a disaster already occurred at n = 6.
Suchalike O(n2) architectures are simply hazardous. Thus a clear warning: don’t try to build
systems in such a way.

Do not believe that the problem can be fixed by O(k) spreading mounts in place of
O(n), when k is assumed as a “small” constant > 1. It may be possible to reduce the size of the
problem space. But it cannot remove the fundamental law of storage systems. Even k = 2 is
typically an unnecessary factor for the incident expectance value. Do not plan unnecessary
spreading, whether some more or less “constant” k or some “unbounded” n. Just do not play
with the fire when HA is important for enterprise-critical use cases.
Notice: DRBD or MARS are traditionally used for running the application on the same

box as the storage. Thus they are not vulnerable to these kinds of failure propagation over
network. Even with traditional iSCSI exports over DRBD or MARS, you won’t have suchalike
problems, because the traditional iSCSI model disallows multiple mounts of the same filesystem
in parallel. Your only chance to increase the error propagation over multiple clients are O(k) or
O(n) NFS or glusterfs & co exports to O(k) or O(n) clients each, leading to a total number
of O(k · n) or O(n2) mountpoints, or similar setups.

Manager Hint 4.17: Clear advice

Do not plan O(k · n) or O(n2) mountpoints in total. It is a bad idea.

4.3.4. Similarities and Differences to Copysets
This section is mostly of academic interest. You can skip it when looking for practical advice.
17If you like, please create another mathematical model in terms of number of clients, instead of the number of

mountpoints. Though the plot curves will be different, and certainly will explain an interesting behaviour,
the management conclusions will not change too much.

88

4.3. Reliability Arguments from Architecture

The USENIX paper about copysets (see https://www.usenix.org/system/files/
conference/atc13/atc13-cidon.pdf) relates to our analysis of BigCluster vs Sharding in
the following way:

Similarities Both are concluding: the concept of Random Replication of the storage data to
large number of machines will reduce reliability. When chosing too big sets of storage machines,
then the storage system as a whole will become practically unusable. This is common sense
between the USENIX paper and the analysis from section Detailed Explanation of BigCluster
Reliability.

Differences The USENIX paper and many other Cloud Storage approaches are presuming
that there exists a storage network, allowing real-time distribution of replicas over this kind of
network.
In contrast, the Sharding Approach to Cloud Storage tries to avoid real-time storage net-

works as much as possible. Notice that RemoteSharding and further variants (including future
improvements) do not preclude it, but are trying to avoid real-time storage network traffic, due
to reasons explained in section Kirchhoff’s Law: Suitability of Storage Networks. Instead, the
load-balancing problem is addressed via background data migration.
This changes the timely granularity of data access: while BigCluster is transferring each IO

request over the storage network in realtime, nothing is transferred over an external network
at LocalSharding, provided that no migration is necessary. Typically, migrations are a rare
exception. Normally, the data is already close to the consumer. Only in rare situations
when migration is needed, local IO transfers are shifted over to external migration processes.
The outcome of a successful migration is that local IO is then sufficient again.
In essence, Football is an optimizer for data proximity: always try to keep the data as

close18 to the consumers as possible.
In detail, there are some more differences to the USENIX paper. Some examples:

• Terminology: the scatter width S is defined (see page 39 of the paper) as: each node’s
data is split uniformly across a group of S other nodes. In difference, we neither assume
uniformity, nor do we require the data to be distributed to other nodes. By using the term
“other”, the USENIX paper (as well as many other BigCluster approaches) are probably
presuming something like a distinction between “client” and “server” machines: while data
processing is done on a “client machine”, data storage is on a “server machine”.

In contrast, MARS uses the client-server paradigm at a different granularity: each
machine can act in client role and/or in server role at the same time, and individually for
each LV. Thus it is possible to use local storage.

• We don’t disallow conventional network-centric client-server machines in variants like
RemoteSharding or FlexibleSharding and so on, but we gave some arguments why we
are trying to avoid this.

• It seems that some definitions in the USENIX paper may implicitly relate to “each chunk”.
In contrast, the Sharding Approach typically relates to LVs = Logical Volumes. Probably,
LVs could be viewed as a special case of “chunk”, e.g. by minimizing the number of chunks
in a system. However notice: there exists definitions of “chunk” where it is the basic
transfer unit. An LV has the fundamental property that small-granularity updates in
place (at any offset inside the LV) can be executed.

• Notice: we do not preclude further fine-grained distribution of LV data at lower levels,
such at LVM level and/or below, but this is something which should be avoided if not
absolutely necessary (see Optimum Reliability from Architecture). Preferred method in
typical practical use cases: some storage servers may have some spare RAID slots to be
populated later, by resizing the PVs = Physical Volumes before resizing LVs. Another
alternative is dynamic runtime extension of SAS busses, by addition of external enclosures.

18When the many local SAS busses are also viewed as a network, and when these are logically united with the
replication network to a bigger logical network which is heterogenous at physical level: Football does nothing
else but trying to offload all IO requests to the local SAS networks, instead of overloading the wide-area IP
network. In essence, this is a specialized traffic scheduling strategy for a two-level network.

89

https://www.usenix.org/system/files/conference/atc13/atc13-cidon.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-cidon.pdf

4. Architectures of Cloud Storage / Software Defined Storage

• Notice that a typical local RAID system is also a Distributed System, according to some
reasonable definition. Typical RAID implementations just involve SAS cables instead of
Ethernet cables or Infiniband cables. Notice that this also applies to many “Commodity
Hardware” approaches, like Ceph storage nodes driving dozens of local HDDs connected
over SAS or SATA. The main difference is just that instead of a hardware RAID controller,
a hardware HBA = Host Bus Adapter is used instead. Instead of Ethernet switches, SAS
multiplexers in backplanes are used. Anyway, this forms a locally distributed sub-system.

• The USENIX paper needs to treat the following parameters as more or less fixed (or only
slowly changable) constants, given by the system designer: the replication degree R,
and the scatter width S. In contrast, the replication degree k of our Sharding Approach
is not necessarily firmly given by the system, but can be dynamically changed at
runtime at per-LV granularity. For example, during background migration via MARS
the command marsadm join-resource is used for dynamic creating additional per-LV
replicas. However notice: this freedom is limited by the total number of deployed hardware
nodes. If you want k = 3 replicas at the whole pool, then you will need to (dynamically)
deploy at least about k ∗ x nodes in general.

• The USENIX paper defines its copysets on a per-chunk basis. Similarly to before, we
might transfer this definition to a Sharding Approach by relating it to a per-LV basis. As
a side effect, a copyset can then trivially become identical to S when the definition is S
is also changed to a per-LV basis, analogously. In the Sharding Approach, a distinction is
not absolutely necessary, while the USENIX paper has to invest some effort into clarifying
the relationship between S and copysets as defined on a BigCluster model.

• Neglecting the mentioned differences, we see our typical use case (LocalSharding) roughly
equivalent to S = R in the terminology of the USENIX paper, or to S = k (our number
of replicas) in our terminology.

• This means: LocalSharding tries to minimize the size of S for any given per-LV k, which
will lead to the best possible reliability (under the conditions described in section Detailed
Explanation of BigCluster Reliability) as has been shown in section Optimum Reliability
from Architecture.

Another parallel comes to mind: classical RAID striping has introduced the concept of
RAID sets since decades. Similarly to random replication, RAID striping is motivated by
load distribution. Similarly to our previous discussion, this induces some cost. This is not only
about RAID-0 vs RAID-10 by introduction of some more replicas19. It is a general problem
caused by too high stripe spreading. When a single striped RAID set would grow too big,
reliability would suffer too much. Thus multiple smaller RAID sets are traditionally used in
place of a single big one20. This is somewhat similar to copysets, when taking the spread
factor S as analog to the RAID set size, by using objects in place of sector stripes, and a few
other differences like using some well-known stripe distribution function in place of random
replication. Compare with section Optimum Reliability from Architecture: RAID sets are just
another example workaround for consequences from the fundamental law of storage systems.

4.3.5. Explanations from DSM and WorkingSet Theory
When looking for practical advice, just read the below example use cases, and skip the rest,
which is mostly of academic interest.
This section tries to explain the BigCluster incidents observed at some 1&1 Ionos doughter

from a different perspective. In the OS literature and community, DSM = Distributed Shared
Memory and Denning’s workingset theory from the 1960s are typically attributed to a different
research area.

19Random replication is be more like RAID-01: first all the physical disks are striped, then replicas are created
on top of it. Reversing this order would be more similar to RAID-10, and could lead to an improvement
of random replication. However, this would contradict to a basic idea of BigCluster, that you can add any
number of storage nodes at any time. Instead of adding an odd number of OSDs, each potentially of different
size, now an even number needs to be added for k = 2 replicas, or equal-sized triples for k = 3,etc.

20Practical example from experience: for RAID-60, a typical RAID-6 sub-set should not exceed 12 to 15 spindles.

90

4.3. Reliability Arguments from Architecture

Example 4.5: Example use cases for BigCluster

Personal discussions with some prominent promoters of Ceph found some informal agree-
ments about some use cases where BigCluster appears to be well suited:

• Large collections of audio / video files. These are never modified in place, but
written once, and then streamed . Thus it is possible to use relatively large object
sizes, or even 1 video file = 1 object. Then streaming involves only a low number of
objects at the same time, down to a per-application parallelism degree of typically
only 1.

• Measurement data like in CERN physics experiments, where often some streaming
model is predominant.

• Backups and long-term archives, when also accomplished via streaming.

Example 4.6: Example problems for BigCluster

In contrast to this, here are some other use cases where BigCluster did not meet expec-
tations of some people at 1&1 Ionos:

• Virtual block devices involving strict consistency on top of a very high number
of small “unreliable” / eventually consistent objects.

• CephFS with highly parallel random updates to a huge number of files /
inodes, also involving strict consistency in some places (e.g. concurrent metadata
updates belonging to the same directory).

Here is a first attempt to explain these behavioural observations from a more generalized view-
point. The author is open for discussion, and will modify this part upon better understanding.
For the following, you will need profound21 knowledge in Operating System Principles (aka

Theory of Operating Systems).
Ceph & co are apparently shining at use cases where the object paradigm is naturally well-

suited for the application behaviour.
Application behaviour has been studied in the 1970s. Theorists know that in general it is

unpredictable due to Turing Completeness, but practical obervations are revealing some frequent
behavioural patterns. Otherwise, caching would not be beneficial in practice.
While Denning had studied and modelled application behaviour for typical drum storage

devices of his era, later DSM people stumbled over similar problems: the frequency of access
to needed data can grow much higher than the channel / transport capacities can22 provide.
Denning and Saltzer coined a term for this: thrashing.
Thrashing means that more time is spent by fetching data than by working with it, because

the transports are overloaded. As Denning observed, thrashing essentially means that the
system becomes unusable by customers. Thrashing is a highly non-linear self-amplifying
effect, similar to traffic jams at highways: one it has started, it will worsen itself.

Hint for research 4.1:

Although some historic descriptions of thrashing are mentioning contemporary hardware
devices like drum storage, the concept is very universal. Thrashing can be transferred
and generalized to modern instances of storage pyramids, and/or also to remote
access over network bottlenecks.

Saltzer found a workaround for his contemporary batch operating systems: limit the parallelism
degree of concurrently running batch jobs. In his Multics project, this was also transferred to
interactive systems, by limiting the swap-in parallelism degree of his contemporary segment
21In addition to standard Operating System text books like Silberschatz or Tanenbaum, you may need to consult

some of the original work of further authors mentioned above.
22In general, this is unavoidable. In a storage pyramid, the CPU is always able to access RAM pages with a

much higher frequency than any (R)DMA transport can supply.

91

4. Architectures of Cloud Storage / Software Defined Storage

swapping methods. Although this may sound counter-intuitive for modern readers: by intro-
duction of a certain type of artificial limitation at or around the non-linear regression point,
the user experience was improved .
Now comes a conclusion: when thrashing occurs in a modern BigCluster model for whatever

reason, the self-amplification will be likely worse than in a LocalSharding model, due to the
following reasons:

• Overload propagation: when some parts of the O(n2) storage network are overloaded,
other parts may also become affected in turn, due to sharing of network resources, such
as cross-traffic lines. Once queueing has started somewhere, it is likely to worsen, and
likely to induce further queueing at other parts of the shared network. The more other
parts are affected transitively, the more parts will get overloaded. So the overload, once
it has started somewhere, has a higher probabilty for spreading out even to parts which
were not overloaded before (self-amplification at BigCluster level).

• Random replication of objects adds artificial randomness to the locality of reference ,
as described by Denning.

• Original DSM was trying to provide a strict or near-strict consistency model for appli-
cation programmers. Later research then tried some weaker consistency models, without
getting a final breakthrough for general use cases. BigCluster is similarly organized to
DSM, but on slow remote storage instead of logically shared remote RAM over fast RDMA.
Thus we can expect similar problems as observed by the DSM community, like single
points of contention, etc. These might become even worse once they have appeared.

In a nutshell: system stability under overload conditions, once they have started somewhere,
is highly non-linear, and tends to spread23, and to self-amplify.
In contrast, sharding models are not spreading any overload to other shards by definition.

So the total availability from the viewpoint of the total set of customers is less vulnerable to
impacts.

Manager Hint 4.18: Risk characterization in a nutshell

While BigCluster increases the risk of spread-out of overload and other stability problems
similarly to a domino effect, Sharding is restricting those risks by fencing.

In the above use cases where BigCluster is shining, overload is unlikely, since the parallelism
of object access is limited. This is somewhat similar to Saltzer’s historic workaround for trashing.
Streaming at application behaviour level will translate into streaming at the network layer.
Classical TCP networks dealing with a relatively low number of high-throuhput streaming
connections are just constructed for dealing with packet loss, such as caused by overload, e.g.
by their congestion control24 algorithms.

In contrast, an extremely high number of parallel short connections would be similar to
a “SYN flood attack”, or similar to a classical UDP packet storm. It would allow for a much
higher parallelism degree, but will be more vulnerable to packet loss / packet storm effects /
etc, and more vulnerable to self-amplification. These application behaviour types are avoided
in the above use case examples for BigCluster.

23In the past, advocates of BigCluster have placed the argument that BigCluster can equallay distribute the
total application load onto O(n) storage servers, so a single overloaded client will get better performance
than in a sharding model. This argument contains the implicit assumption that load distribution is behaving
linearly, or close to that. However, Denning and Saltzer found that system reaction due to overload by
workingset behaviour is extremely non-linear, and may completely tear down systems even when only slightly
overloaded. Although there may exist some areas where the assumption of linearity is correct and may lead
to improvements by better load distribution, “unpredictable” behaviour due to self-amplification of overload
at BigCluster level may result in the opposite. Denning has provided a mathematical model for this, which
could probably be transferred to modern application behaviour.

24Recommended reading: the papers from Sally Floyd.

92

4.4. Scalability Arguments from Architecture

In addition, storing video files as immutable BLOBs will limit the randomness of locality
of references, while splitting into millions of very small objects may easily lead to an explosion
of randomness by some orders of magnitude.

4.4. Scalability Arguments from Architecture
In this section, the term “scalability” is used in its contemporary traditional form, not yet
conforming the new definition as proposed in appendix B on page 167. Otherwise, the con-
temporary confusion about scalability could be even intensified. We start with some
background about this confusion.

Details 4.8: Some Sources of Confusion

People are less prone to confusion if they (a) know Amdahl’s law (see https://
en.wikipedia.org/wiki/Amdahl%27s_law), and (b) know and obey the preconditions
when this law is applicable, and when it must not be applied.

People are typically more prone to confusion if they (a) are only citing Gustafson’s
law (see https://en.wikipedia.org/wiki/Gustafson%27s_law) without also consid-
ering Amdahl’s law and further laws / theories including their preconditions and ap-
plicability, and/or (b) are misinterpreting the slope parameter at Gustafson, and/or
(c) do not account for the context / use cases for which Gustafson’s law was formu-
lated.

Manager Hint 4.19: Importance of Scalability

Scalability is important for mass data / mass production. It determines the technical
limits of scaling effects. Bad scalability can seriously limit the business, and its
resolvement can produce high cost.

Unfortunately, in some circles, seriously wrong habits have established. I know of examples
causing unnecessary problems and cost in the range of millions of €.
Some people are talking about scalability by (1) looking at a relatively small example cluster

implementation of their respective (pre-)chosen architecture having n machines or n network
components or running n application instances, and then (2) extrapolating its behaviour to
bigger n. They think if it runs with small n, it will also run for bigger n.
This way of thinking and acting is completely broken, and can endanger both companies and

careers.
This is not only because of confusion of “architecture” with “implementation”, cf section What

is Architecture. It is also fundamentally broken because it assumes some “linearity” in a
field which is non-linear by definition .
If scalability would be linear, the term would not be useful at all, because there would be no

limit. However, limits exist in practice, and the term “scalability” is a means for describing
the behaviour at or around the limit.
Another incorrect way of ill-defining / ill-using the term “scalability” is looking at some

relatively big example cluster, which is working in practice for some particular use case,
and then concluding that it will also work in another use case. Arguing with an example of a
working system is wrong by construction. In general, examples can only be used for disproving
something, but never as a positive proof of concept25.
Examples for suchalike examples: section Explanations from DSM and WorkingSet Theory

mentions some use cases where BigCluster architecture implementations via Ceph are shin-
ing. These example use cases are showing some commonalities, like relatively low performance
25Unfortunately, the term PoC = Proof Of Concept is used wrongly in large parts of the industry. It should

be termed PoI = Proof of Implementation, or VoI = Validation of Implementation or CoI = Check of
Implementation instead. A concept can have multiple implementations, but only one of them has been
actually checked in most cases.

93

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Gustafson%27s_law

4. Architectures of Cloud Storage / Software Defined Storage

demands at the storage, and relatively low IO parallelism degree26, and streaming-like access
patterns. However, it also mentions some other use cases, where it did not work as expected.

Humans are selective in their perception. Evolution has created this, for our protection
against overload in the information flood. Unfortunately, looking only at some positive use case
examples, while either not knowing or ignoring other counter-examples, can be dangerous.

Every storage system on this globe has always some scalability limit, somewhere.
Even the internet has some limit. Scalability is always a non-linear behaviour. In order to
find the practical limit, you must reach it.

y

Scaling

Zone

Zone

Limited Regression

x

Satu−

ration

Zone
Zone

|<A. "currently scalable"> |<−C. "limited scalable"−> |<−B. "unscalable"−>

S
c
a
la

b
il
it

y
 L

im
it

Typically, the overall scalability behaviour can be divided into several zones. Only in the scaling
zone, some near-linear behaviour can be expected. Next comes the saturation zone, where the
effects of inherent system limits are already retarding progress. After exeeding the scalability
limit, typically no further progress is happening. Upon overload, many(!) systems are even
reacting with a regression.
Any serious study should consciously deal with all of these zones, possibly only except the

regression27 zone when measuring real-life systems which need to conform to some SLAs.

There exists no excuse for omission28 of the limit. When the limit is unknown, then
you simply must not claim a certain scalability!

Example use cases are principally insufficient for proving general scalability behaviour,
as well as for comparing the scalability of architectures and/or of certain implementations.
Examples can only be used for disproving scalability.

Caution: when a particular implementation does not work as expected, this does not
26Example: many people are not aware that Apache is acting like a fork bomb. When thousands of Apache

processes are running in parallel, a parallelism of several thousands of IO requests may occasionally occur
during peaks, although caches will serve them most of the time. Certain storage systems are reacting with
instability, sometimes even when “hammered” only once with a very short but massive overload peak.

27Entering the regression zone might possibly lead to destruction of certain systems, or to other damages. Then
it is acceptable to not enter it. It would honorable to mention any risks associated with suchlike overload
behaviour.

28Several years ago, I attended a presentation at an OpenSource conference. It was about scalability of a Java
programming environment for some SMP machines. The presenter showed some nice graphics, however
showing only the scaling zone of the measured performance of his demo application. He publicly claimed
“arbitrary scalability”. After the talk, I tried to meet him downstairs in the arena of the theater, in order
to ask him under 4 eyes whether he had seen some limit somewhere. His very short answer was “there is no
limit”, completely unwilling to talk to me at all, and very quickly leaving the theater upstairs from the arena
(by skipping intermediate stairs like in sports, and taking 2 or 3 stairs with his legs at each of his very long
steps).

Before that, no attendee had publicly asked a similar question, and the very short public discussion was
only about a high number of use cases where the new tool would be highly beneficial.

Theoretically, he could have meant the scalability of his tool, independently from running on any hardware.
However, he did not talk about this, and his presented measurement data was about end-to-end performance
of his demo application, measured on a certain hardware. Thus his claim was definitely wrong.

Unfortunately, a similar “methodology” seems to have been copied by more and more presenters. The
problem is not only wrong claims. The problem is that managers and other decision makers can lose a lot of
money when believing false claims or even fake results.

94

4.4. Scalability Arguments from Architecture

generally prove that the corresponding concept / architecture does not work at all. There may
be bugs and other sources of error in the particular implementation, which just need to be
fixed .

Manager Hint 4.20: Required skill level for architects

The suitability of architectures for certain use cases needs to be checked
separately. This is an expert task, requiring high levels of skills and experience.

Cross-checking by several experts may lead into systematical ill-designs by infor-
mation bubbles. Well-foundation of arguments, well-founded measurements on basis
of solid methodology, etc, are much more important than number of votes!

4.4.1. Example Failures of Scalability

Manager Hint 4.21: Recommended reading

The following example is a must read not only for responsibles, but also for system
architects, and also for sysadmins.

The numbers and some details are from my memory, thus it need not be 100% accurate in all
places.
It is about an operation environment for a new product, which was a proprietary web page

editor running under a very complicated variant of a LAMP29 stack.
The setup started with a BigCluster architecture, but actually sized as a “SmallCluster”

implementation.

Setup 1 (NFS) The first setup consisted of n = 6 storage servers, each replicated to another
datacenter via DRBD. Each server was exporting its filesystems via NFS to about the same
number of client servers, where Apache/PHP was supposed to serve the HTTP requests from the
customers, which were entering the client cluster via a HTTP load balancer. The load balancer
was supposed to spread the HTTP load to the client servers in a round-robin fashion.

Details 4.9:

At this point, eager readers may notice some similarity with the error propagation
problem treated in section Error Propagation to Client Mountpoints. Notice that this
is about scalability instead, but you should compare with that, to find some similarities.

After the complicated system was built up and was working well enough, the new product was
launched via a marketing campaign with free trial accounts, limited to some time.
So the number of customers was ramping up from 0 to about 20,000 within a few weeks.

When about 20,000 customers were running on the client machines, system hangs were noticed,
from a customer’s perspective. When too many customers were pressing the “save” button in
parallel on reasonably large web page projects, a big number of small files, including a huge
bunch of small image files, was generated over a short period of time. A few customers were
pressing the “save” button several times a minute, each time re-creating all of these files again
and again from the proprietary web page generator. Result: the whole system appeared to
hang.
However, all of the servers, including the storage servers, were almost idle with respect to

CPU consumption. RAM sizes were also no problem.
After investigating the problem for a while, it was noticed that the network was the bot-

tleneck, but not in terms of throughput. The internal sockets were forming some queues
which were delaying the NFS requests in some ping-pong like fashion, almost resulting in a

29LAMP = Linux Apache Mysql PHP

95

4. Architectures of Cloud Storage / Software Defined Storage

“deadlock” from a customer’s perspective (a better term would be distributed livelock or
distributed thrashing, c.f. section Explanations from DSM and WorkingSet Theory.

Setup 2 (ocfs2) Due to some external investigations and recommendations, the system was
converted from NFS to ocfs2. Now DRBD was operated in active-active mode. Only one
system software component was replaced with another one, without altering the BigCluster
architecture, and without changing the number of servers, which remained a stripped-down
SmallCluster implementation.
Result: the problem with the “hangs” disappeared.
However, after the number of customers had exceeded the next scalability limit of about

30,000 customers, the “hang” problem appeared once again, in a similar way. The system
showed systematical incidents again.

Setup 3 (glusterfs as a substitute for NFS / ocfs2) After investigating the network queue-
ing behaviour and the lock contention problems of ocfs2, the next solution was glusterfs.
However, when the number of customers exceeded the next scalability limit, which was

about 50,000 customers, some of them hammering the cluster with their “save” button, the
“hangs” appeared again.

Setup 4 (glusterfs replication as a substitute for DRBD) After analyzing the problem
once again, it was discovered by accident that drbdadm disconnect appeared to “solve” the
problem.
Therefore DRBD was replaced with glusterfs replication. There exists a glusterfs feature

allowing replication of files at filesystem level.
This attempt was immediately resulting in an almost fatal disaster, and thus was stopped

immediately: the cluster completely broke down. Almost nothing was working anymore.
The problem was even worse: switching off the glusterfs replication and rollback to DRBD

did not work. The system remained unusable.
As a temporary workaround, drbdadm disconnect was improving the situation enough for

some humbling operation.

Details 4.10:

Retrospective explanation: some of the reasons can be found in section Behaviour
of DRBD. glusterfs replication does not scale at all because it stores its replication
information at per-inode granularity in EAs (extended attributes). This must neces-
sarily be worse than DRBD, because there were some hundreds of millions of them in
total as reported by df -i (see the cut point discussion in section Performance Argu-
ments from Architecture, and section Granularity at Architecture). Overnight in some
cron jobs, these EAs had to be deleted in reasonably sized batches in order to become
more or less “operable” again.

Setup5 (Sharding on top of DRBD) After the almost fatal incident had been resolved to a
less critical one, the responsibility for setup was taken over by another person. After the O(n2)
behaviour from section Distributed vs Local: Scalability Arguments from Architecture had been
understood, and after it was clear that sharding is only O(k) from a customer’s perspective,
it was the final solution. Now the problem was resolved at architectural level , no longer by
just replacing some components with some others (c.f. section What is Architecture).
The system was converted to a variant of a RemoteSharding model (see section Variants of

Sharding), and some migrate scripts were introduced for load balancing of customer homedi-
rectories and databases between shards.
As a side effect, the load balancer became a new role: instead of spreading all of the HTTP

requests to all of the client servers in a round-robin fashion, it now acted as a redirection
mechanism at shard granularity, e.g. when one of the client servers was handed over to another
one for maintenance.

96

4.4. Scalability Arguments from Architecture

Details 4.11:

Retrospective explanation: DRBD was definitely not the real reason for the critical
incident. The replication traffic per shard is so low in average that until today, no
replacement by MARS was absolutely necessarya, although the distance is over 50 km. If
you wonder why such low write traffic demands can cause such a big incident: look at the
cache reduction graphics in section Performance Arguments from Architecture. Today,
the “save” buttons of the customers are just triggering some extra writebacks from the
Page Cache of the kernel into the block layer, after some delay. These writebacks are not
performance critical in reality, because the Page Cache is running them asynchronously
in background .

In contrast, distributed filesystems like NFS or ocfs2 or glusterfs are not work-
ing asynchronously in many places, but will often schedule their requests synchronously
into ordinary network queues, which form a sequential bottleneck, competing with
other high-frequent filesystem operations. In addition, the “save” button triggers masses
of metadata / inode updates in a short time, often residing in the same directory. Such
a directory may thus form a “global” bottleneck. When suchalike competing metadata
updates are distributed via a round-robin load balancer, the problem can easily become
critical by the cache coherence problem. While local filesystems can smoothen such
application behaviour via the Dentry Cache plus Inode Cache, which also show some
asynchronous writeback behaviour, network filesystems are often unable to deal with
this performantly.

Although DRBD has a similar sequential bottleneck at the low-frequency block
layer by its write-through strategy into its replica, this does not really matter: all other
writebacks from the Page Cache are also started asynchronously, and triggered low-
frequently, and are occurring after some delay (which in turn will smoothen the spikes
caused by mass dirtification of many small files and inodes in a short time as caused
by the “save” button), and thus are not really performance critical for this particular use
case.
aMany sysadmins are running a conservative strategy: never touch a running system...

This is a striking example why careful selection of granularity level (filesystem vs block
layer, see section Performance Arguments from Architecture) is essential.

This is also a striking example why asynchronous operations can form a huge advantage
in certain use cases.
The sharding setup is working until today, scaling up to the current number of customers,

which is more than an order of magnitude, in the range of about a million of customers. Of
course, the number of shards had to be increased, but this is just what sharding is about.

4.4.2. Properties of Storage Scalability

4.4.2.1. Influence Factors at Scalability

In general, scalability of storage systems may depend on the following factors (list may be
incomplete):

1. The application class, in particular its principal workingset behaviour (in both di-
mensions: timely and locality). More explanations about workingsets can be found in
section Explanations from DSM and WorkingSet Theory and at http://blkreplay.org.

2. The size x of the application data and/or the number of application instances (pos-
sibly also denoted by x), and the amount of storage needed for it (could be also termed
x). Besides the data itself, the corresponding metadata (inodes, indexes, etc) can form

97

http://blkreplay.org

4. Architectures of Cloud Storage / Software Defined Storage

an important factor, or can even dominate the whole story. Typically, critical datacenter
application data is tremendously differently sized from workstation data.

Caution! Some people think erronously that scalability would be linearly depend-
ing on x. However, as is known at least since the 1960s (read some ancient papers from
Saltzer and/or from Denning), scalability is never linear, but sometimes even disrup-
tive , in particular when RAM size is the bottleneck. IO queues and/or networking queues
are often also reacting to overload in a disruptive fashion. This means: after exceeding
the scalability limit of a particular system for its particular class of applications, the
system will very likely break down from a customer’s perspective, sometimes almost
completely, and sometimes even fatally .

On the other hand, some other systems are reacting with graceful degradation.
Whether a particular systems reacts to a particular type of (over)load, either with graceful
degradation, or with fatal disruption, or with some intermediate behaviour, is some sort
of “quality property” of the system and/or of the application.

EVERY SYSTEM, even sharded systems, and even the internet as a whole, has
always some scalability limit somewhere. There exists no “inifinitely scaling” system
on earth!

3. The distribution of the application behaviour in both timely and locality dimensions.
Depending on the application class, this is often an exponential distribution according to
Zipf’s law. By erronously assuming an equal distribution (or a Gaussian distribution)
instead of actually measuring the distribution in both dimensions, you can easily induce
zillions of costly problems for big x, or even fatal failure of the whole system / project.

4. The transformation of the application workingset behaviour at architectural level, some-
times caused by certain components resp their specific implementation or parameteriza-
tion. Examples are intermediate virtualization layers, e.g. vmware *.vmdk or KVM
*.qcow2 container formats which can completely change the game, not only in extreme
cases. Another example is random distribution to (or random replication inside of)
object stores, which can turn some uncomplicated sequential workloads into highly prob-
lematic random IO workloads. See also section Similarities and Differences to Copysets.
Don’t overlook such potential pitfalls!

5. The storage architecture to be chosen, such as CentralStorage vs BigCluster vs
*Sharding. Choice of the wrong architecture can be fatal for big n and/or for certain
timely / spatial application behaviour. Changing an architecture during operations on
some petabytes of data and/or some billions of inodes can be almost impossible, and/or
can consume a lot of time and money.

6. The number of storage nodes n. In some architectures, addition of more nodes can make
the system worse instead of better, c.f. section Reliability Arguments from Architecture.

7. In case of architectures relying on a storage network: choice of layer for cut point, e.g.
filesystem layer vs block layer, see section Performance Arguments from Architecture,
and/or introduction of an additional intermediate object storage layer (which can result
in major degradation from an architectural view). Due to fundamental differences in dis-
tributed vs local cache coherence, suchalike can have a tremendous effect on scalability.

8. The chosen implementation of the architecture. Be sure to understand the difference
between an architecture and an implementation of that architecture (section What is
Architecture).

9. The size and types / properties of various caches at various layers. You need to know
the general properties of inclusive vs exclusive cache architecture. You absolutely need
to know what thrashing is, and under which conditions it can occur.

98

4.4. Scalability Arguments from Architecture

It is advantagous for system architects to know30 pre-loading strategies, as well as re-
placement strategies. It is advantageous to know what LRU or MFU means, what their
induced overhead is, and how they really work on actual data, not just on some artifi-
cial lab data. You also should know what an anomaly is, and how it can be produced
not only by FIFO strategies, but also by certain types of ill-designed multi-layer caching.
Beware: there are places where FIFO-like behaviour is almost impossible to avoid, such
as networks. All of these is outside the scope of this MARS manual. You should mea-
sure, when possible, the overhead of cache implementations. I know of examples where
caching is counter-productive. For example, certain types and implementations of SSD
caches are over-hyped. Removing a certain cache will then improve the situation. Notice:
caches are conceptually based on some type of associative memory, which is either very
fast but costly when directly implemented in hardware, or it can suffer from tremendous
performance penalties when implemented inappropriately in software.

10. Hardware dimensioning of the implementation: choice of storage hardware, for each
storage node. This includes SSDs vs HDDs, their attachment (e.g. SAS multiplexing
bottlenecks), RAID level, and controller limitations, etc.

11. Only for architectures relying on a dedicated realtime storage network: network through-
put and network latencies, and network bottlenecks, including the queueing be-
haviour / congestion control / packet loss behaviour upon overload. The latter is
often neglected, leading to unexpected behaviour at load peaks, and/or leading to costly
over-engineering (examples see section Example Failures of Scalability, and theoretical
explanation in section Kirchhoff’s Law: Suitability of Storage Networks).

12. Hidden bottlenecks of various types. A complete enumeration is almost impossible,
because there are too many “opportunities”. To reduce the latter, my general advice is to
try to build bigger systems as simple as possible. This is why you should involve some
real experts in storage systems, at least on critical enterprise data.

Any of these factors can be dangerous when not carefully thought about and treated,
depending on your use case.

4.4.3. Case Study: Example Scalability Scenario

To get an impression what “enterprise critical data” can mean in a concrete example, here are
some characteristic numbers from 1&1 Ionos ShaHoLin (Shared Hosting Linux) around spring
2018.
When the whole system would have to be re-constructed from scratch at a green field, the

following number from the current implemenation would be requirered input parameters for any
potential solution architecture, such as CentralStorage vs BigCluster vs Sharding:

• Webhosting very close to 24/7/365.

• Overall customer-visible HA target of 99.98%, including WAN outages. Technically, a
much better system-only HA target would be possible, but there are also some external
incident sources like frequent updates of userspace software and a varity of application
software libraries, frequent security updates, etc. Although managed by ITIL processes,
these sources are outside of the scope of this system architecture guide.

• About 9 millions of customer home directories.

• About 10 billions of inodes, with daily incremental backup.

• More than 4 petabytes of net data (total df filling level) in spring 2018, with a growth
rate of 21% per year.

30Reading a few Wikipedia articles does not count as “knowledge”. You need to be able to apply your knowdedge
to enterprise level systems (as opposed to workstation-sized systems), sustainable and reproducible. Therefore
you need to have actually worked in the matter and gained some extraordinary experiences, on top of deep
understanding of the matter.

99

4. Architectures of Cloud Storage / Software Defined Storage

• All of this permanently replicated into a second datacenter.

• In catastrophic failure scenarios, all resources must be switchable within a short time.

In order to not bail out too many competing solutions via preconditions, the following is treated
as a nice-to-have feature (only for the sake of the following sandbox game, while in reality the
sysadmins would vote for a hard requirement instead):

• Ability for butterfly, cf section Flexibility of Handover / Failover Granularities.

For simplicity of our architectural sandbox game, we assume that all of this is in one campus.
In reality, about 30% is residing at another continent. Introducing this as an additional input
parameter would not fundamentally change the game. Many other factors, like dependencies
from existing infrastructure, are also neglected.

4.4.3.1. Theoretical Solution: CentralStorage

Let us assume somebody would try to operate this on classical CentralStorage, and let us
assume that migration of this amount of data including billions of inodes would be no technical
problem. What would be the outcome?
With current technology, finding a single CentralStorage appliance would be all else but

easy. Dimensioning would be needed for the lifetime of such a solution, which is at least 5
years. In five years, the data would grow by a factor of about 1.215 = 2.6, which is then about
10.5 petabytes. This is only the net capacity; at hardware layer much more is needed for spare
space and for local redundancy. The single CentralStorage instance will need to scale up to
at least this number, in each datacenter (under the simplified game assumptions).
The current number of client LXC containers is about 2600, independently from location. You

will have to support growth in number of them. For maintenance, these need to be switchable
to a different geo-datacenter at any time (e.g. risk mitigation of power supply maintenance in a
datacenter), at least at hypervisor granularity. As explained in sections Flexibility of Handover
/ Failover Granularities and What is Location Transparency, handover should be at per-VM
granularity, otherwise you would cause a regression in operability. The number of bare metal
servers running the total workload can vary with hardware architecture / hardware lifecycle, and
with growth, such as already demonstrated during the course of internal “Efficiency projects”.
You will need to dimension a dedicated storage network for all of this, such that the NOF as
explained in section Kirchhoff’s Law: Suitability of Storage Networks will not grow too high.
If you find a solution which can do this with current CentralStorage technology for the next

5 years, then you will have to ensure that restore from backup31 can be done in less than 1 day
in case of a fatal disaster, see also treatment of CentralStorage reliability in section Reliability
Differences CentralStorage vs Sharding. Notice that the current self-built backup solution for
a total of 15 billions of inodes is based on a sharding model; converting this to some more or
less centralized solution would turn out as another challenge.

Attention! Buying 10 or 50 or 100 CentralStorage instances does not count as a
CentralStorage architecture. By definition, suchalike would be RemoteSharding instead. No-
tice that the current 1&1 solution is already a mixture of LocalSharding and RemoteSharding,
so you would win nothing at architectural level.

In case you actually would want to build a RemoteSharding model on top of commercial
storage, you need to consider Cost Arguments from Technology.
In your business case, you would need to justify the price difference between the current

component-based hardware solution (horizontally extensible by scale-out) and CentralStorage
/ RemoteSharding, which is about a factor of 10 per terabyte according to the table in section
Cost Arguments from Technology. Even if you manage to find a vendor who is willing to
subsidize to a factor of only 3, this is not all you need. You need to add the cost for the
dedicated storage network. On top of this, you need to account for the migration cost after

31Local snapshots, whether LVM or via some COW filesystem, do not count as backups (see section What is
Replication). You need a logical copy, not a physical one, in case your production filesystem instance gets
fatally damaged, such that fsck won’t help anymore.

100

4.4. Scalability Arguments from Architecture

the lifetime of 5 years has passed, where the full data set needs to be migrated to a successor
storage system.
Notice that classical argumentations with manpower will not work. The current operat-

ing team is about 10 persons, with no dedicated storage admin. This relatively small team is
not only operating a total of more than 6,000 shared boxes in all datacenters, but also some
tenthousands of managed dedicated servers, running essentially the same software stack, with
practically fully automated mass deployment. Most of their tasks are related to central soft-
ware installation, which is then automatically distributed, and to operation / monitoring /
troubleshooting of masses of client servers. Storage administration tasks in isolation are costing
only a fraction of this. Typical claims that CentralStorage would require less manpower will
not work here. Almost everything which is needed for mass automation is already automated.

Neglecting the tenthousands of managed dedicated servers would be a catastrophic ill-
design. Their hardware is already given, by existing customer contracts, some of them decades
old. Although it may be possible to modify some of these contracts, you simply cannot funda-
mentally change all the hardware of these customers including their dedicated local disks, which
was / is their main selling point. You cannot simply convert them to a shared CentralStorage,
even if it would be technically possible, and if it would deliver similar IOPS rates than tent-
housands of local spindles (and if you could reach the bundled performance of local SSDs from
newer contracts), and even if you would introduce some interesting storage classes for all of
this. A dedicated server on top of a shared storage is no longer a dedicated one. You would
have to migrate these customers to another product, with all of its consequences. Alone for
these machines, most32 of the current automation of LocalStorage is needed anyway, although
they are not geo-redundant at current stage.
Conclusion: CentralStorage is simply unrealistic.

4.4.3.2. Theoretical Solution: BigCluster

The main problem of BigCluster is reliability, as explained intuitively in section Reliability
Arguments from Architecture, and graphically in section Detailed Explanation of BigCluster
Reliability, and mathematically in appendix A on page 165, and as observed in several installa-
tions not working as expected. It would be a bad idea to ignore the explanations from section
Explanations from DSM and WorkingSet Theory.
Let us assume that all of these massive technical problems were solved, somehow. Then the

business case would have to deal with the following:
The total number of servers would need to be roughly doubled33. Not only their CAPEX,

but also the corresponding OPEX (electrical power, rackspace, manpower) would increase.
Alone their current electrical power cost, including cooling, is more than the current sysadmin
manpower cost. Datacenter operations would also increase. On top, a properly dimensioned
dedicated storage network and its administration cost would also be needed.
With respect to the tenthousands of managed dedicated servers and their customer contracts,

a similar argument as above holds. You simply cannot convert them to BigCluster.
Conclusion: BigCluster is also unrealistic. There is nothing to win, but a lot to loose.

4.4.3.3. Current Solution: LocalSharding, sometimes RemoteSharding

Short story: the architecture as well its current implementation works since decades, and is
both cheap and robust since geo-redundancy had been added around 2010.
With the advent of Football (see football-user-manual.pdf), the LocalSharding archi-

tecture is raising up on par with the most important management abilities of CentralStorage
and BigCluster / Software Defined Storage.
Pre-configured RemoteSharding on top of dedicated Linux-based storage boxes is currently

being reduced in favour of the cheaper and more reliable LocalSharding combined with Foot-
ball. The dedicated storage boxes are almost EOL due to their age, and should vanish some
day.
32Only a few out of >1000 self-built or customized Debian packages are dealing with MARS and/or with the

clustermanager cm3.
33One of the problems of the current Ceph implementation is its massive consumption of CPU power and RAM.

Even if this would be improved in future, the architectural drawbacks will remain.

101

4. Architectures of Cloud Storage / Software Defined Storage

There is another story about tenthousands of managed dedicated servers: without the tradi-
tional ShaHoLin sharding architecture and all of its automation, including the newest addition
called Football, the product “managed dedicated servers” would not be possible in this scale.
By definition, the dedicated server product is a sharding implementation. Thanks to football,
further business opportunities like migration onto virtualized shared hardware (with optional
resource partitioning) are possible.
Summay: the sharded “shared” product enables another “dedicated” product, which is sharded

by definition, and it actually is known to scale up by at least another order of magnitude (in
terms of number of servers).

4.4.4. Scalability of Filesystem Layer vs Block Layer
Following factors are known to be responsible for better architectural (cf section What is Ar-
chitecture) scalability of the block layer vs the filesystem layer, with a few exceptions (list may
be incomplete):

1. Granularity of access: metadata is often smaller than the content data it refers to,
but access to data is typically not possible without accessing corresponding metadata
first. When masses of metadata are present (e.g. some billions of inodes like in section
Case Study: Example Scalability Scenario), and/or when metadata is accessed more
frequently than the corresponding data (e.g. in stateless designs like Apache), it is
likely to become the bottleneck.

Neglecting metadata and their access patterns is a major source of ill-designs. I
know of projects which have failed (in their original setup) because of this. Repair may
involve some non-trivial architectural changes.

By default, the block layer itself has almost34 no metadata at all. Therefore it has
an inherent advantage over the filesystem layer in such use cases.

2. Caching: shared memory caches in kernelspace (e.g. Linux page cache + dentry cache)
vs distributed caches over loosely coupling via networks. See the picture in section Perfor-
mance Arguments from Architecture: caches are one of the most important performance
boosters, which are more or less required for today’s performance expectations / require-
ments (at least for non-trivial load patterns). While local caches are nowadays typically
scaling reasonably well to more than 100 CPUs on modern SMP / NUMA systems, dis-
tributed caches have a long-standing academic history of expectation failures, or even
project failures.

There exist examples where shared distributed caches did not work at all. Fre-
quently, this has to do with strict consistency requirements, and with runtime access
patterns. I know of several projects which have failed. Another project than mentioned
in section Example Failures of Scalability has failed because of violations of POSIX filesys-
tem semantics.

Conversely, the absence of POSIX-like requirements for filesystems and/or relaxed
consistency like “eventually consistent” does not prove that distributed caches will work
better than local ones. Please recall the picture from section Performance Arguments
from Architecture and compare with the thrashing problems described in section Ex-
planations from DSM and WorkingSet Theory. Thrashing will typically not be improved
when running over loosely coupled RAM-to-RAM-to-Disk transfers, in place of traditional
local caching.

In addition, having multiple nested caches over several instances and their layers
are typically not only in conflict with Dijkstra’s rules. They can easily increase the total
complexity of Distributed Systems and their implementation / testing overhead.
Loosely coupled systems are typically prone to more complex failure scenarios (cf

34There may be tiny metadata, such as describing the size of the whole block device.

102

4.4. Scalability Arguments from Architecture

section Reliability Arguments from Architecture).

Short summary: distributed exclusive caches are typically worsening the total re-
liability, while distributed inclusive caches are often complexifying the recovery of node
failures.

Attention: do not believe that node failures cannot create more or less “artificial”
data inconsistencies. The famous CAP theorem is also valid for distributed caches!

3. Only in non-trivial distributed systems: the cache coherence problem, both on meta-
data and on data, and/or on interactions between them. Depending on load patterns,
this can lead to tremendous performance degradation, see example in section Example
Failures of Scalability.

To repeat once again: loosely coupled systems and their caches are typically prone
to more complex failure scenarios (cf section Reliability Arguments from Architecture),
making failure recovery more complex.

4. Dimensioning of the network: throughput, latencies, queueing behaviour. See NOF in
section Kirchhoff’s Law: Suitability of Storage Networks.

There exist a few known exceptions (list may be incomplete, please report further examples if
you know some):

• Databases: these are typically operating on specific container formats, where no frequent
external metadata access is necessary, and where no sharing of the container as such is
necessary. Typically, there is no big performance difference between storing them in block
devices vs local filesystems (although it could be viewed as a minor Dijkstra regression).

Exception from the exception: MyISAM is an old design from the 1980s, originally
based on DBASE data structures under MSDOS. Don’t try to access them over NFS or
similar. Or, better, try to avoid them at all if possible.

• VM images: these are logical BLOBS, so there is typically no big difference whether they
are in an intermediate true filesystem layer, or not.

Filesystems on top of object stores (see section Granularity at Architecture) are no
true intermediate filesystems. They are typically violating Dijkstra’s important layering
rules (see section Layering Rules and their Importance) at several places. A similar
argument holds for block devices on top of object stores. Another layering violation
may result from VM container formats like *.vmdk or *.qcow2, which cannot always be
avoided. Be warned that such container formats themselves can act as game changers
with respect to performance, parallelism degree, reliability, etc. This does not mean that
you have to avoid them generally. Layering violations just create an additional risk, which
need not always materialize, and need not always be fatal. However, be sure to check
their influence, and don’t forget to measure their workingset and their caching behaviour
(which can go both into positive and into negative direction), in order to really know what
you are doing.

There exist a few cases where a distributed filesystem, sometimes even actually with O(n2)
behaviour according to section Error Propagation to Client Mountpoints, must be used, because
there exists a hard requirement for it. Some examples (list is certainly incomplete):

• HPC = High Performance Computing on modern supercomputers, consisting of a
high number of n compute nodes, are often requiring access to a shared persistent data
pool, where each of the n nodes must be sometimes able to access the same persistent
data, sometimes both for reading and writing. Therefore, several supercomputers are
using cluster filesystems like Lustre.

Care must be taken that high-frequency / fine granularity communication over the

103

4. Architectures of Cloud Storage / Software Defined Storage

distributed filesystem and its dedicated storage network does not take place, but instead
occurs over the ordinary low-latency communication fabrics each modern supercomputer
is relying on. True O(n2) storage access behaviour should be avoided as far as possible
(given by the problem to be solved). When absolutely necessary, location transparency
(as possible with cluster filesystems like Lustre) as well as its DSM = Distributed Shared
Memory model must be given up, and an explicit communication model must be
used instead, which allows explicit control over replicas and their communication paths
(e.g. propagation in a binary tree fashion), although it results in much more work for the
programmers. Only low frequency / coarse granularity transfers of bulk data with high
locality should run over distributed filesystems, preferably in streaming mode (c.f. section
Explanations from DSM andWorkingSet Theory). The total frequency of metadata access
should be low, because metadata consistency may form a bottleneck when updated too
frequently. The programmers of the distributed application software need to take care for
this.

Notice that certain supercomputer workloads may be crying for a RemoteSharding
or FlexibleSharding storage architecture in place of a BigCluster architecture. However,
this is very application specific.

• Student pools at universities, or location-independent workplaces at companies. This
is just the usecase where NFS was originally constructed for. Typically, workstation
workloads are neither performance critical, nor prone to actual O(n2) behaviour (al-
though the network infrastructure would allow for it), because each user has her own
home directory which is typically not shared with others, and she cannot split herself and
sit in front of multiple workstations at the same time. Thus the local per-workstation NFS
caching strategies have a good chance to hide much of the network latencies, and thus the
actual total network workload is typically only O(n).

This can lead to a dangerous misinterpretation: because it apparently works even
for a few thousands of workstations, people conclude wrongly that the network filesystem
“must be scalable”. Some people are then applying their experience to completely different
usecases, where much higher metadata traffic by several orders of magnitudes is occurring
(such as in webhosting), or even where true O(n2) runtime behaviour is occuring (see
section Example Failures of Scalability).

In general: when something works for usecase A, this does not prove that it will also
work for another usecase B. See explanations from start of section Scalability Arguments from
Architecture.

4.5. Point-in-time Replication via ZFS Snapshots
Some ZFS advocates believe that ZFS snapshots, which were originally designed for backup-
like use cases, are also appropriate solutions for achieving geo-redundancy (cf section What is
Geo-Redundancy). The basic idea is to run incremental ZFS snapshots in an endless loop, e.g.
via some simple scripts, and expediting to another host where the snapshots are then applied
to another ZFS instance. When there is less data to be expedited, loop cycle times should go
down to a few seconds. When much data is written at the primary site, loop cycle times will
rise up. According to some advocates, this should be no problem.

Manager Hint 4.22:

Important: ZFS is not an entirely free OpenSource component. According to
https://en.wikipedia.org/wiki/ZFS it is amixture of OpenSource with proprietary
sub-components. Oracle is its current project owner, and is known in the OpenSource
scene for first marketing something as “free”, but some years later may suddenly decide

104

https://en.wikipedia.org/wiki/ZFS

4.5. Point-in-time Replication via ZFS Snapshots

some fees for some sub-functionality, forcing you to pay if this strategy was succesful in
creating some sort of Vendor Lock-In to some of the sub-components over the years.

Manager Hint 4.23:

Unfortunately, the mentioned English Wikipedia article does not clearly specify
this. When possible, read the corresponding German article in https://de.wikipedia.
org/wiki/ZFS_(Dateisystem). In 2021, there is a footnote text “Fabian A. Scherschel:
Linus Torvalds erteilt ZFS im Linux-Kernel erneute Absage. In: Heise online. 10.
Januar 2020. Abgerufen am 22. Mai 2020.” pointing at https://heise.de/-4633302
which tells you that Linus Torvalds has refreshed in 2020 his previous decision that
the out-of-tree ZFS Linux kernel module will not be included into the upstream Linux
kernel.

Manager Hint 4.24: Long-Term ZFS Strategy

When possible, and for new projects: do not rely on the external ZFS non-
upstream Linux kernel module for enterprise-critical use cases. History has shown
that such non-upstream projects may somewhen slip into some non-maintained state.
For a manager, this would more or less lead to some EOL = End Of Life state, or
increase your own maintenance effort.

The following table tries to explain why geo-redundancy is not as simple to achieve under Linux
as some people seem to believe, at least without addition of highly sophisticated35 additional
means36. The table compares the built-in functionality at component level. While DRBD
and MARS are rated as they are supported by their creators, ZFS gets some (more or less
“unfair”) advantage by adding some local sysadmin-alike scripts which are then responsible
for geo-redundancy, together with the external ZFS Linux kernel module.

Manager Hint 4.25:

From a management viewpoint, ZFS-based replication may easily lead to dependencies
from necessary co-work of the following responsibles:

1. Linux kernel upstream.

2. External ZFS kernel module.

3. (Local) sysadmins and/or developers which are responsible for the geo-redundancy
functionality (both development + operations), which is not provided by the pre-
vious participants.

In contrast, here is the future envisioned responsibility for MARS geo-redundancy:

1. Linux kernel upstream, where Linus Torvalds is the boss and the MARS devel-
opers are members of his community, producing and maintaining generic sub-
components usable everywhere on the world.

2. Local sysadmins, responsible for operations of specific Linux-based instances.

35Notice: so-called “Orchestration Layers” cannot achieve the same level of geo-redundancy as DRBD and
MARS can do. Even when so-called Orchestrations would be built geo-redundant in itself in some way,
they would form some kind of SPOF = Single Point Of Failure. Notice that they would need their own
geo-redundancy, otherwise they would violate Dijkstra’s layering rules (see 3.5)

36ZFS advocates often argue with many features which aren’t present at other filesystem types. The above table
shows some dimensions not dealing with properties of local filesystems, but with problems / tasks arising in
long-distance distributed systems involving masses of enterprise-critical storage.

105

https://de.wikipedia.org/wiki/ZFS_(Dateisystem)
https://de.wikipedia.org/wiki/ZFS_(Dateisystem)
https://heise.de/-4633302

4. Architectures of Cloud Storage / Software Defined Storage

(non-)OpenSource Component DRBD MARS ZFS (+scripts)
Synchronity (in average) yes delay delay * 1.5
Generic solution yes yes FS-specific
Granularity LVs LVs subvolumes
Built-in snapshots no no yes
Long distances no yes yes
Replication parallelism (per gran.) 1 ≥ 2 1
Built-in primary/secondary roles yes yes no (+hard)
Built-in handover (planned) mostly yes no (+hard)
Built-in failover (unplanned) yes yes no (+hard)
Built-in delta-overflow handling unnecessary yes no, missing
Unnoticed data loss due to delta overflow no no possible
Higher space for long-lasting fullsync no no yes, / ∗2
Built-in split-brain awareness yes yes no (+hard)
Execute split-brain resolution yes yes no (+costly)
S-B resolution transfer granularity sector sector unknown37

Protect against illegal data modification yes yes no

“Illegal data modification” means that ZFS by itself does not protect against amok-running
applications and/or tools modifiying the secondary (backup) side in parallel to the replication
process (at least not by default). Workarounds might be possible, but are not easy to create
and to test for enterprise-critical applications.

In simple words: the ability for butterfly is non-trivial to achieve. It can easily turn
into a nightmare, if you would try to establish it on top of larger zfs installations. Although
termed “replication”, it is more similar to “backup”.

Some contemporary zfs replication setups at sisters of 1&1 Ionos are lacking the butterfly
ability, likely due to these difficulties.

Details 4.12:

Why are ZFS-based roles / handover / failover / butterfly / split-brain awareness
+ resolution operations harder than you might expect?

Look at line “Granularity”: when multiple subvolumes are hosted by the same
zpool instance, but are required to do some DRBD-alike or MARS-alike operations
independently from each other, and in parallel to running / unfinished replication
tasks, this may easily become a challenge. Hopefully the subvolumes are not nested.

A few workarounds may be possible by a general 1:1 correspondence between zpools
and (sub)volumes. However, this could increase the sysadmin workload.

Even more hairy: when there exist multiple zpools at one side, and/or different
zpools at different geo-redundant sides, and/or different assignments of subvolumes to
zpools, then you might need a prayer, in particular when the CAP theorem comes
also into play and/or when the other side is not reachable during a geo-incident,
and/or when multiple impacts are occuring in parallel at the same time (so-called
rolling disastersa). Possibly, all of this can be resolved, but don’t under-estimate the
total implementation and test effort.
aMARS is regularly tested for many cascading impacts, to react as best as possible (best-effort prin-

37In worst case, a full snapshot may be needed for a complete ZFS fullsync. In worst case, this might roughly
double the total required storage space, which may be needed temporarily during a long-lasting fullsync. In
contrast, DRBD and MARS can incrementally run a (fast) fullsync in parallel to running IO, without need
for temporary snapshot space.

106

4.5. Point-in-time Replication via ZFS Snapshots

ciple).

Notice that zfs snapshots (without adding fs-layer replication on top of it) can
be easily combined with block-layer DRBD or MARS replication. Reason: zfs snapshots
are necessarily residing at filesystem layer, while DRBD / MARS replicas are located at the
lower block layer (see the picture in section Performance Arguments from Architecture). Due
to original Unix architecture, cartesian products of layers are possible in many cases.

Unfortunately, some ZFS advocates have been told that layer merging between block
layer and FS layer would be an “advantage”. However, this contradicts with Parnas’ modu-
larization rules when combined with Dijkstra’s layering rules.

Details 4.13: Combination of ZFS with DRBD or MARS

Idea: create your zpools on top of DRBD or MARS resources = virtual devices, and
use zpool import / export individually at handover / failover of each LV instance. A
relatively easy way for implemention is the systemd interface of MARS (see the according
section in mars-user-manual.pdf). You just need to write once a small unit template
file, containing a few zpool commands. This small template will then be automatically
instantiated for each resource by the marsadm macro processor, as often as needed.

As a side effect of zpool import and its sisters, a whole bunch of subvolumes can
be activated with 1 shot. This means: your handover / failover granularity may be
configured more coarse than your more fine-grained hierarchy of ZFS snapshots.

Another side effect: butterfly and other geo-redundancy operations are becoming
easy, just by a 1:1 correspondence between DRBD / MARS resources and zpools. Then
your ZFS snapshots are orthogonal to the geo-redundancy.

There is a fundamental architectural difference between zpools and clas-
sical RAID / LVM stacked architectures. Some zfs advocates are propagating zpools
as a replacement for both RAID and LVM. However, there is a massive difference in
architecture, as illustrated in the following example (10 logical resources over 48 phys-
ical spindles), achieving practically the same zfs snapshot functionality from a user’s
perspective, but in a different way:

...

48 spindles

zfs

snapshots

...

RAID

pvs + vgs

replication

lvs10x

10x

10x

10x

...

48 spindles

zpool

functionality

pvs + vgs

zfs

snapshots

+RAID

...

interface
internal

When RAID functionality is executed by zfs, it will be located at the top of the hierarchy.
On one hand, this easily allows for different RAID levels for each of the 10 different
logical resources. On the other hand, this exposes the physical spindle configuration
to the topmost filesystem layer (48 spindles in this example). There is no easy way for
replication of these physical properties in a larger / heterogenous distributed system, e.g.

107

4. Architectures of Cloud Storage / Software Defined Storage

when some hardware components are replaced over a longer period of time (hardware
lifecycle, or LV Football as explained in football-user-guide.pdf). Essentially, only
replication of logical structures like snapshots remains as the only reasonable option,
with its drawbacks as explained above.

There is another argument: ZFS tries to hide its internal structures and interfaces
from the sysadmins, forming a more or less monolithica architecture as seen from
outside.

This violates the classical layering rules from Dijkstra (see section Layering
Rules and their Importance). In contrast, classical LVM-based configurations (see sec-
tion Positive Example: ShaHoLin storage + application stack or the example setup in
mars-user-manual.pdf) are component oriented, according to the Unix Philoso-
phy.
aSome sysadmins acting as zfs advocates are reclaiming this as an advantage. Apparently, they need

to learn and understand only a single tool for managing “everything”. However, this may turn into
a short-sighted argument when it comes to true flexibility as offered by a component-based system,
where multiple types of hardware / software RAID, multiple types of LVM functionality, and much
more can be almost orthogonally combined in a very flexible way.

4.6. Local vs Centralized Storage
There is some historical belief that only centralized storage systems, as typically sold by com-
mercial storage vendors, could achieve a high degree of reliability, while local storage were
inferior by far. In the following, we will see that this is only true for an unfair comparison
involving different classes of storage systems.

4.6.1. Internal Redundancy Degree

Details 4.14:

Centralized commerical storage systems are typically built up from highly redundant
internal components:

1. Redundant power supplies with UPS.

2. Redundancy at the storage HDDs / SSDs.

3. Redandancy at internal transport busses.

4. Redundant RAM / SSD caches.

5. Redundant network interfaces.

6. Redundant compute heads.

7. Redundancy at control heads / management interfaces.

What about local hardware RAID controllers? Some people think that these relatively
cheap units were massively inferior at practically each of these points. Please take a really
deep look at what classical RAID chip manufacturers like LSI / Avago / Broadcom and
their competitors are offering as configuration variants of their top notch models. The
following enumeration is in the same order as above (item by item):

1. Redundant hardware RAID cards with BBU caches, each with local goldcaps sur-
viving power outages, their BBU caches cross-coupled via high-speed interconnects.

2. HDD / SSD redundancy: almost any RAID level you can think of.

3. Redundant SAS cross-cabling: any head can access any device.

108

4.6. Local vs Centralized Storage

4. BBU caches are redundant and cross-coupled, similarly to RDMA. When SSD
caches are added to both cards, you also get redundancy there.

5. When using cross-coupled redundant cards, you automatically get redundant host
bus interfaces (HBAs).

6. The same story: you also get two independent RAID controller instances which
can do RAID computations independently from each other. Some implementations
do this even in hardware (ASICs).

7. Dito: both cards may be plugged into two different servers, thereby creating re-
dundancy at control level. As a side effect, you may also get a similar functionality
than DRBD.

Manager Hint 4.26: Redunduncy degree of RAID vs commercial appliances

When dimensioned appropriately, real architectual and functional differences at block
layer are smaller than certain people are claiming. For many block layer use cases,
redundancy is roughly comparable.
If you compare typical prices for both competing systems, you will notice a huge differ-
ence in favour of RAID. See also section Cost Arguments from Technology.

4.6.2. Capacity Differences
There is another hard-to-die myth: commercial storage would provide higher capacity. Please
read the data sheets. It is possible (but not generally recommended) to put several hundreds
of spindles into several external HDD enclosures, and then connect them to a redundant cross-
coupled pair of RAID controllers via several types of SAS busses.

Manager Hint 4.27: Maximum possible RAID capacity

By filling a rack this way, RAID can easily reach similar, if not higher capacities than
commercial storage boxes, for a fraction of the price.

However, this is not the recommended way for general use cases, but could be an option for
low demands like archiving. The big advantage of RAID-based local storage is massive scale-
out by sharding, as explained in section Distributed vs Local: Scalability Arguments from
Architecture.

4.6.3. Caching Differences
A frequent argument is that centralized storage systems had bigger caches than local RAID
systems. While this argument is often true, it neglects an important point:
Local RAID systems often don’t need bigger caches, because they are typically located at the

bottom of a cache hierarchy, playing only a particular role in that hierarchy. There exist further
caches which are erronously not considered by such an argument!
Example, see also section Performance Arguments from Architecture for more details: At

1&1 Shared Hosting Linux (ShaHoLin), a typical LXC container containing several thousands
to tenthousands of customer home directories, creates a long-term average(!) IOPS load at
block layer of about 70 IOPS. No, this isn’t a typo. It is not 70,000 IOPS. It is only 70 IOPS.
Reason: the standard Linux kernel has two main caches, the Page Cache for file content, and

the Dentry Cache (plus Inode slave cache) for metadata. Both caches are residing in RAM,
which is the fastest type of cache you can get. Some more details are in section Performance
Arguments from Architecture.
Nowadays, typical servers have several hundreds of gigabytes of RAM, sometimes even up to

terabytes, resulting in an incredible caching behaviour which can be measured38.
38Caution: this requires extremely solid expert knowledge and experience. It can be easily done wrongly. When

managers are believing fake results, whether produced by accident from people stuck to second-order

109

4. Architectures of Cloud Storage / Software Defined Storage

Many people appear to neglect these caches, sometimes not knowing of their existence, and
erronously assuming that 1 application read() or write() operation will also lead to 1 IOPS at
block layer. As a consequence, they are demanding 50,000 IOPS or 100,000 or even 1,000,000
IOPS.

Manager Hint 4.28: IOPS over-engineering

IOPS over-engineering by some orders of magnitudes can cause considerable unnecessary
expenses. Be sure to carefully check real demands!

Details 4.15:

Some (but not all) commercial storage systems can deliver similar IOPS rates, because
they have internal RAM caches in the same order of magnitude. Notice that persis-
tent RAM is the most expensive type of scalable storage you can buy.
People who are demanding such systems are typically falling into some of the following
classes (list is probably incomplete):

• some people know this, but price does not matter - the more caches, the better.
Wasted money for doubled caches does not count for them, or is even viewed as an
advantage to them (personally). Original citation of an anonymous person: “only
the best and the most expensive storage is good enough for us”.

• using NFS, which has extremely poor filesystem caching behaviour because the
Linux nfs client implementation does not take full advantage of the dentry cache.
Sometimes people know this, sometimes not. Please read an important paper on
the Linux implementation of nfs. Please search the internet for “Why nfs sucks”
from Olaf Kirch (who is one of the original Linux nfs implementors), and read it.
Your opinion about nfs might change.

• have transactional databases, where high IOPS may be really needed, but excep-
tionally(!) for this class of application. For very big enterprise databases like
big SAP installations, there may be a very valid justification for big RAM caches
at storage layers. However: smaller transactional loads, as in webhosting, are of-
ten (not always) hammering a low number of hot spots, where big caches are
not really needed. Relatively small BBU caches of RAID cards will do it also.
Often people don’t notice this because they don’t measure the workingset be-
haviour of their application, as could be done for example with blkreplay (see
https://blkreplay.org).

• do not notice that well-tuned filesystem caches over iSCSI are typically demanding
much less IOPS, sometimes by several orders of magnitude, and are wasting money
with caches at commercial boxes they don’t need (classical over-engineering).

• political interest, often supported by storage vendors.

Anyway, local storage can be augmented with various types of local caches with various
dimensioning.

Manager Hint 4.29:

There is no point in accessing the fastest possible type of RAM cache remotely
over a network. RAM is best invested money when installed locally, directly for your
applications / services / compute nodes.

Even expensive hardware-based RDMA (e.g. over Infiniband) cannot deliver the same
performance as directly caching your data in the same RAM where your application is

ignorance, or whether produced for some political reasons: This can be dangerous for companies.

110

https://blkreplay.org

4.6. Local vs Centralized Storage

running. The Dentry Cache in the Linux kernel provides highly optimized shared metadata
in SMP and NUMA systems (nowadays scaling to more than 100 processor cores), while the
Page Cache provides shared memory via hardware MMU. This is crucial for the performance
of classical local filesystems.
The physical laws of Einstein and others are telling us that neither this type of caching,

nor its shared memory behaviour, can be transported over whatever type of network without
causing performance degradation.

4.6.4. Latencies and Throughput

First of all: today there exist only a small number of HDD manufacturers on the world. The
number of SSD manufacturers will likely decline in the long run. Essentially, commercial storage
vendors are more or less selling you the same HDDs or SSDs as you could buy and deploy
yourself. If at all, there are only some minor technical differences.
In the meantime, many people agree to a Google paper that the ratio of market prices (price

per terabyte) between HDDs and SSDs are unlikely to change in a fundamental39 way during
the next 10 years. Thus, most large-capacity enterprise storage systems are built on top of
HDDs.
Typically, HDDs and their mechanics are forming the overall bottleneck.

• by construction, a local HDD attached via HBAs or a hardware RAID controller will show
the least additional overhead in terms of additional latencies and throughput degradation
caused by the attachment.

• When the same HDD is indirectly attached via Ethernet or Infiniband or another rack-to-
rack transport, both latencies and throughput will become worse. Depending on further
factors and influences, such as a too high NOF (see section Kirchhoff’s Law: Suitability
of Storage Networks), the overall bottleneck may shift to the network, and it may become
worse over-propotionally.

The laws of information transfer are telling us:

Manager Hint 4.30:

With increasing distance, both latencies (laws of Einstein) and throughput (laws of
energy needed for compensation of SNR = signal to noise ratio) are becoming worse.
Distance matters. Kirchhoff’s law (see section Kirchhoff’s Law: Suitability of Storage
Networks) also matters.

Because of this fundamental law, Football+MARS is minimizing IO distances.

The number of intermediate components, like routers / switches and their queuing, matters
too.
Consequently, local storage has always an architectural40 advantage in front of any attach-

ment via network. Centralized storages are bound to some network, and thus suffer from
disadvantages in terms of latencies and throughput.

39In folklore, there exists a fundamental empirical law, fuzzily called “Storage Pyramid” or “Memory Hierar-
chy Law” or similar, which is well-known at least in German OS academic circles. The empirical law (extrap-
olated from observations, similarly to Moore’s law) tells us that faster storage technology is always more
expensive than slower storage technology, and that capacities of faster storage are typically always lesser
than capacity of slower storage. This observation has been roughly valid for more than 50 years now. You
can find it in several German lecture scripts. Unfortunately, the Wikipedia article https://en.wikipedia.
org/wiki/Memory_hierarchy (retrieved in June 2018) does not cite this very important fundamental law
about cost. In contrast, the German article https://de.wikipedia.org/wiki/Speicherhierarchie about
roughly the same subject is mentioning “Kosten” which means “cost”, and “teuer” which means “expensive”.

40In order to be fair, an architectural comparison must be made under the assumption of comparable low-level
technologies.

111

https://en.wikipedia.org/wiki/Memory_hierarchy
https://en.wikipedia.org/wiki/Memory_hierarchy
https://de.wikipedia.org/wiki/Speicherhierarchie

4. Architectures of Cloud Storage / Software Defined Storage

Details 4.16:

What is the expected long-term future? Will additional latencies and throughput of
centralized storages become better over time?
It is difficult to predict the future. Let us first look at the past evolution. The following
graphics has taken its numbers from Wikipedia articles https://en.wikipedia.org/
wiki/List_of_device_bit_rates and https://en.wikipedia.org/wiki/History_
of_hard_disk_drives, showing that HDD capacities have grown over-proportionally
by about 2 orders of magnitude over about 30 years, when compared to the relative
growth of network bandwidth.
In the following graphics, effects caused by decreasing form factors have been neglected,
which would even amplify the trend. For fairness, bundling of parallel disks or parallel
communication channelsa have been ignored. All comparisons are in logarithmic y axis
scale:

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Ca
pa

ci
ty

 in
 [M

By
te

],
Bi

tR
at

es
 in

 [M
Bi

t/
s]

Year

Long-Term Development of HDD Capacity vs Network Bandwidth

"HDD.capacity"
"Ethernet.rates"

"Infiniband.rates"

What does this mean when extrapolated into the future?
It means that concentrating more and more capacity into a single rack due to increasing
data density will likely lead to more problems in future. Accessing more and more
data over the network will become increasingly more difficult when concentrating high-
capacity HDDs or SSDsb into the same space volume as before.
In other words: centralized storages are no good idea yet, and will likely become an even
worse idea in the future.
aIt is easy to see that the slopes of HDD.capacity vs Infiniband.rates are different. Parallelizing by

bundling of Infiniband wires will only lift the line a little upwards, but will not alter its slope in
logarithmic scale. For extrapolated time t→∞, the extrapolated empirical long-term behaviour is
rather striking.

bIt is difficult to compare the space density of contemporary SSDs in a fair way. There are too many
different form factors. For example, M2 cards are typically consuming even less cm3/TB than
classical 2.5 inch form factors. This trend is likely to continue in future.

Example 4.7: Risky central storage architecture

There was a major incident at a German web hosting company at the beginning of
the 2000’s. Their entire webhosting main business was running on a single proprietary
highly redundant CentralStorage solution, which failed. Restore from backup took way
too long from the viewpoint of a huge number of customers, leading to major press
attention. Before this incident, they were the #1 webhoster in Germany. A few years
later, 1&1 was the #1 instead. You can speculate whether this has to do with the
incident. But anyway, the later geo-redundancy strategy of 1&1 basing on a sharding

112

https://en.wikipedia.org/wiki/List_of_device_bit_rates
https://en.wikipedia.org/wiki/List_of_device_bit_rates
https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://en.wikipedia.org/wiki/History_of_hard_disk_drives

4.6. Local vs Centralized Storage

model (originally using DRBD, later MARS) was motivated by conclusions drawn from
this incident.

Example 4.8: Non-competing scalabilty of central storage

In the 1980s, a CentralStorage “dinosaura” architecture called SLED = Single Large
Expensive Disk was propagated with huge marketing noise and effort, but its historic
fate was predictable for neutral experts not bound to particular interests: SLED finally
lost against their contemporary RAID competition. Nowadays, many people don’t even
remember the term SLED.
aWith the advent of NVME, SSDs are almost directly driven by DMA. Accessing any high-speed

DMA devices by default via network is a foolish idea, similarly foolish than playing games via an
expensive high-end gamer graphics cards which is then indirectly attached via RDMA, or even via
Ethernet. Probably no serious gamer would ever try to do that. But some storage vendors do, for
strategic reasons. Probably for their own survival, their customers are to be misguided to overlook
the blinking red indicators that centralized SSD storage is likely nothing but an expensive dead end
in the history of dinosaur architectures.

Manager Hint 4.31: Strategic advice

Today’s future is likely dominated by scaling-out architectures like sharding, as
explained in section Distributed vs Local: Scalability Arguments from Architecture.

4.6.5. Reliability Differences CentralStorage vs Sharding
In this section, we look at fatal failures only, ignoring temporary failures. A fatal failure of a
storage is an incident which needs to be corrected by restore from backup.
By definition, even a highly redundant CentralStorage is nevertheless a SPOF = Single Point

of Failure. This also applies to fatal failures.
Some people are incorrectly arguing with redundancy. The problem is that any system, even

a highly redundant one, can fail fatally. There exists no perfect system on earth. One of the
biggest known sources of fatal failure is human error.
In contrast, sharded storage (for example the LocalSharding model, see also section Variants

of Sharding) has MPOF = Multiple Points Of Failure. It is unlikely that many shards are failing
fatally at the same time, because shards are independent41 from each other by definition (see
section Definition of Sharding for disambiguation of terms “sharding” and “shared-nothing”).
What is the difference from the viewpoint of customers of the services?
When a CentralStorage is failing fatally, a huge number of customers will be affected for a

long time (see the example German webhoster mentioned in section Latencies and Throughput).
Reason: restore from backup will take extremely long because huge masses of data have to be
restored = copied over a network. MTBF = Mean Time Between Failures is (hopefully) longer
thanks to redundancy, but MTTR = Mean Time To Repair is also very long.
With (Local)Sharding, the risk of some fatal incident somewhere in the sharding pool is

higher, but the size of such an incident is smaller in three dimensions at the same time:

1. There are much less customers affected (typically only 1 shard out of n shards).

2. MTTR = Mean Time To Repair is typically much better because there is much less data
to be restored.

3. Residual risk plus resulting fatal damage by un-repairable problems is thus lower.

What does this mean from the viewpoint of an investor of a big “global player” company?
As is promised by the vendors, let us assume that failure of CentralStorage might be occurring

less frequently. But when it happens on enterprise-critical mass data, the stock exchange
41When all shards are residing in the same datacenter, there exists a SPOF by power loss or other impacts onto

the whole datacenter. However, this applies to both the CentralStorage and to the LocalSharding model. In
contrast to CentralStorage, LocalSharding can be more easily distributed over multiple datacenters.

113

4. Architectures of Cloud Storage / Software Defined Storage

value of the affected company will be exposed to a hazard. This is not bearable from the
viewpoint of an investor.
In contrast, the (Local)Sharding model is distributing the indispensible incidents (because

perfect systems do not exist, and perfect humans do not exist) to a lower number of
customers with higher frequency, such that the total impact onto the business becomes
bearable.

Manager Hint 4.32: Risk analysis of CentralStorage

Risk analysis for enterprise-critical use cases is summarized in the following table:

CentralStorage (Local)Sharding
Probability of some fatal incident lower higher

Customers affected very high very low
MTBF per storage higher lower
MTTR per storage higher lower

Unrepairable residual risk higher lower
Total impact higher lower
Investor’s risk unbearable stock exchange compatible

Conclusions: CentralStorage is something for

• Small to medium-sized companies which don’t have the manpower and the skills for
professionally building and operating a (Local)Sharding (or similar) system for their
enterprise-critical mass data their business is relying upon.

• Monolithic enterprise applications like classical SAP which are anyway bound to a
specific vendor, where you cannot select a different solution (so-called Vendor Lock-In).

• When your application is neither shardable by construction (c.f. section 4.2), or when
doing so would be a too high effort, nor going to BigCluster42 (e.g. Ceph / Swift /
etc, see section Reliability Arguments from Architecture) is an option.

Manager Hint 4.33:

If you have an already sharded system, e.g. independent VMs or webhosting,
don’t convert it to a non-shardable one, and don’t introduce SPOFs needlessly. You will
introduce technical debts which are likely to hurt back somewhen in future!

Manager Hint 4.34:

As a real big “global player”, or as a company being part of such a structure, you should
be careful when listening to “marketing drones” of proprietary CentralStorage vendors.
Always check your concrete use case. Never believe in wrongly generalized claims, which
are only valid in some specific context, but do not really apply to your use case. It could
be about your life.

4.6.6. Proprietary vs OpenSource
In theory, the following dimensions are orthogonal to each other:
42Theoretically, BigCluster can be used to create 1 single huge remote LV (or 1 single huge remote FS instance)

out of a pool of storage machines. Double-check, better triple-check that such a big logical SPOF is really
needed, and cannot be circumvented by any means. Only in such a case, the current version of MARS cannot
help (yet), because its current focus is on a big number of machines each having relatively small LVs. At 1&1
ShaHoLin, the biggest LVs are 40TiB at the moment, running for years now, and bigger ones are certainly
possible. Only when current local RAID technology with external enclosures cannot easily create a single
LV in the petabyte scale, BigCluster is probably the better solution (c.f. section Reliability Arguments from
Architecture).

114

4.7. Cost Arguments

Architecture: LocalStorage vs CentralStorage vs DistributedStorage

Licensing: Proprietary vs OpenSource

In practice, however, many vendors of proprietary storage systems are selecting the Central-
Storage model. This way, they can avoid inter-operability with their competitors. This opens
the door for the so-called Vendor Lock-In.
In contrast, the OpenSource community is based on cooperation. Opting for OpenSource

means that you can combine and exchange numerous components with each other.
Key OpenSource players are basing their business on the usefulness of their software com-

ponents for you, their customer. Please search the internet for further explanations from Eric
S. Raymond.
Therefore interoperability is a must in the opensource business. For example,

you can relatively easily migrate between DRBD and MARS, forth and backwards, see
mars-user-manual.pdf. The generic block devices provided by both DRBD and MARS (and
by the kernel LVM2 implementation, and many others . . .) can interact with zillions of filesys-
tems, VMs, applications, and so forth.
Summary: genericity is a highly desired property in OpenSource communities, while pro-

prietary products often try to control their usage by limiting either technical interoperability
at certain layers, and/or legally by contracts. Trying to do so with OpenSource would make no
sense, because you, the customer, are the real king who can really select and combine compo-
nents. You can form a really customized system to your real needs, not as just promised
but not always actually delivered by so-called “marketing drones” from commercial vendors who
are actually prefering the needs of their employer in front of yours.
There is another fundamental difference between proprietary software and OpenSource: the

former is bound to some company, which may vanish from the market. Commercial storage
systems may be discontinued.
This can be a serious threat to your business relying on the value of your data. In particular,

buying storage systems from small vendors may increase this risk43.
OpenSource is different: it cannot die, even if the individual, or the (small) company which

produced it, does no longer exist. The sourcecode is in the public. It just could get outdated
over time. However, as long as there is enough public interest, you will always find somebody
who is willing to adapt and to maintain it. Even if you would be the only one having such an
interest, you can hire a maintainer for it, specifically for your needs. You aren’t helpless.

Manager Hint 4.35: Long-term strategy

When some appropriate OpenSource solution, or when some OpenSource components
are availabe, its long-term TCO will be typically better than from proprietary vendors.

4.7. Cost Arguments
A common pre-jugdement is that “big cluster” is the cheapest scaling storage technology when
built on so-called “commodity hardware”.
While this is very often true for the “commodity hardware” part, it is often not true for the

“big cluster” part. Let us first look at the “commodity” part.

4.7.1. Cost Arguments from Technology

4.7.1.1. Raw Storage Price Comparison

Here are some rough market prices for basic storage as determined around end of 2016 / start
of 2017:
43There is a risk of a domino effect : once there is a critical incident on highly redundant CentralStorage boxes

from a particular (smaller) vendor, this may lead to major public media attention. This may form the root
cause for such a vendor to vanish from the market. Thus you may be left alone with a buggy system, even
if you aren’t the victim of the concrete incident.
In contrast, bugs in an OpenSource component can be fixed by a larger community of interested people,

or by yourself if you hire somebody for this.

115

4. Architectures of Cloud Storage / Software Defined Storage

Technology Enterprise-Grade Price in € / TB

Consumer SATA disks via on-board SATA controllers no (small-scale) < 30 possible
SAS disks via SAS HBAs (e.g. in external 14” shelfs) halfways < 80

SAS disks via hardware RAID + LVM (+DRBD/MARS) yes 80 to 150
Commercial storage appliances via iSCSI yes around 1000
Cloud storage, S3 over 5 years lifetime yes 3000 to 8000

You can see that any self-built and self-administered storage (whose price varies with slower
high-capacity disks versus faster low-capacity disks) is much cheaper than any commercial
offering by about a factor of 10 or even more.

Manager Hint 4.36:

If you need to operate several petabytes of data, self-built storage is always cheaper
than commercial one, even if some more manpower is needed for commissioning and
operating, than for communications with the storage provider. You don’t have to pay
the shareholders of the storage provider. Instead, the savings will benefit your own
shareholders.

Here we just assume that the storage is needed permanently for at least 5 years, as is the
case in web hosting, databases, backup / archival systems, and many other application areas.
Commercial offerings of cloud storage are way too much hyped. Apparently some people

don’t seem to know that the generic term “Cloud Storage” refers to a storage class (see section
Architectural Properties of Cloud Storage), not to a particular instance like original Amazon
S3, and that it is possible to build and operate almost any instance of any storage class yourself.
From a commercial perspective, outsourcing of huge masses of enterprise-critical storage

(to whatever class of storage) usually pays off only when your storage demands are either
relatively moderate, or are extremely varying over time, and/or when you need some extra
capacity only temporarily for a very short time.

4.7.1.2. Waste-Corrected Storage Price Comparison

There is some influence from the granularity of storage (pool sizes) at cost. BigCluster or
CentralStorage advocates are often emphasizing that larger storage pools can save cost by
flexible assignment, which in turn can reduce waste (at least potentially).
FlexibleSharding (see section FlexibleSharding) in combination with Football can lead to a

similar or even better44 flexibility in storage assignment, and thus to a similar reduction of
waste under comparable conditions.
However, pure local storage models like LocalSharding (see section Variants of Sharding)

are less flexible from a human point of view. Do they lead to more waste from a technical
viewpoint? Moving around LVs via Football can be used for flexibility at runtime, but this is
less instant, and it cannot easily compensate for bigger misdimensioning between CPU capacity
and storage capacity.
Experiences and statistics at 1&1 Ionos ShaHoLin with an LV to PV ratio of ≈ 7:1 (January

2020) are suggesting that the average storage waste caused by non-fully automated Football45
is around 8.1 PB allocated LV space from 10.7 PB of totally installed PV space46, which is
around 24% waste in the space dimension (better to be called spare space, since it is usable).
Notice that this comes close to the annual ShaHoLin data growth rate, which is around 21%.

Essentially, the current spare space is similar to that. It is a good idea to keep some spare
space for unforeseeable impacts. Also notice that this “waste” comes close to an intended PV
filling level of around 80%, which was a deliberate political decision of some advocates, and has
no true technical reasons. Technically, higher filling levels up to the theoretical fragmentation
limit of 95% (see scientific literature on fragmentation) would be technically possible, but for

44Typical RemoteSharding over CentralStorage lacks easy movement of LVs between shards, while Football is
providing this functionality on LocalStorage.

45Without a pool-optimizer, but more or less optimized “by hand”.
46Without geo-redundancy. Grand totals must be taken ×2.

116

4.7. Cost Arguments

practical reasons more than 90% PV47 filling level cannot be recommended, for any storage
system. So the current ShaHoLin waste is not far from optimal.
Some advocates might argue that the real waste would be higher than 24%, because there

would be CPU waste48. Until future FlexibleSharding is implemented, the current LocalShard-
ing leads to a fixed relationship between storage and CPU power. Better dimensioning of CPU
capacity would allow for bigger localstorage RAID sets. However, this is a non-storage price
argument, using an incomparable measure. As a courtesy to those advocates, we will now
assume(!) that the “waste” produced by LocalStorage were around 30%49.
This number has to be correlated with the waste produced by other models. In small Cen-

tralStorage installations, higher wastes are common, due to the low number of building blocks.
The existing building blocks need to be set up with enough spare space for future data growth.
When CentralStorage technology (commercial storage boxes) are used for RemoteSharding on
top of CentralStorage, the waste may potentially decline. However, there remains a fundamental
problem: LVs cannot easily be moved between CentralStorage shards. Therefore, some waste is
necessary for allowing resizing of existing LVs during runtime. As a courtesy to those advocates,
we now assume(!) that the waste in such a RemoteSharding over LocalStorage architecture
would be only 10%. So the difference in waste would be 30% − 10% = 20%.
Now what is the total price difference? As shown above, the raw price difference between

commercial storage and self-built local storage is between 300% and 1000%. When multiplying
this with an assumed(!) additional waste of 20%, the cost for additionally wasted space
would be higher for commercial storage. For CAPEX invest on the total storage space, there
would remain an advantage for LocalSharding, even if the localstorage waste would be assumed
as unrealistic 100% (total factor 2).

Manager Hint 4.37: Real cost of waste

Do not take isolated arguments like waste as a central criterion for price comparisons.
Always try to determine TCO = Total Cost of Ownership as close as possible.
Another pitfall: do not count localstorage / LocalSharding cost by inclusion of CPU
power, while neglecting CPU and/or network cost for RemoteSharding etc. Do not trap
into unfair comparisons.

4.7.2. Cost Arguments from Architecture

In addition to basic storage prices, many further factors come into play when roughly comparing
big cluster architectures versus sharding. The following table bears the unrealistic assumption
that BigCluster can be reliably operated with 2 replicas (the suffix ×2 means with additional
geo-redundancy):

47All the above discussion relates to block level solely. Similar arguments hold for filesystem layer, but the latter
is independent from architectures und thus can be completely factored out from this discussion.

48In March 2020, the relative CPU consumption of all primary-side new multicontainer machines was 37.1%
in timely + pool average, with a climbing tendency. Queueing theory suggests that an average 70% CPU
utilization should not be exceeded much during DDOS attacks and load peaks, in order to prevent rising
service times (which are rather strong SLAs monitored minutely, while DDOS attacks and high-load periods
typically last for hours, sometimes for days). Therefore, a day-and-night average of around 70 / 2 = 35% is
roughly a desired target value. Both queuing theory and practical observation tell us that after exceeding
70% CPU utilization, the system is reacting in a heavily non-linear fashion. The rather strong SLAs forces
us to a moderate average CPU utilization. Do not linearly extrapolate anything under such conditions! For
lower SLAs, somewhat higher density and thus higher CPU utilization would be possible, but the potential
is lower than one might expect, due to non-linearity. Notice that LXC containers have almost neglectible
CPU overhead, while KVM / vmware would eat a noticable amount. Do not compare statistics measured
inside of VMs with ones gathered from LXC (or other) hypervisors. Do not use VM utilization at all(!) for
conclusions about hardware. VM-level measurements can be completely meaningless fake results,
telling almost nothing about the hardware!

49Even higher “estimations” of waste differences between local and central storage would not be realistic. In
any of the architectures, spare CPU power must be deployed. Otherwise, DDOS attacks and other types
of load peaks cannot be handled gracefully. In pure compute farms using remote storage, spare CPUs are
typically not counted for statistics, while at ShaHoLin both the storage and the CPU power are always fully
counted. Do not compare statistics based on different foundations. In order to really get a fundamental
difference outweighting the CAPEX advantages of self-built vs commercial storage, the LocalSharding model
would need to be misdimensioned. Arguing with misdimensioning would be unfair.

117

4. Architectures of Cloud Storage / Software Defined Storage

BC SHA BC×2 SHA×2

of Disks >200% <120% >400% <240%
of Servers ≈ ×2 ≈ ×1.1 possible ≈ ×4 ≈ ×2.2

Power Consumption ≈ ×2 ≈ ×1.1 ≈ ×4 ≈ ×2.2
HU Consumption ≈ ×2 ≈ ×1.1 ≈ ×4 ≈ ×2.2

As shown in section Reliability Arguments from Architecture, and as recommended by several
advocates, two replicas are typically not sufficient for BigCluster. Even addicts of BigCluster
are typically recommending 3 replicas in so-called “best practices”, leading to the following more
realistic table:

BC SHA BC×2 SHA×2

of Disks >300% <120% >600% <240%
of Servers ≈ ×3 ≈ ×1.1 possible ≈ ×6 ≈ ×2.2

Power Consumption ≈ ×3 ≈ ×1.1 ≈ ×6 ≈ ×2.2
HU Consumption ≈ ×3 ≈ ×1.1 ≈ ×6 ≈ ×2.2

The crucial point is not only the number of extra servers needed for dedicated storage boxes,
but also the total number of HDDs. While big cluster implementations like Ceph or Swift can
theoretically use some erasure encoding50 for avoiding full object replicas, their practice as seen
in internal 1&1 Ceph clusters is similar to RAID-10, but just on objects instead of block-based
sectors.
Therefore a big cluster typically needs >300% disks to reach the same net capacity as a

simple sharded cluster. The latter can typically take advantage of hardware RAID-60 with a
significantly smaller disk overhead, while providing sufficient failure tolerance at disk level.
There is a surprising consequence from this: geo-redundancy is not as expensive as many

people are believing. It just needs to be built with the proper architecture. A sharded geo-
redundant pool based on hardware RAID-60 (last column “SHA×2”) costs typically less than a
non-georedundant big cluster with typically needed / recommended number of replicas (column
“BC”). A geo-redundant sharded pool provides even better failure compensation (see sections
Reliability Arguments from Architecture and Flexibility of Handover / Failover Granularities),
and comparable flexibility when combined with Football (see section Principle of Background
Migration).
Notice that geo-redundancy implies by definition (see section What is Geo-Redundancy) that

an unforeseeable full datacenter loss (e.g. caused by disasters like a terrorist attack or an
earthquake) must be compensated for several days or weeks. Therefore it is not sufficient
to take a big cluster and just spread it to two different locations.
In any case, a MARS-based geo-redundant sharding pool with a reasonable size is cheaper

than using commercial storage appliances, which are much more expensive by their nature.

50There is a reason why erasure encoding is not practical for many BigCluster use cases. The number of total
IO requests sent to the internal disks is much higher than the number of IO requests sent to the storage by
your application, in order to update additional redundancy information. Like RAID-6, this is typically by
factors. While RAID-6 is offloading this additional workload to a small specialized and realtime-capable
network called SAS bus, BigCluster is typically spreading this workload over an unreliable IP network with
packet loss, spanning much larger distances, and involving more switches / routers.

118

Part II.

MARS for Consultants and
Architects

Plus Background for Interested Managers / Responsibles / Project Members / Sysadmins / etc

119

5. Use Cases for MARS

DRBD has a long history of successfully providing HA features to many users of Linux. With
the advent of MARS, many people are wondering what the difference is. They ask for recom-
mendations. In which use cases should DRBD be recommended, and in which other cases is
MARS the better choice?

Manager Hint 5.1: Use cases MARS vs DRBD

The following table is a short guide to the most important cases where the decision is
rather clear:

Use Case Recommendation
server pairs, each directly connected via crossover cables DRBD

active-active / dual-primary, e.g. gfs2, ocfs2 DRBD
distance > 50km MARS

> 100 server pairs over a short-distance shared line MARS
all else / intermediate cases read the following details

There exist a few use cases where DRBD is clearly better than the current version of MARS. 1&1
has a long history of experiences with DRBD where it works very fine, in particular coupling
Linux devices rack-to-rack via crossover cables. DRBD is just constructed for that use case
(RAID-1 over network). In such a scenario, DRBD is better than MARS because it uses up
less disk space resources. In addition, newer DRBD versions can run over high-speed but short-
distance interconnects like Infiniband (via the SDP protocol). Another use case for DRBD is
active-active / dual-primary mode, e.g. ocfs21 over short2 distances.

On the other hand, there exist other use cases where DRBD did not work as expected,
leading to incidents and other operational problems. We analyzed them for our specific use
cases. The later author of MARS came to the conclusion that they could only be resolved by
fundamental changes in the internal architecture of DRBD. The development of MARS started
at the personal initiative of the author, first in form of a personal project during holidays, but
later picked up by 1&1 as an official project.

MARS and DRBD simply have different application areas.

In the following, we will discuss the pros and cons of each system in particular situations and
contexts, and we shed some light at their conceptual and operational differences.

1Notice that ocfs2 is appearantly not constructed for long distances. 1&1 has some experiences on a specific
short distance cluster where the ocfs2 / DRBD combination scaled a little bit better than NFS, but worse than
glusterfs (using 2 clients in both cases – notice that glusterfs showed extremely bad performance when
trying to enable active-active glusterfs replication between 2 server instances, therefore we ended up using
active-passive DRBD replication below a single glusterfs server). Conclusion: NFS < ocfs2 < glusterfs
< sharding. We found that glusterfs on top of active-passive DRBD scalability was about 2 times better
than NFS on top of active-passive DRBD, while ocfs2 on top of DRBD in active-active mode was somewhere
inbetween. All cluster comparisons with an increasing workload over time (measured as number of customers
which could be safely operated). Each system was replaced by the next one when the respective scalability
was at its respective end, each time leading to operational problems. The ultimate solution was to replace
all of these clustering concepts by the general concept of sharding.

2Active-active won’t work over long distances at all because of high network latencies (cf chapter 4 and section
Kirchhoff’s Law: Suitability of Storage Networks). Probably, for replication of whole clusters over long
distances DRBD and MARS could be stacked: using DRBD on top for MARS for active-active clustering of
gfs2 or ocfs2, and a MARS instance below for failover of one of the DRBD replicas over long distances.

120

5.1. Network Bottlenecks

5.1. Network Bottlenecks

5.1.1. Behaviour of DRBD

In order to describe the most important problem we found when DRBD was used to couple
whole datacenters (each encompassing thousands of servers) over metro distances, we strip down
that complicated real-life scenario to a simplified laboratory scenario in order to demonstrate
the effect with minimal means.

Notice that the following DRBD effect does not appear at crossover cables. The following
scenario covers a non-standard case of DRBD. DRBD works fine when no network bottleneck
appears.
The following picture illustrates an effect which has been observed in 1&1 datacenters when

running masses of DBRD instances through a single network bottleneck. In addition, the effect
is also reproducible by an elder version of the MARS test suite3:

mirror inconsistency ... time

network throughput

decreasing throughput limit

DRBD throughput

additional throughput

needed for re−sync, not possible

(p
ot

en
tia

l)
in

ci
de

nt
 −

>

au
to

m
at

ic
 r

e−
co

n
n
ec

t

au
to

m
at

ic
 d

is
co

n
n
ec

t

wanted application throughput, not possible

The simplified scenario is the following:

1. DRBD is loaded with a low to medium, but constant rate of write operations for the sake
of simplicity of the scenario.

2. The network has some throughput bottleneck, depicted as a red line. For the sake of
simplicity, we just linearly decrease it over time, starting from full throughput, down to
zero. The decrease is very slowly over time (some minutes, or even hours).

What will happen in this scenario?
As long as the actual DRBD write throughput is lower than the network bandwidth (left

part of the horizontal blue line), DRBD works as expected.
Once the maximum network throughput (red line) starts to fall short of the required applica-

tion throughput (first blue dotted line), we get into trouble. By its very nature, DRBD works
synchronously. Therefore, it must transfer all your application writes through the bottleneck,
but now it is impossible4 due to the bottleneck.
As a consequence, the application running on top of DRBD will see increasingly higher IO

latencies and/or stalls / hangs. We found practical cases (at least with former versions of
DRBD) where IO latencies exceeded practical monitoring limits such as 5 s by far, up to the
range of minutes. Experienced sysadmins will know what happens next: your application will
run into an incident, and your customers will be dissatisfied.

3The effect has been demonstrated some years ago with DRBD version 8.3.13. By construction, is is independent
from any of the DRBD series 8.3.x, 8.4.x, or 9.0.x.

4This is independent from the DRBD protocols A through C, because it depends on an information-theoretic
argument independently from any protocol. We have a fundamental conflict between network capabilities
and application demands here, which cannot be circumvented due to the synchronous nature of DRBD.

121

5. Use Cases for MARS

Details 5.1:

In order to deal with such situations, DRBD has lots of tuning parameters. In partic-
ular, the timeout parameter and/or the ping-timeout parameter will determine when
DRBD will give up in such a situation and simply drop the network connection as an
emergency measure. Dropping the network connection is roughly equivalent to an au-
tomatic disconnect, followed by an automatic re-connect attempt after connect-int
seconds. During the dropped connection, the incident will appear as being resolved, but
at some hidden costa.
aBy appropriately tuning various DRBD parameters, such as timeout and/or ping-timeout, you can

keep the impact of the incident below some viable limit. However, the automatic disconnect will
then happen earlier and more often in practice. Flaky or overloaded networks may easily lead to an
enormous number of automatic disconnects.

What happens next in our scenario? During the disconnect, DRBD will record all positions
of writes in its bitmap and/or in its activity log. As soon as the automatic re-connect succeeds
after connect-int seconds, DRBD has to do a partial re-sync of those blocks which were
marked dirty in the meantime. This leads to an additional bandwidth demand5 as indicated
by the upper dotted blue box.
Of course, there is absolutely no chance to get the increased amount of data through our

bottleneck, since not even the ordinary application load (lower dotted lines) could be transferred.
Therefore, you run at a very high risk that the re-sync cannot finish before the next timeout

/ ping-timeout cycle will drop the network connection again.
What will be the final result when that risk becomes true? Simply, your secondary site will

be permanently in state inconsistent. This means, you have lost your redundancy. In our
scenario, there is no chance at all to become consistent again, because the network bottleneck
declines more and more, slowly. It is simply hopeless, by construction.

In case you lose your primary site now, you are lost at all.
Some people may argue that the probability for a similar scenario were low. We don’t agree
on such an argumentation. Not only because it really happens in pratice, and it may even last
some days until problems are fixed. In case of rolling disasters, the network is very likely to
become flaky and/or overloaded shortly before the final damage. Even in other cases, you can
easily end up with inconsistent secondaries. It occurs not only in the lab, but also in practice
if you operate some hundreds or even thousands of DRBD instances.

Manager Hint 5.2: Resilience of DRBD

The point is that you can produce an ill behaviour systematically just by overloading
the network a bit for some sufficient duration.

When coupling whole datacenters via some thousands of DRBD connections (see the
example scenario in section Kirchhoff’s Law: Suitability of Storage Networks), any (short)
network loss will almost certainly increase the re-sync network load each time the outage appears
to be over. As a consequence, overload may be provoked by the re-sync repair attempts. This

5DRBD parameters sync-rate resp resync-rate may be used to tune the height of the additional demand.
In addition, the newer parameters c-plan-ahead, c-fill-target, c-delay-target, c-min-rate, c-max-rate
and friends may be used to dynamically adapt to some situations where the application throughput could fit
through the bottleneck. These newer parameters were developed in a cooperation between 1&1 and Linbit,
the maker of DRBD.

Please note that lowering / dynamically adapting the resync rates may help in lowering the probability of
occurrences of the above problems in practical scenarios where the bottleneck would recover to viable limits
after some time. However, lowering the rates will also increase the duration of re-sync operations accordingly.
The total amount of re-sync data simply does not decrease when lowering resync-rate; it even tends to
increase over time when new requests arrive. Therefore, the expectancy value of problems caused by strong
network bottlenecks (i.e. when not even the ordinary application rate is fitting through) is not improved by
lowering or adapting resync-rate, but rather the expectancy value mostly depends on the relation between
the amount of holdback data versus the amount of application write data, both measured for the duration
of some given strong bottleneck.

122

5.1. Network Bottlenecks

may easily lead to self-amplifying throughput storms in some resonance frequency (similar
to self-destruction of a bridge when an army is marching over it in lockstep).

The only way for reliable prevention of loss of secondaries is to start any re-connect only in
such situations where you can predict in advance that the re-sync is guaranteed to finish before
any network bottleneck / loss will cause an automatic disconnect again. We don’t know of any
method which can reliably predict the future behaviour of a complex network.

Manager Hint 5.3: Risks from non-crossover DRBD

Conclusion: in the presence of network bottlenecks, you run a considerable risk
that your DRBD mirrors get destroyed just in that moment when you desperately need
them.

Notice that classical crossover cables usually do not show a behaviour like depicted by the
red line. Traditional crossover cables are passive components which normally6 either work, or
not. The binary connect / disconnect behaviour of DRBD has no problems to cope with that.

However, some newer Ethernet cable technologies like SFP+ and faster are no longer
passive. They have some internal chips inside of their plugs. Thus they may fail indepen-
dently from your storage nodes. Then you run at least the risks from the CAP theorem, see
section Explanation via CAP Theorem. In addition to CAP effects, intermitting errors such as
flaky electrical contacts may rise the above risk of permanent data loss.

Details 5.2:

or Linbit recommends a workaround for the inconsistencies during re-sync:
LVM snapshots. We tried it, but found a performance penalty which made it prohibitive
for our concrete application. A problem seems to be the cost of destroying snapshots.
LVM uses by default a BOW strategy (Backup On Write, which is the counterpart
of COW = Copy On Write). BOW increases IO latencies during ordinary operation.
Retaining snapshots is cheap, but reverting them may be very costly, depending on
workload. We didn’t fully investigate that effect, and our experience is a few years old.
You might come to a different conclusion for a different workload, for newer versions of
system software, or for a different strategy if you carefully investigate the field.

DRBD problems usually arise only when the network throughput shows some
“awkward” analog behaviour, such as overload, or as occasionally produced by various
switches / routers / transmitters, or other potential sources of packet loss.

5.1.2. Behaviour of MARS

The behaviour of MARS in the above scenario:

6Exceptions might be mechanical jiggling of plugs, or electro-magnetical interferences. We never noticed any
of them.

123

5. Use Cases for MARS

time

network throughput

decreasing throughput limit

application throughput, recorded in transaction log
replication network throughput

MARS

When the network is restrained, an asynchronous system like MARS will continue to serve the
user IO requests (dotted green line) without any impact / incident while the actual network
throughput (solid green line) follows the red line. In the meantime, all changes to the block
device are recorded at the transaction logfiles.

Here is one point in favour of DRBD: MARS stores its transaction logs on the filesystem
/mars/. When the network bottleneck is lasting very long (some days or even some weeks),
the filesystem will eventually run out of space some day. mars-user-manual.pdf discusses
countermeasures against that in detail. In contrast to MARS, DRBD allocates its bitmap
statically at resource creation time. It uses up less space, and you don’t have to monitor it for
(potential) overflows. The space for transaction logs is the price you have to pay if you want
or need anytime consistency, or asynchronous replication in general.
In order to really grasp the heart of the difference between synchronous and asynchronous

replication, we look at the following modified scenario:

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

time

network throughput

flaky throughput limit

MARS application throughput

corresponding DRBD inconsistency

MARS network throughput

This time, the network throughput (red line) is varying7 in some unpredictable way. As before,
the application throughput served by MARS is assumed to be constant (dotted green line, often
superseded by the solid green line). The actual replication network throughput is depicted by
the solid green line.
As you can see, a network dropdown undershooting the application demand has no impact

onto the application throughput, but only onto the replication network throughput. Whenever
the network throughput is held back due to the flaky network, it simply catches up as soon as

7In real life, many long-distance lines or even some heavily used metro lines usually show fluctuations of
their network bandwidth by an order of magnitude, or even higher. We have measured them. The overall
behaviour can be characterized as “chaotic”.

124

5.1. Network Bottlenecks

possible by overshooting the application throughput. The amount of lag-behind is visualized
as shaded area: downward shading (below the application throughput) means an increase of
the lag-behind, while the upwards shaded areas (beyond the application throughput) indicate
a decrease of the lag-behind (catch-up). Once the lag-behind has been fully caught up, the
network throughput suddenly jumps back to the application throughput (here visible in two
cases).

Note that the existence of lag-behind areas is roughly corresponding to DRBD disconnect
states, and in turn to DRBD inconsistent states of the secondary as long as the lag-behind has
not been fully cought up. The very rough8 duration of the corresponding DRBD inconsistency
phase is visualized as magenta line at the time scale.

Manager Hint 5.4: Optimum throughput via MARS

MARS utilizes the existing network bandwidth as best as possible in order to pipe
through as much data as possible, provided that there exists some data requiring ex-
pedition. Conceptually, there exists no better way due to information theoretic limits
(besides data compression).

Note that in average during a longer period of time, the network must have emough
capacity for transporting all of your data. MARS cannot magically break through information-
theoretic limits. It cannot magically transport terabytes of data in a few seconds over very
slow modem9 lines. Only relatively short network problems / packet loss can be compensated,
depending on the capacity of the /mars filesystem.

In case of lag-behind, the version of the data replicated to the secondary site corresponds
to some time in the past. Since the data is always transferred in the same order as originally
submitted at the primary site, the secondary never gets inconsistent. Your mirror always
remains usable. Your only potential problem could be the outdated state, corresponding to
some state in the past. However, the “as-best-as-possible” approach to the network transfer
ensures that your version is always as up-to-date as possible even under ill-behaving network
bottlenecks. There is simply no better way to do it. In presence of temporary network
bottlenecks such as network congestion, there exists no better method than prescribed by the
information theoretic limit (red line, neglecting data compression).

In order to get all of your data through the line, somewhen the network must be healthy
again. Otherwise, data will be recorded until the capacity of the /mars/ filesystem is exhausted,
leading to an emergency mode (see mars-user-manual.pdf).

Manager Hint 5.5: Risk reduction via MARS

MARS’ property of never sacrificing local data consistency (at the possible cost of
actuality, as long as you have enough capacity in /mars/) is called Anytime Consis-
tency.

Even when the capacity of /mars/ is exhausted and thus emergency mode is entered, the
8Of course, this visualization is not exact. On one hand, the DRBD inconsistency phase may start later as
depicted here, because it only starts after the first automatic disconnect, upon the first automatic re-connect.
In addition, the amount of resync data may be smaller than the amount of corresponding MARS transaction
logfile data, because the DRBD bitmap will coalesce multiple writes to the same block into one single transfer.
On the other hand, DRBD will transfer no data at all during its disconnected state, while MARS continues
its best. This leads to a prolongation of the DRBD inconsistent phase. Depending on properties of the
workload and of the network, the real duration of the inconsistency phase may be both shorter or longer.

9A certain colleague at 1&1 is using MARS for a private application: CDP = Continuous Data Protection of
a critical Windows VM over his home DSL line.

125

5. Use Cases for MARS

replicas will not become inconsistent by themselves. However, when the emergency mode is
later cleaned up for a replica via marsadm invalidate, it will become temporarily inconsistent
during the fast full sync.

When you have a total of k ≥ 3 replicas, you don’t need to invalidate them all in parallel.
By cascading the full syncs sequentially, you can retain some consistent, but outdated replica
for the meantime, until all sync have finished.

Conclusion: you can even use traffic shaping on MARS’ TCP connections in order to glob-
ally balance your network throughput (of course at the cost of actuality, but without sacrificing
local data consistency). If you would try to do the same with DRBD, you could easily provoke
a disaster. MARS simply tolerates any network problems, provided that there is enough disk
space for transaction logfiles. Even in case of completely filling up your disk with transaction
logfiles after some days or weeks, you will not lose local consistency anywhere.

Details 5.3: Simple traffic shaping be default

Newer versions of MARS are automatically setting the so-called TOS fields in stan-
dard TCP/IP packets for you, which is backwards compatible with the newer DSCP
feature. You just need to properly configure your network equipment for this type of
traffic shaping, unless it isn’t already enabled by default from various network vendors.
In the latter case, you don’t need to do anything, in order to get some improvements by
automatic traffic shaping for free. Details are in mars-user-manual.pdf.

Finally, here is yet another scenario where MARS can cope with the situation:

time

network throughput

MARS

replication network throughput

constant throughput limit

application throughput, showing heavy peaks

This time, the network throughput limit (solid red line) is assumed to be constant. However,
the application workload (dotted green line) shows some heavy peaks. We know from our 1&1
datacenters that such an application behaviour is very common (e.g. in case of certain kinds of
DDOS attacks etc).
When the peaks are exceeding the network capacities for some short time, the replication

network throughput (solid green line) will be limited for a short time, stay a little bit longer at
the limit, and finally drop down again to the normal workload.

Manager Hint 5.6: Resilience against load peaks

In other words, you get a flexible buffering behaviour, coping with application load
peaks.

Similar scenarios (where both the application workload has peaks and the network is flaky to
some degree) are rather common.

126

5.2. Long Distances / High Latencies

If you would use DRBD in place of MARS, you were likely to run into regular appli-
cation performance problems and/or frequent automatic disconnect cycles, depending on the
height and on the duration of the peaks, and on network resources. As observed at 1&1, even
permanent data loss is possible, with some residual probability.

5.2. Long Distances / High Latencies

Details 5.4:

In general and in some theories, latencies are conceptually independent from throughput,
at least to some degree. There exist all 4 possible combinations:

1. There exist communication lines with high latencies but also high throughput.
Examples are raw fibre cables at the ground of the Atlantic.

2. High latencies on low-throughput lines is very easy to achieve. If you never saw it,
you never ran interactive vi over ssh in parallel to downloads on your old-fashioned
modem line.

3. Low latencies need not be incompatible with high throughput. See Myrinet, In-
finiBand or high-speed point-to-point interconnects, such as modern RAM busses.

4. Low latency combined with low throughput is also possible: in an ATM system (or
another pre-reservation system for bandwidth), just increase the multiplex factor
on low-capacity but short lines, which is only possible at the cost of assigned
bandwidth.

In the internet practice, it is very likely that high network latencies will also lead to
worse throughput, because of the congestion control algorithms running all over the world.
We have experimented with extremely large TCP send/receive buffers plus various window

sizes and congestion control algorithms over long-distance lines between the USA and Europe.
Yes, it is possible to improve the behaviour to some degree. But magic does not happen.
Natural laws like Einstein’s laws and Kirchhoff’s laws (see section Kirchhoff’s Law: Suitability
of Storage Networks) will always hold. You simply cannot travel faster than the speed of light,
and you cannot bypass the information theoretic limits of your transport media.
Our experience leads to the following rule of thumb, not formally proven by anything, but

just observed in practice:

Manager Hint 5.7: Safety rule for synchronous replication

In general, synchronous data replication (not limited to applications of DRBD) works
reliably only over distances < 50 km, or sometimes even less.

There may be some exceptions10, e.g. when dealing with low-end workstation loads. But when
you are responsible for a whole datacenter and/or for enterprise-critical data, don’t waste
your time by trying (almost) impossible things. We recommend to use MARS in such use cases.

5.3. Explanation via CAP Theorem

10We have heard of cases where even less than 50 km were not working with DRBD. It depends on application
workload, on properties of the line, and on congestion caused by other traffic. Some other people told us
that according to their experience, much lesser distances should be considered operable, only in the range of
a few single kilometers. However, they agree that DRBD is rock stable when used on crossover cables.

127

5. Use Cases for MARS

C = Consistency

A = Availability P = Partitioning Tolerance

The famous CAP theorem, also called Brewer’s theorem, is important for a deeper under-
standing of the differences between DRBD and MARS. A good explanation can be found at
https://en.wikipedia.org/wiki/CAP_theorem (retrieved July 2018).
The CAP theorem states that only 2 out of 3 properties can be achieved at the same time,

when a Distributed System is under pressure: C = Consistency means Strict Consistency at
the level of the distributed system (which is not the same as strict consistency inside of one
of the local systems), A = Availability = intuitively clear from a user’s perspective, and P =
Partitioning Tolerance = the network may have its own outages at any time (which is a negative
criterion).
As explained in the Wikipedia article, the P = Partitioning Tolerance is a property which

is imporant at least in wide-distance data replication scenarios, and possibly in some other
scenarios. There the property P cannot be chosen at runtime, but is given by setup of the
Distributed System.

5.3.1. CAP Differences between DRBD and MARS

If you are considering only short distances like passive crossover cables between racks, then
(and only then) you may assume(!) that no effort for achieving property P is required, because
it it is already given for free. Then, and only then, you can get both A and C at the same
time, without sacrificing P, because P is already for free by assumption. In such a passive
crossover cable scenario, getting all three properties C and A and P is possible, similarly to an
explanation in the Wikipedia article.

Newer types of network cables for 10 GBit and more (e.g. SFP+) may have some active
chips internally in their plugs. Suchalike technologies are no longer passive. Consequently, the
assumption “passive component which cannot fail” is no longer true by construction.
Relying on the assumption “P is for free = the network cannot fail” leads us to classical

use cases for DRBD: when both DRBD replicas are always staying physically connected via a
passive crossover cable (which is assumed to never break down), you could potentially get both
strict global consistency and availability.
Whether this is real in practice for DRBD, is a different story. It depends on the implemen-

tation of DRBD. Some sysadmins at 1&1 Ionos have made the experience that there is no 100%
CAP guarantee, regardless of DRBD protocol configuration, while they were testing only some
cases where only one of the DRBD nodes was failing11. Both C and A are provided by DRBD
during connected state, while P is assumed to be provided by a passive component.
By addition of iSCSI failover (e.g. ALUA and similar technologies), it should be possible to

achieve A, even in case of single storage node failures, while retaining C from the viewpoint12
of the application.
This is explained by the thick line in the following variant of the graphics, which is only valid

for passive crossover cables where P need not be guaranteed by the replication because it is
already assumed for free:

11In addition, you will need some further components like Pacemaker, iSCSI failover, etc. These might also be
involved in the practically observed behaviour.

12Notice: the CAP theorem does not deal with node failures, only with network failures. Node failures would
always violate C by some “strong” definition. By some “weaker” definition, the downtime plus recovery time
(e.g. DRBD re-sync) can be taken out of the game. Notice: while a node can always “know” whether it
has failed (at least after reboot), network failures cannot be distinguished from failures of remote nodes in
general. Therefore node failures and network failures are fundamentally different by their nature.

128

https://en.wikipedia.org/wiki/CAP_theorem

5.3. Explanation via CAP Theorem

C = Consistency

A = Availability P = Partitioning Tolerance

Now look at the case of a truly Distributed System, where P cannot be assumed as for free.
For example, try to use DRBD in a long-distance replication scenario. There we cannot assume
P as already given. We must tolerate replication network outages. DRBD is reacting to this
differently in two different modes.
First we look at the (short) time interval before DRBD recognizes the replication network

incident, and before it leaves the connected state. During this phase, the application IO will
hang for some time, indicating the (temporary) sacrifice (from a user’s perspective) by a red
X:

C = Consistency

A = Availability P = Partitioning ToleranceX
Because Availability is one of the highest goods of enterprise-critical IT operations, you will typ-
ically configure DRBD such that it automatically switches to some variant of a disconnected
state after some timeout, thereby giving up consistency between both replicas. The red X
indicates not only loss of global strict consistency in the sense of the CAP theorem, but also
that your replica will become Inconsistent during the following re-sync:

C = Consistency

A = Availability P = Partitioning Tolerance

X

You may wonder what the difference to MARS is. As explained in section Architectural Proper-
ties of Cloud Storage, MARS is not only intended for wide distances, but also for Cloud Stor-
age where no strict consistency is required at global level by definition, but instead Eventually
Consistent is the preferred model for the Distributed System. Therefore, strict consistency
(in the sense of the CAP theorem) is not required by definition.
Consequently, the red X is not present in the following graphics, showing the state where

MARS is remaining locally consistent all the time13, even when a network outage occurs:

13Notice that the initial full sync is not considered here, neither for DRBD, nor for MARS. Setup of the
Distributed System is its own scenario, not considered here. Repair of a damaged system is also a different
scenario, also not considered here. Notice the MARS’ emergency mode also belongs to the class of “damages”,
as well as DRBD’ disk failure modes, where is has some additional functionality compared to the current
version of MARS.

129

5. Use Cases for MARS

A = Availability P = Partitioning Tolerance

C = Consistency

Notice: MARS does not guarantee strict consistency between LV replicas at the level of
the Distributed System, but only Eventually Consistent. However, at the same time it also
guarantees strict consistency locally, and even at each of the passive replicas, each by each.
Don’t confuse these different levels. There are two different consistency guarantees at different
levels, both at the same time. This might be confusing if you are not looking at the system at
different levels: (1) overall Distributed System versus (2) each of the local system instances.

Why does MARS this? Because a better way is not possible at all. The CAP theorem tells
us that there exists no better way when both A has to be guaranteed (as almost everywhere
in enterprise-critical IT operations except database systems), and P has to be ensured in geo-
redundant datacenter disaster scenarios or some other scenarios. Similarly to natural laws like
Einstein’s laws of the speed of light, there does not exist a better way!

Manager Hint 5.8: Solution classification of DRBD

Conclusion from the CAP theorem: when P is a hard requirement, don’t use
DRBD (or any other synchronous replication implementation) for long-distance and/or
true Cloud Storage scenarios. It is only well-suited for short-distance crossover cable
scenarios.

The red X is in particular problematic during re-sync, after the network has become healthy
again (cf section Behaviour of DRBD). MARS has no red X at C because of its Anytime
Consistency, which refers to local consistency, and which is violated by DRBD during certain
important phases of its regular operation.

Manager Hint 5.9: Impossible requirements

If you think that you require alle three properties C+A+P, but you don’t have
passive crossover cables over short distances, you are requiring something which is im-
possible in general. You need give up one of them, at least with a certain probability.

There exists no solution, with whatever component, or from whatever commercial storage ven-
dor. Although some “marketing drones” are claiming the impossible, e.g. by citing examples,
which are then incorrectly generalized. You might have luck, and there might be exceptional
examples where all three C+A+P were ok, by chance. But there remains a risk. The CAP
theorem is as hard as Einstein’s natural laws are.
You need a conscious decision about priorities, which property to drop first. Rethink your

complete concept, from end to end. Something is wrong, somewhere. Ignoring a fundamental
law like CAP on enterprise-critical use cases can endanger a company and/or your career.

5.3.2. CAP Commonalities between DRBD and MARS

In this subsection, we look at the case that P is not for free, but has to be ensured by the
Distributed Storage system.

130

5.3. Explanation via CAP Theorem

You may have noticed that MARS’ ordinary CAP behaviour is similar to DRBD’s CAP
picture in disconnected state, or during similar states when the replication network is inter-
rupted.
Replication network interruption is also known as “Network Partitioning”. This is where

property P = Partitioning Tolerance comes into play.
When a network partition has actually occurred, both DRDB and MARS allow you to do

the same: you may forcefully switch the primary role, which means activation of a former
secondary node. In such a situation, you can issue commands like drbdadm primary --force
or marsadm primary --force. It is no accident that both commands are looking similar to
each other.
The outcome will be the same: you will most likely get a SplitBrain situation.
The possibility of getting a split brain is no specific property of neither DRBD nor MARS.

It will also happen with any other replication system, whether synchronous or asynchronous.
It is one of the consequences from the CAP theorem when (1a) P has to be assured, and (1b)

a network partition has actually occurred, and (2) when A = Availability is enforced at both
sides of the network partition. The result is that C = global Consistency may be violated, by
creation of two or more versions of the data.

Details 5.5:

Fortunately, there is a method for dynamic control of SplitBrain at runtime. The
decision about forceful creation of SplitBrain can be made dynamically dependent on
further external factors, like current customer demands, or forecasts, etc.

Careful: at least for some application classes, it is a bad idea to systematically create split
brain via automatic cluster managers, e.g. Pacemaker or similar. As explained in section 6.1
on page 134, some cluster managers were originally constructed for truly shared disk scenarios,
where no split brain can occur by construction. Using them in masses on versioned data in truly
distributed systems can result in existential surprises, once a bigger network partition and/or
a flaky replication networks triggers them in masses, and possibly at unexpected moments.

Manager Hint 5.10:

Split brain should not be provoked when not absolutely necessary.

Split brain resolution is all else but easy in general. When the data is in a generic block
device, you typically will have no general means for merging both versions. This means, split
brain resolution is typically only possible by throwing away some of the versions.
This kind of split brain resolution problem is not specific for DRBD or MARS. It is a funda-

mental property of Distributed Systems, and the difficulty of resolution is an inherent property
of generic block devices.
DRBD and MARS have some commands like drbdadm invalidate or marsadm invalidate

for this. Again, the similarity is no accident.
Notice that classical filesystems aren’t typically better than raw block devices. There are

even more possibilities for tricky types of conflicts (e.g. on path names in addition to file
content). Anyway, long-distance replication should not be done at filesystem layer, see section
Performance Penalties by Choice of Replication Layer.
Similary, BigCluster object stores are often suffering from similar (or even worse) problems,

because higher application layers may have some hidden internal dependencies between object
versions, while the object store itself is agnostic of version dependencies in general14.

Cautious: when stacking block devices or filesystems, or any other complex structured
aggregates on top of some BigCluster object store, you are creating another fundamental risk,
14There exists lots of types of potential dependencies between objects. Timely ones are easy to capture, but

this is not sufficient in general for everything.

131

5. Use Cases for MARS

in addition to Dijkstra regressions explained in section Negative Example: object store imple-
mentations mis-used as backend for block devices / directory or pointer structures / POSIX
filesystems. Several types15 of object stores will not magically resolve any split brain for you.
Check whether your favorite object store implementation has some kind of equivalent of a
primary --force command. If it doesn’t have one, or only a restricted one, you should be
alerted . In case of a long-lasting(!) storage network partition, you might need suchalike
desperately for ensuring A, even at the cost of C16.

Check: whether you need this is heavily depending on the application class (see also
the Cloud Storage definition in section Architectural Properties of Cloud Storage). If you would
need it, but you are not prepared for suchalike scenarios at your enterprise-critical
data, it could cost you a lot of money and/or reputation and/or even your existence.

Notice: the concept of SplitBrain is occurring almost everywhere in truly Distributed
Systems when C can be violated in favour of A+P. It is a very general consequence17 of the
CAP theorem.
The only reliable way for avoiding split brain in truly distributed systems would be: don’t

insist on A = Availability. Notice that there exist only a few application classes, like certain
types of banking, where C is typically a higher good than A.
Notice that both DRBD and MARS are supporting suchalike application classes also: just

don’t add the option --force to the primary switch command.
However: even in banking, some extremely extraordinary scenarios might occur, where sac-

rifice of C in favour of A could be necessary (e.g. when manual cleanup of C is cheaper than
long-lasting violations of A).

Manager Hint 5.11: Summary CAP decisions

Both DRBD and MARS have some emergency measure for killing C in favour of A. It
requires your conscious decision whether / where / when to use it, or not.

5.4. Higher Consistency Guarantees vs Actuality
We already saw in section Network Bottlenecks that certain types of network bottlenecks can
easily (and reproducibly) destroy the consistency of your DRBD secondary, while MARS will
preserve local consistency at the cost of actuality (anytime consistency).

Details 5.6:

Some people, often located at database operations, are obtrusively arguing that actuality
is such a high good that it must not be sacrificed under any circumstances.
Anyone arguing this way has at least the following choices (list may be incomplete):

1. None of the above use cases for MARS apply. For instance, short distance repli-
cation over crossover cables is sufficient, and the network is reliable enough such
that bottlenecks can never occur (e.g. because the total load is extremely low,

15Notice: BigCluster architectures are typically discriminating between between client servers and storage
servers. This will typically introduce some more possibilities into the game, such as forced client failover,
independently from forced storage failover.

16Notice that the C functionality is often not implemented by the object store itself (which typically provides only
eventually consistent at object granularity), but implemented by the distributed block device or distributed
filesystem, if it is implemented at all. There is a fundamental problem with at least 3 different granularities
to be resolved: in order to guarantee strict consistency at (1) aggregate granularity, which is independent
from the (2) network partition granularity, in general multiple versions of objects may be required at (3)
object granularity. Does your object store have a means for this, similarly to multiversion databases, e.g.
multiversion timestamp ordering?

17There exist only few opportunities for generic conflict resolution, even in classical databases where some
knowledge about the structure of the data is available. Typically, there exist some more hidden dependencies
than people are expecting. Lossless SplitBrain resolution will thus need to be implemented at application
layer, if it is possible at all.

132

5.4. Higher Consistency Guarantees vs Actuality

or conversely the network is extremely overengineered / expensive), or the occur-
rence of bottlenecks can provably be taken into account. In such cases, DRBD is
clearly the better solution than MARS, because it provides better actuality than
the current version of MARS, and it uses up less disk resources.

2. In the presence of network bottlenecks, people didn’t notice and/or didn’t under-
stand and/or did under-estimate the risk of accidental invalidation of their DRBD
secondaries. They should carefully check that risk. They should convince them-
selves that the risk is really bearable. Once they are hit by a systematic chain of
events which reproducibly provoke the bad effect, it is too latea.

3. In the presence of network bottlenecks, people found a solution such that DRBD
does not automatically re-connect after the connection has been dropped due to
network problems (c.f. ko-count parameter). So the risk of inconsistency appears
to have vanished. In some cases, people did not notice that the risk has not
completelyb vanished, and/or they did not notice that now the actuality produced
by DRBD is even drastically worse than that of MARS (in the same situation). It is
true that DRBD provides better actuality in connected state, but for a full picture
the actuality in disconnected state must not be neglectedc. So they didn’t notice
that their argumentation on the importance of actuality may be fundamentally
wrong. A possible way to overcome that may be re-reading section Behaviour of
MARS and comparing its outcome with the corresponding outcome of DRBD in
the same situation.

4. People do not know the CAP theorem (see section Explanation via CAP Theorem),
and are trying to require something which simply is impossible.

5. People are stuck in contradictive requirements because the current version of
MARS does not yet support synchronous or pseudo-synchronous operation modes.
This should be resolved some day.

aSome people seem to need a bad experience before they get the difference between risk caused by
reproducible effects and inverted luck.

bHint: what’s the conceptual difference beween an automatic and a manual re-connect? Yes, you can
try to lower the risk in some cases by transferring risks to human analysis and human decisions, but
did you take into account the possibility of human errors?

cHint: a potential hurdle may be the fact that the current format of /proc/drbd does neither display
the timestamp of the first relevant network drop nor the total amount of lag-behind user data (which
is not the same as the number of dirty bits in the bitmap), while marsadm view can display it. So it
is difficult to judge the risks. Possibly a chance is inspection of DRBD messages in the syslog, but
quantification could remain hard.

A common misunderstanding is about the actuality guarantees provided by filesystems.
The buffer cache / page cache uses by default a writeback strategy for performance reasons.
Even modern journalling filesystems will (by default) provide only consistency guarantees, but
no strong actuality guarantee. In case of power loss, some transactions may be even rolled back
in order to restore consistency. According to POSIX18 and other standards, the only reliable
way to achieve actuality is usage of system calls like sync(), fsync(), fdatasync(), flags like
O_DIRECT, or similar. For performance reasons, the vast majority of applications don’t use them
at all, or use them only sparingly!

It makes no sense to require strong actuality guarantees from any block layer replication
(whether DRBD or future versions of MARS) while higher layers such as filesystems or even
applications are already sacrificing them!

In summary, the anytime consistency provided by MARS is an argument you should
consider, even if you need an extra hard disk for transaction logfiles.

18The above argumentation also applies to Windows filesystems in analogous way.

133

6. Requirements of Long-Distance
Replication

6.1. Avoiding Inappropriate Clustermanager Types for
Medium and Long-Distance Replication

This section addresses some wide-spread misconceptions. Its main target audience is userspace
developers, but others may profit from detailed explanations of problems and pitfalls.
When the problems described in this section are solved somewhen in future, this section will
be shortened and some relevant parts moved to the appendix.
Doing HA = High Availability (see section What is HA = High Availability) wrong at

concept level may easily get you into trouble, and may cost you several millions of € or $ in
larger installations, or even knock you out of business when disasters are badly dealt with at
higher levels such as clustermanagers.

6.1.1. General Cluster Models
The most commonly known cluster model is called shared-disk, and typically controlled by
clustermanagers like PaceMaker:

App Cluster Side A

(currently active)

App Cluster Side B

(currently passive)

Shared Disk

Clustermanager

e.g. PaceMaker

e.g. iSCSIe.g. iSCSI

The most important property of shared-disk is that there exists only a single disk instance.
Nowadays, this disk often has some internal redundancy such as RAID. At system architecure
layer / network level, there exists no redundant disk at all. Only the application cluster is built
redundantly.

It should be immediately clear that shared-disk clusters are only suitable for short-distance
operations in the same datacenter, or better in the same room / rack. Although running one of
the data access lines over short distances between very near-by datacenters (e.g. 1 km) would
be theoretically possible, there would be no sufficient protection against failure of a whole
datacenter.
Both DRBD and MARS belong to a different architectural model called shared-nothing:

App Cluster Side A

(currently active)

App Cluster Side B

(currently passive)

e.g. iSCSI e.g. iSCSI

Clustermanager

Disk A Disk B

Disk Coupling

e.g. DRBD or MARS

134

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

The characteristic feature of a shared-nothing model is (additional) data redundancy at
network level.

Shared-nothing “clusters1” could theoretically be built for any distances, from short to
medium to long distances. However, concrete technologies of disk coupling such as synchronous
operation may pose practical limits on the distances (see chapter Use Cases for MARS).
In general, clustermanagers must fit to the model. Some clustermanager can be configured

to fit to multiple models. If so, this must be done properly, or you may get into serious trouble.

Manager Hint 6.1:

Some people don’t know, or they don’t believe even when told them, that different
architectural models like shared-disk or shared-nothing will require an appropriate type
of clustermanager and/or at least a different configuration. Failing to do so, by selection
of an inappropriate clustermanager type and/or an inappropriate configuration may be
hazardous.

Pitfall: suchalike problems are typically appearing only during incidents.

It is dangerous to conclude from “stable ordinary operation” that the system is
reliable. The real risk is that data inconsistencies are showing up at the wrong
moment, when the clustermanager has to execute the right actions for compensation
of a certain component failure.

Selection of the right model alone is not sufficient. Some, if not many, clustermanagers
have not been designed for long distances (see section What is Geo-Redundancy).
As explained in section Special Requirements for Long Distances, long distances have further

hard requirements. Disregarding them may be also hazardous!

6.1.2. Handover / Failover Reasons and Scenarios

From a sysadmin perspective, there exist a number of different reasons why the application
workload must be switched from the currently active side A to the currently passive side B:

1. Some defect has occurred at cluster side A or at some corresponding part of the network.

2. Some maintenance has to be done at side A which would cause a longer downtime (e.g.
security kernel update or replacement of core network equipment or maintainance of UPS
or of the BBU cache etc - hardware isn’t 24/7/365 in practice, although some vendors
claim it - it is either not really true, or it becomes extremely expensive).

Both reasons are valid and must be automatically handled (but not necessarily automatically
triggered) in larger installations. In order to deal with all of these reasons, the following basic
mechanisms can be used in either model:

1. Failover (triggered either manually or automatically)

2. Handover (triggered manually2)

It is important to not confuse handover with failover at concept level. Not only the reasons /
preconditions are very different, but also the requirements.

1Notice that the term “cluster computing” usually refers to short-distance only. Long-distance coupling should
be called “grid computing” in preference. As known from the scientific literature, grid computing requires
different concepts and methods in general. Only for the sake of simplicity, we use “cluster” and “grid”
interchangeably.

2Automatic triggering could be feasible for prophylactic treatments.

135

6. Requirements of Long-Distance Replication

Example 6.1:

Precondition for handover is that both cluster sides are healthy, while precondition for
failover is that some really relevant(!) failure has been detected somewhere (whether
this is really true is another matter). Typically, failover must be able to run in masses,
while planned handover often has lower scaling requirements.

Not all existing clustermanagers are dealing with all of these cases (or their variants) equally
well, and some are not even dealing with some of these cases / variants at all.
Some clustermanagers cannot easily express the concept of “automatic triggering” versus

“manual triggering” of an action. There exists simply no cluster-global switch which selects
either “manual mode” or “automatic mode” (except when you start to hack the code and/or
write new plugins; then you might notice that there is no sufficient architectural layering /
sufficient separation between mechanism and strategy).

Manager Hint 6.2:

Being forced to permanently use an automatic mode for triggering several hundreds
or even thousands of clusters is not only boring, but bears a considerable risk when
automatics do a wrong decision at hundreds of instances in parallel.

6.1.3. Granularity and Layering Hierarchy for Long Distances
Many existing clustermanager solutions are dealing with a single cluster instance, as the term
“clustermanager” suggests. However, when running several hundreds or thousands of cluster
instances, you likely will not want to manage each of them individually. In addition, failover
should not only be triggered (not to be confused with executed) individually at cluster level,
but likely also at a higher granularity such as a room, or a whole datacenter. Otherwise, some
chaos is likely to happen.
Here is what you probably will need, possibly in difference to what you may find on the

market (whether OpenSource or not). For simplicity, the following diagram shows only two
levels of granularity, but can be easily extended to multiple layers of granularity, or to some
concept of various subsets of clusters:

Mechanics Layer: Handover+Failover of whole Datacenter

Mechanics Layer: Handover+Failover of single Cluster (several hundreds / thousands of instances)

(about a dozen of instances)

(one globally distributed instance)Automatics Layer: Failover of {Datacenters...Clusters}

Notice that many existing clustermanager solutions are not addressing the datacenter gran-
ularity at all. Typically, they use concepts like quorums for determining failures at cluster
level solely, and then immediately executing failover of the cluster, sometimes without clean
architectural distinction between trigger and execution (similar to the “separation of concerns”
betweenmechanism and strategy in Operating Systems). Sometimes there is even no internal
software layering / modularization according to this separation of concerns at all.

When there is no distinction between different levels of granularity, you are hopelessly
bound to a non-extensible and thus non-adaptable system when you need to operate masses of
clusters.

Manager Hint 6.3: Minimum requirements for larger installations

A lacking distinction between automatic mode and manual mode in a cluster
management solution, and/or lack of corresponding architectural software layers is
not only a blatant ignoration of well-established best practices of software engineer-

136

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

ing, but will bind you even more firmly to an inflexible system, producing direct and
indirect long-term follow-up cost.

Terminology: for practical reasons, we use the general term “clustermanager” also for
speaking about layers dealing with higher granularity, such as datacenter layers, and also for
long-distance replication scenarios, although some terminology from grid computing would be
more appropriate in a scientific background.
Please consider the following: when it comes to long-distance HA, the above layering archi-

tecture is also motivated by vastly different numbers of instances for each layer. Ideally, the
topmost automatics layer should be able to overview several datacenters in parallel, in order to
cope with (almost) global network problems such as network partitions. Additionally, it should
also detect single cluster failures, or intermediate problems like “rack failure” or “room failure”,
as well as various types of (partial / intermediate) (replication) network failures. Incompatible
decisions at each of the different granularities would be a no-go in practice. Somewhere and
somehow, you need one single3 top-most logical problem detection / ranking instance, which
should be internally distributed of course, typically using some distributed consensus pro-
tocol; but in difference to many published distributed consensus algorithms it should be able
to work with multiple granularities at the same time.

6.1.4. Discussion of Handover / Failover Methods

6.1.4.1. Failover Methods

Manager Hint 6.4:

Failover methods are only needed in case of an incident. They should not be used for
regular handover, because preconditions are different. Inappropriate merges of both
method classes will cause unnecessary indirekt cost.

STONITH-like Methods STONITH = Shoot The Other Node In The Head
These methods are widely known, although they have several serious drawbacks. Some people

even believe that any clustermanager must always have some STONITH-like functionality. This
is wrong. There exist alternatives, as shown in the next paragraph.

A historical motivation for STONITH was prevention of illegal modifications of the shared
disk by amok-running defective clients. In those ancient times, disks were passive mechanical
components, while their disk controller was often belongig to the server. In modern shared-
nothing scenarios, this motivation does no longer exist. Anyway, you can achieve disk fencing
by various software means nowadays.

The most obvious drawback is that STONITH will always create a damage, by defini-
tion.

Example 6.2:

Typical contemporary STONITH implementations are using IPMI and relatives for au-
tomatically powering off your server, or at least pushing the (virtual) reset button. This
will always create a certain type of damage: the affected systems will definitely not be
available, at least for some time until it has (manually) rebooted.

3If you have logical pairs of datacenters which are firmly bound together, you could also have several topmost
automatics instances, e.g. for each pair of datacenters. However, that would be very inflexible, because
then you cannot easily mix locations or migrate your servers between datacenters. Using k > 2 replicas with
MARS would also become a nightmare. In your own interest, please don’t create any concepts where masses
of hardware are firmly bound to fixed constants at some software layers.

137

6. Requirements of Long-Distance Replication

The STONITH damage leads to a conceptual contradiction: the reason for starting failover is
that you want to restore availability as soon as possible, but in order to do so you will first
destroy the availability of a particular component. This may be counter-productive.

Example 6.3:

When your hot standby node B does not work as expected, or if it works even worse
than A before, you will at least loose some time until you can become operational again
at the old side A. In addition, pushing the reset button bears the risk of unnecessary
data loss from RAM buffers not yet written to disk, and in turn to risk of data in-
consistencies, like need for a filesystem check. When some of the hardware is defective,
like for example the boot disk or the boot sector, the system may not come up at all
after reset.

Example 6.4: STONITH variant for shared-nothing

Here is an example method for handling a failure scenario. The old active side A is
assumed to be no longer healthy anymore. The method uses a sequential state transition
chain with a STONITH-like step:

Phase1 Check whether the hot standby B is currently usable. If this is violated (which
may happen during certain types of disasters), abort the failover for any affected
resources.

Phase2 Try to shutdown the damaged side A (in the hope that there is no serious
damage).

Phase3 In case phase2 did not work during a grace period / after a timeout, assume
that A is badly damaged and therefore STONITH it.

Phase4 Start the application at the hot standby B.

Notice: any cleanup actions, such as repair of defective hard- or software etc, are outside
the scope of failover processes. Typically, they are executed much later when restoring
redundancy.
Also notice: this method is a heavily distributed one, in the sense that sequential actions
are alternated multiple times on different hosts. This is known to be cumbersome in
distributed systems, in particular in presence of network problems.
Phase4 in more detail for DRBD, augmented with some pseudo code for application
control:

1. at side B: drbdadm disconnect all

2. at side B: drbdadm primary --force all

3. at side B: applicationmanager start all

The same phase4 using MARS:

1. at side B: marsadm pause-fetch all

2. at side B: marsadm primary --force all

3. at side B: applicationmanager start all

This sequential 4-phase method is far from optimal, for the following reasons:

• The method tries to handle both failover and handover scenarios with one single sequential
receipe. In case of a true failover scenario where it is already known for sure that side
A is badly damaged, this method will unnecessarily waste time for phase 2. This could
be fixed by introduction of a conceptual distinction between handover and failover, but
it would not fix the following problems.

138

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

• Before phase4 is started (which will re-establish the service from a user’s perspective), a
lot of time is wasted by both phases 2 and 3. Even if phase 2 would be skipped, phase
3 would unnecessarily cost some time. In the next paragraph, an alternative method is
explained which eliminates any unnecessary waiting time at all.

• The above method is adapted from the shared-disk model. It does not take advantage of
the shared-nothing model, where further possibilities for better solutions exist.

• In case of long-distance network partitions and/or sysadmin / system management sub-
network outages, you may not even be able to (remotely) execute STONITH at all. Thus
the above method misses an important failure scenario.

Some people seem to have a binary view at the healthiness of a system: in their view, a system
is either operational, or it is damaged. This kind of view is ignoring the fact that some systems
may be half-alive, showing only minor problems, or occurring only from time to time.
It is obvious that damaging a healthy system is a bad idea by itself. Even generally damaging

a half-alive system in order to “fix” problems is not generally a good idea, because it may increase
the damage when you don’t know the real reason4.
Even worse: in a distributed system5 you sometimes cannot(!) know whether a system is

healthy, or to what degree it is healthy. Typical STONITH methods as used in some contem-
porary clustermanagers are assuming a worst case, even if that worst case is currently not
for real.

Details 6.1: Advice

Avoid the following fundamental flaws in failover concepts and healthiness models,
which apply to implementors / configurators of clustermanagers:

• Don’t mix up knowledge with conclusions about a (sub)system, and also don’t
mix this up with the real state of that (sub)system. In reality, you don’t have any
knowledge about a complex distributed system. You only may have some knowl-
edge about some parts of the system, but you cannot “see” a complex distributed
system as a whole. What you think is your knowledge, isn’t knowledge in reality:
in many cases, it is conclusion, not knowledge. Don’t mix this up!

• Some systems are more complex than your model of it. Don’t neglect important
parts (such as networks, routers, switches, cables, plugs) which may lead you to
wrong conclusions!

• Don’t restrict your mind to boolean models of healthyness. Doing so can easily
create unnecessary damage by construction, and even at concept level. You should
know from software engineering that defects in concepts or models are much more
serious than simple bugs in implementations. Choosing the wrong model cannot
be fixed as easily as a typical bug or a typo.

• Try to deduce the state of a system as reliably as possible. If you don’t know
something for sure, don’t generally assume that it has gone wrong. Don’t confuse
missing knowledge with the conclusion that something is bad. Boolean algebra
restricts your mind to either “good” or “bad”. Use at least tri-state algebra
which has a means for expressing “unknown” . Even better: attach a probability
to anything you (believe to) know. Errare humanum est: nothing is absolutely for
sure.

• Oversimplification: don’t report an “unknown” or even a “broken” state for a
complex system whenever a smaller subsystem exists for which you have some
knowledge (or you can conclude something about it with reasonable evidence).

4Example, occurring in masses: an incorrectly installed bootloader, or a wrong BIOS boot priority order
which unexpectedly lead to hangs or infinite reboot cycles once the DHCP or BOOTP servers are not longer
available / reachable.

5Notice: the STONITH concept is more or less associated with short-distance scenarios where crossover
cables or similare equipment are used. The assumption is that crossover cables can’t go defective, or at
least it would be an extremely unlikely scenario. For long-distance replication, this assumption is simply not
true.

139

6. Requirements of Long-Distance Replication

Otherwise, your users / sysadmins may draw wrong conclusions, and assume that
the whole system is broken, while in reality only some minor part has some minor
problem. Users could then likely make wrong decisions, which may then easily
lead to bigger damages.

• Murphy’s law: never assume that something can’t go wrong! Doing so
is a blatant misconception at topmost level: the purpose of a clustermanager is
creating High Availablity (HA) out of more or less “unreliable” components. It is
the damn duty of both a clustermanager and its configurator to try to compensate
any failures, regardless of their probabilitya, as best as possible.

• Never confuse probability with expectancy value! If you don’t know the
mathematical term “expectancy value”, or if you don’t know what this means in
practice, don’t take responsibility for millions of € or $.

• When operating masses of hard- and software: never assume that a particular
failure can occur only at a low number of instances. There are unknown(!)
systematic errors which may pop up at the wrong time and in huge masses
when you don’t expect them.

• Multiple layers of fallback: any action can fail. Be prepared to have a plan B, and
even a plan C, and even better a plan D, wherever possible.

• Never increase any damage anywhere, unnecessarily! Always try to miminize any
damage! It can be mathematically proven that in deterministic probabilistic sys-
tems having finite state, increases of a damage level at the wrong place will in-
troduce an additional risk of getting into an endless loop. This is also true for
nondeterministic systems, as known from formal language theoryb.

• Apply the best effort principle. You should be aware of the following fact: in
general, it is impossible to create an absolutely reliable system out of unreliable
components. You can lower the risk of failures to any ε > 0 by investing a lot of
resources and of money, but whatever you do: ε = 0 is impossible. Therefore, be
careful with boolean algebra. Prefer approximation methods / optimizing methods
instead. Always do your best, instead of trying to reach a global optimum which
likely does not exist at all (because the ε can only converge to an optimum, but
will never actually reach it).
The best effort principle means the following: if you discover a method for improv-
ing your operating state by reduction of a (potential) damage in a reasonable time
and with reasonable effort, then simply do it. Don’t argue that a particular step
is no 100% solution for all of your problems. Any improvement is valuable. Don’t
miss any valuable step having reasonable cost with respect to your budget.
Missing valuable measures which have low cost are certainly a violation of the best
effort principle, because you are not doing your best. Keep that in mind.
If you have understood this (e.g. deeply think at least one day about it), you will
no longer advocate STONITH methods in general, when there are alternatives.
STONITH methods are only valuable when you know in advance that the final
outcome (after reboot) will most likely be better, and that waiting for reboot will
most likely pay off. In general, this condition is not true if you have a healthy hot
standby system. This should be easy to see. But there exist well-known cluster-
manager solutions / configurations blatantly ignoringc this. Only when the former
standby system does not work as expected (this means that all of your redundant
systems are not healthy enough for your application), only thend STONITH is
unevitable as a last resort option.
In short: blindly using STONITH without true need during failover is a violation
of the best effort principle. You are simply not doing your best.

• When your budget is limited, carefully select those improvements which make your
system as reliable as possible, given your fixed budget.

140

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

• Create statistics on the duration of your actions. Based on this, try to get a
balanced optimum between time and cost.

• Whatever actions you can start in parallel for saving time, do it. Otherwise you
are disregarding the best effort principle, and your solution will be sub-optimal.
You will require deep knowledge of parallel systems, as well as experience with
dealing with problems like (distributed) races. Notice that any distributed sys-
tem is inherently parallel. Don’t believe that sequential methods can deliver an
optimum solution in such a difficult area.

• If you don’t have the necessary skills for (a) recognizing already existing paral-
lelism, (b) dealing with parallelism at concept level, (c) programming and/or con-
figuring parallelism race-free and deadlock-free (or if you even don’t know what a
race condition is and where it may occur in practice), then don’t take responsibility
for millions of € or $.

• Avoid hard timeouts wherever possible. Use adaptive timeouts instead. Reason:
depending on hardware or workload, the same action A may take a very short time
on cluster 1, but take a very long time on cluster 2. If you need to guard action
A from hanging (which is almost always the case because of Murphy’s law), don’t
configure any fixed timeout for it. When having several hundreds of clusters,
you would need to use the worst case value, which is the longest time occurring
somewhere at the very slow clusters / slow parts of the network. This wastes a
lot of time in case one of the fast clusters is hanging. Adaptive timeouts work
differently: they use a kind of “progress bar” to monitor the progress of an action.
They will abort only if there is no progress for a certain amount of time. Hint:
among others, marsadm view-*-rest commands or macros are your friend.

aNever claim that something has only low probability (and therefore it were not relevant). In the HA
area, you simply cannot know that, because you typically have sporadic incidents. In extreme
cases, the purpose of your HA solution is protection against 1 failure per 10 years. You simply don’t
have the time to wait for creating an incident statistics about that!

bFinite automatons are known to be transformable to deterministic ones, usually by an exponential
increase in the number of states.

cFor some special(!) cases of the shared-disk model, there exist some justifications for doing STONITH
before starting the application at the hot standby. Under certain circumstances, it can happen that
system A running amok could destroy the data on your single shared disk (example: a filesystem
doubly mounted in parallel, which will certainly destroy your data, except you are using ocfs2 or
suchalike). This argument is only valid for passive disks which are directly attached to both systems
A and B, such that there is no external means for fencing the disk. In case of iSCSI running over
ordinary network equipment such as routers or switches, the argument “fencing the disk is otherwise
not possible” does not apply. You can interrupt iSCSI connections at the network gear, or you can
often do it at cluster A or at the iSCSI target. Even commercial storage appliances speaking iSCSI
can be remotely controlled for forcefully aborting iSCSI sessions. In modern times, the STONITH
method has no longer such a justification. The justification stems from ancient times when a disk
was a purely passive mechanical device, and its disk controller was part of the server system.

dNotice that STONITH may be needed for (manual or partially automatic) repair in some cases, e.g.
when you know that a system has a kernel crash. Don’t mix up the repair phase with failover or
handover phases. Typically, they are executed at different times. The repair phase is outside the
scope of this section.

ITON = Ignore The Other Node This strategy means fencing from application traffic,
and can be used as an alternative to STONITH when done properly.

Traffic

Application

Fencing from

Storage

Fencing from ...

General Fencing Methods

STONITH

Fencing from application traffic is best suited for the shared-nothing model, but can also be
adapted to the shared-disk model with some quirks.

141

6. Requirements of Long-Distance Replication

The idea is simple: always route your application network traffic to the current (logically)
active side, whether it is currently A or B. Just don’t route any application requests to the
current (logically) passive side at all.
For failover (and only for that), you should not care about any split brain occurring at the

low-level generic block device:

A

B

common part of history

Although having a split brain at the generic low-level block device, you now define the “logically
active” and “logically passive” side by yourself by logically ignoring the “wrong” side as defined
by yourself:

A

B

common part of history

This is possible because the generic block devices provided by DRBD or MARS are completely
agnostic of the “meaning” of either version A or B. Higher levels such as clustermanagers (or
humans like sysadmins) can assign them a meaning like “relevant” or “not relevant”, or “logically
active” or “logically passive”.
As a result of fencing from application traffic, the “logically passive” side will logically cease

any actions such as updating user data, even if it is “physically active” during split-brain (when
two primaries exist in DRBD or MARS sense6).
If you already have some load balancing at the network, or BGP, or another mechanism for

dynamic routing, you already have an important part for the ITON method. Additionally,
ensure by an appropriate strategy that your balancer status / BGP announcement etc does
always coincide with the “logically active” side (recall that even during split-brain you must
define “logically active” uniquely7 by yourself).

Example 6.5: Application fencing

Phase1 Check whether the hot standby B is currently usable. If this is violated (which
may happen during certain types of disasters), do not start failover for any affected
resources.

Phase2 Do the following in parallela:

• Start all affected applications at the hot standby B. This can be done with the
same DRBD or MARS procedure as described in STONITH-like Methods.

• Fence A by fixedly routing all affected application traffic to B.

That’s all which has to be done for a shared-nothing model. Of course, this will likely
produce a split-brain (even when using DRBD in place of MARS), but that will not
matter from a user’s perspective, because the users will no longer “see” the “logically
passive” side A through their network. Only during the relatively small time period
where application traffic was going to the old side A while not replicated to B due
to the incident, a very small number of updates could have gone lost. In fields like
webhosting, this can be taken into account. Users will usually not complain when some
(smaller amount of) data is lost due to split-brain. They will complain when the service
is unavailable.
aFor database applications where no transactions should get lost, you should slightly modify the order

of operations: first fence the old side A, then start the application at standby side B. However, be

6Hint: some clustermanagers and/or some people seem to define the term “split-brain” differently from DRBD
or MARS. In the context of generic block devices, split brain means that the history of both versions has
been split to a Y-like fork (for whatever reason), such that re-joining them incrementally by ordinary write
operations is no longer guaranteed to be possible. As a slightly simplified definition, you might alternatively
use the definition “two incompatible primaries are existing in parallel”, which means almost the same in
practice. Details of formal semantics are not the scope of this treatment.

7A possible strategy is to use a Lamport clock for route changes: the change with the most recent Lamport
timestamp will always win over previous changes.

142

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

warned that even this cannot guarantee that no transaction is lost. When the network between A
and B is interrupted before the incident happens, DRBD will automatically disconnect, and MARS
will show a lagbehind. In order to fully eliminate this possibility, you can either use DRBD and
configure it to hang forever during network outages (such that users will be unable to commit any
transactions at all), or you can use the shared-disk model instead. But in the latter case, you
are introducing a SPOF at the single shared disk. The former case is logically almost equivalent
to shared-disk, but avoiding some parts of the physical SPOF. In a truly distributed system, the
famous CAP theorem is limiting your possibilities. Therefore, no general solution exists fulfilling all
requirements at the same time.

This method is the fastest for restoring HA, because it doesn’t try to execute any (remote)
action at side A. Only from a sysadmin’s perspective, there remain some cleanup tasks to be
done during the following repair phase, such as split-brain resolution, which are outside the
scope of this treatment.
By running the application fencing step sequentially (including wait for its partial successful-

ness such that the old side A can no longer be reached by any users) in front of the failover step,
you may minimize the amount of lost data, but at the cost of total duration. Your service will
take longer to be available again, while the amount of lost data could be theoretically somewhat
smaller.

Details 6.2:

A few people might clamour when some data is lost. In long-distance replication
scenarios with high update traffic, there is simply no way at all for guaranteeing that
no data can be lost ever. According to the laws of Einstein and the laws of Distributed
Systems like the famous CAP theorem (see section Explanation via CAP Theorem), this
isn’t the fault of DRBD+proxy or MARS, but simply the consequence of having long
distances. If you want to protect against data loss as best as possible, and when you
can afford it financially, then don’t use k = 2 replicas. Use k ≥ 3, and spread them over
different distances, such as mixed small + medium + long distances. Future versions
of MARS are planned to support adaptive pseudo-synchronous modes, which will allow
individual adaptation to network latencies / distances.

The ITON method can be adapted to shared-disk by additionally fencing the common disk
from the (presumably) failed cluster node A.

6.1.4.2. Handover Methods

Planned handover is conceptually simpler, because both sides must be (almost) healthy as a
precondition. There are simply no pre-existing failures to deal with.
Here is an example using DRBD, some application commands denoted as pseudo code:

1. at side A: applicationmanager stop all

2. at side A: drbdadm secondary all

3. at side B: drbdadm primary all

4. at side B: applicationmanager start all

MARS already has a conceptual distinction between handover and failover. With MARS, it
becomes even simpler, because a generic handover procedure is already built in:

1. at side A: applicationmanager stop all

2. at side B: marsadm primary all

3. at side B: applicationmanager start all

When using the systemd interface of marsadm (see mars-user-mnaual.pdf), this can be short-
ened into only one command:

1. at side B: marsadm primary all

143

6. Requirements of Long-Distance Replication

6.1.4.3. Hybrid Methods

In general, a planned handover may fail at any stage. Notice that such a failure is also a
failure, but (partially) caused by the planned handover. You have the following alternatives for
automatically dealing with such cases:

1. In case of a failure, switch back to the old side A.

2. Instead, forcefully switch to the new side A, similar to the methods described in section
6.1.4.1.

Similar options exist for a failed failover (at least in theory), but chances are lower for actually
recovering if you have only k = 2 replicas in total.
Whatever you decide to do in what case in whatever priority order, whether you decide it

in advance or during the course of a failing action: it simply means that according to the best
effort principle, you should never leave your system in a broken state when there exists
a chance to recover availability with any method.
Therefore, you should implement neither handover nor failover in their pure forms. Always

implement hybrid forms following the best effort principle.

6.1.5. Special Requirements for Long Distances
Most contemporary clustermanagers have been constructed for short distance shared-nothing
clusters, or even for local shared-nothing clusters (c.f. DRBD over crossover cables), or even
for shared-disk clusters (originally, when their concepts were developed). Blindly using them
for long-distance replication without modification / adaptation bears some additional risks.

• Notice that long-distance replication always requires a shared-nothing model.

• As a consequence, split brain can appear regularly during failover. There is no way for
preventing it! This is an inherent property of distributed systems, not limited to MARS
(e.g. also ocurring with DRBD if you try to use it over long distances). Therefore, you
must deal with occurences of split-brain as a requirement.

• The probability of network partitions is much higher: although you should have been
required by Murphy’s law to deal with network partitions already in short-distance sce-
narios, it now becomes mandatory.

• Be prepared that in case of certain types of (more or less global) internet partitions, you
may not be able to trigger STONITH actions at all. Therefore, fencing of application
traffic is mandatory.

144

7. Advice for Managers and Architects

7.1. Maturity Considerations for Managers

7.1.1. Maturity of Architectures

Manager Hint 7.1:

Instances of storage system architectures (see section What is Architecture) typically
have a lifetime of decades.
While implementations / components / storage vendors etc can often be exchanged
or updated more frequently (typically lifecycles of 3 to 5 years for CAPEX reasons),
fundamental architectures are much less flexible to change, and thus are forcing you
into a long-term strategy.

In contrast, certain hardware technologies have a much lower lifetime, typically between 1 and
2 years. New server hardware / new disks / SSDs etc are hitting their market all the time, like
waves in the ocean.
System software technologies (OS layer) typically have a lifetime inbetween hardware and

architecture lifetimes. Although their update cycles / minor release cycles are typically even
faster than hardware releases, their fundamental product appearance points are rather stable1.
For example, the Linux kernel is now more than 20 years old, while its fundamental architecture
has been copied from Unix and is now almost 50 years old.
Certain advocates are arguing with the current status of maturity of components. In a long-

term business operated by professionals, there is an observable long-term trend:

Maturity of components is (almost) always improving over the
years.

Of course, maturity is important. In sensible areas, so-called “banana software” may even
kill you. In such a situation, the current maturity status is important. However, once an
implementation is mature enough, and/or once only some nice-to-have features are deservable,
the long-term maturity trend / forecast of implementations / components is more important
than the current status. You can influence this with your long-term investment decisions.
There exists something which is even more important:

Maturity of fundamental architectures is most important, be-
cause they cannot improve. Architectures need to be right
from scratch.

This is similar to mathematics: Pythagoras’ theorem or Einstein’s laws cannot be improved.
They will last forever. At most, they can get old-fashioned or otherwise outdated / obsoleted.
However, there are other chances and opportunities:

• New / better architetures may appear (rarely).

• Implementations of architectures should evolve slowly over time.

• Implementations may slowly migrate to other architectures, or even support multiple
architectures at the same time (convergence properties).

1Appearance of certain technologies may occur in hype cycles, caused by social effects. While there are
founding wa ves for (sometimes similar) product classes, other solution appearancesare more evenly spread
over the decades. For example, appearance of many Unix clones / descendants appears to rather smoothly
distributed over half a century.

145

7. Advice for Managers and Architects

Manager Hint 7.2: General advice

Pay more attention to fundamental architectures. De-
velop a long-term strategy for maturity of components
and implementations.

7.1.2. Maturity of MARS

Notice that MARS itself is just a component. For a fully functional system, you will need some
more infrastructure at several layers.

• MARS itself is in production since 2013, and on mass data (several petabytes) since 2014.
MARS itself is generic, and can be used for a multitude of Linux application stacks.

• A cluster manager2 is typically also needed for mass installations. You can use the
systemd template engine of marsadm, see mars-user-manual.pdf, which is easily config-
urable by Linux sysadmins.

• Tpically, monitoring is anyway specific for each application stack. Adding some simple
Icinga scripts or similar should be no problem for professional Linux admins.

• Automatic mass deployment: this is anyway specific for the deployment system used
for your system plus application stack. At the moment, plugins for generic solutions like
OpenStack etc are missing. This is an opportunity for other OpenSource projects!

• The Football framework is in mass production at 1&1 Ionos ShaHoLin since 2018. It
has some plugin for driving the systemd cluster manager. Its plugin architecture should
allow easy adaptation to other system and application stacks.

• Another opportunity for OpenSource projects: some web-based point-and-click dash-
board similar to the Ceph Dashboard, but displaying and controlling sharded LVM pools
which are replicated via MARS, and also controlling Football, would be a highly appre-
ciated addendum.

7.2. Recommendations for Hard- and Software Project
Setup

Big enterprises are often binding their technical projects (whether developmental or operational
ones) to specific products, or to specific platforms. In addition, inter-team organisational struc-
tures are tending to fragmentation. This can can easily produce lots of missed opportunties
for synergy effects.

Manager Hint 7.3:

In the storage field, missed synergy effects from projects are often creating considerable
direct cost. For a total of petabytes, this can easily sum up to some millions. Indirect
long-term cost, including insufficient flexibility for the market, can be even higher.

This section hints you at some countermeasures.

7.2.1. Hardware Projects and Virtualization

This section hints you at several pitfalls, which may result from misconceptions.

21&1 Ionos ShaHoLin uses a self-built proprietray cluster manager called cm3. It works only with the internal
1&1 database infrastructure, and is not generic.

146

7.2. Recommendations for Hard- and Software Project Setup

7.2.1.1. Physical Hardware vs Virtual Hardware

In theory, server hardware is independent from system software. For example, you may in-
stall both Windows and Linux onto the same server iron. In practice, however, each software
application stack may have different requirements for ...

• CPU power

• RAM size

• IOPS demands

... independently from storage, whether it would be local one, or remote storage over network.
In order to save cost, several companies are using virtualization.

Details 7.1: Capabilities of virtualization

Several people are believing that virtualization will generally improve things. While this
is often true, there are exceptions.

For large applications requiring a lot of CPU and RAM, such as big databases,
or masses of smaller databases, or webhosting with PHP as a primary consumer of
resources, virtualization will not magically give you more resources. It can just dynami-
cally re-distribute existing hardware resources across the same hypervisor iron, without
magically creating new resources out of thin air.

Do not try to virtualize a system which is already virtualized. This can only be
counter-productive. Many people do not know that classical UNIX processesa are
also a form of virtualization. When your system is already at its limit when carrying
masses of conventional processes (e.g. by dynamically scaling the number of daemons /
server processes), an additional KVM layer or masses of docker instances (lesser with an
LXC layer or a low number of docker instances allowing resource sharing in the kernel)
will not speed up your existing processes, but in contrary, will likely lead to density
regressions.

Do not neglect the overhead of virtualization. Running several dozens to
hundrets of KVM instances on one iron will consume a lot of RAM overhead, while the
same amount of LXC containers is typically cheaper. For CPU overhead, the picture
is similar, but typically less stronger, provided that CPU overbooking is very moder-
ate. When overbooking CPU too much with KVM / qemu (or commercial alternatives
like vmware), so-called steal overhead can grow considerably, depending on various
influences.

Do not expect linear behaviour: steal overhead can amplify itself in various
situations, and hardware-based SMP systems can also go into RAM thrashing / mul-
tilayer CPU cache thrashing when overloaded with too big workingsets (cf. section
Explanations from DSM and WorkingSet Theory).

The so-called noisy neighbour problem has been publicly advocated a few years
ago, thus it is known by more people. However, it is only a special sub-problem of more
general workingset problems.
aOriginally, processes have been invented at the beginning of the 1960s for better exploitation of

expensive physical resources, originally by providing multiple “virtual computers” to different users.
Later, the concept of “communicating sequential processes” (Hoare) become popular as a structuring
aid for the same user, which is now standard, and has been extended in various ways.

147

7. Advice for Managers and Architects

Manager Hint 7.4: Capabilities of virtualization

Avoid the above detail problems, which can lead to serious cost increase (both
direct and indirect cost), by careful checking in advance.

Let the check done by skilled experts who know what a workingset is, and how to
measure it, and how to workaround corresponding problems.

7.2.1.2. Storage Hardware

It is easy to miss opportunities for cost savings, or even to produce massive regressions by
factors, by unexpected side effects of management decisions.

Manager Hint 7.5: Missed: architecture had to follow organization

A frequent mistake is to organize teams or departments by introduction of a
border between “storage admins” and “sysadmins”, and assigning them more or less
complementary technical responsibilities. Typical arguments can be heard that each
could then better concentrate at his speciality.

What looks like a “good idea” at first glance, will likely prevent several cost-saving
models like FlexibleSharding, see sections Variants of Sharding and FlexibleSharding.
As explained there, this can increase cost by factors, and reduce reliability consid-
erably (see section Optimum Reliability from Architecture).

Similarly: creating a department (or a team) which is responsible for the
whole storage of a divison or of the company is a very bad idea. Besides the NOF
risks explained in section Kirchhoff’s Law: Suitability of Storage Networks, it can easily
bind you for decades, likely to either cost-intensitive commercial storage appliances
(depending on the gusto of involved people, see section Local vs Centralized Storage),
and/or to some BigCluster architecture. It simply means that only network-centric
storage hardware can be used in practice, and that an expensive storage network
becomes mandatory in practice (otherwise capacity planning etc could become difficult).
Other types of storage will become almost impossible. Changing such an architecture
for some petabytes of data will be very cumbersome and time-consuming.

Manager Hint 7.6: Better: organization follows architecture

Always consider alternatives, and determine / estimate their TCO for at least 5
years, better 10 years. You need to include migration cost when both EOL storage
hardware and EOL server hardware has to be replaced by newer one (hardware lifecycle).

Notice: the FlexibleSharding model is naturally well-suited for VMs of various
types. If you want to splice the overall IT responsibility, then the VM layer is typically
a much better candidate than introduction of a dedicated network-centric storage layer.

7.2.2. Software Project Recommendations
On one hand, software appears to be easier exchangeable than masses of hardware. However,
this only applies to components in practice. More complex software stacks or networks are
typically too complex, and are often containing lots of hidden dependencies.

148

7.2. Recommendations for Hard- and Software Project Setup

In this section, we will look at various obstacles where software, and in particular the funda-
mental architecture of software, is limiting flexibility and producing unnecessary cost.
The scope of this section is exceeding the storage area. Most of the given advice will also

apply to more general enterprise software.

7.2.2.1. Usefulness Scope of Software

Manager Hint 7.7:

A very important property of software: after it is written once, in general it can be
instantiated many times.

While creation of copies of tangible goods typically costs a lot of effort and money,
software copies as such are costing almost nothing. This is a major source of cost
saving potential, while at the same time improving quality as explained below.

Observations from the whole industry, not very specific for a single company: in practice there
exists lots of software which actually is installed only once. Most of it is constructed in such a
way that it cannot be easily installed another time, or suchalike would not be useful, because
it is firmly bound to a singleton instance.

Example 7.1: Singletons

So-called “enterprise databases” which often have their own enterprise-specific databasse
schema, or even their own product-specific schema. Much of the software / scripts
around them makes only sense for this particular schema.

Example 7.2: Workarounds for incompatibilities

So-called “middlewarea” is often translating and adapting between multiple singletons.
It makes no sense to instantiate this type of “middleware” somewhere else.

Another frequent ill-design is placement of business logic in so-called “mid-
dleware”. According to Dijkstra’s layering rules (see section Layering Rules and their
Importance), business logic should get its own layer, independently from cross-platform
concerns (aka separation of concerns).
aThis usage of the term “middleware” is incorrect in strong sense. The original goal of middleware was

providing universally generic marshalling and translation of data formats between “incompatible”
“platforms” (where nowadays the latter term often is also used incorrectly, because a “platform” is a
stable interface / foundation for a multitude of application classes).

Manager Hint 7.8:

From the discipline of software engineeringa: non-instantiable singletons are
an indicator of poor software design and practice.

Likely, your competitors will have similar problems, often without noticing them.
If you are the first to overcome them in long term, you will get an advantage.
aExplanation: software engineering as a discipline has the opposite goal of maximizing several impor-

tant KPIs of software.

The usefulness of software and/or of its components can be roughly classified as follows:

149

7. Advice for Managers and Architects

Globally useful software / components

u
s

e
fu

ln
e

s
s

Domain−specific generic software / components

Instance−specific software / components / plugins

Example 7.3: Globally useful software

The Linux kernel is installed at several billions of instances. From the biggest server, on
supercomputers, down to billions of smartphones, and on tiny IoT gadgets. In order to
support such a wide variety of hardware, it is highly customizable through thousands
of compile-time config options, and lots of runtime options. Additionally, it has a high
degree of automatic adaptation to hardware components, automatic self-configuring,
etc. Its userspace API does not only support classical libc-based Unix software, but also
the completely different execution engines of smartphones, and much more.

Example 7.4: Domain-specific generic software

Football (see football-user-manual.pdf) is domain-specific in the sense that it is only
useful for sharded storage, but not for BigCluster storage. Its main part is generic, since
it is extensible via plugins. For usage in other application areas than currently in
production, some new plugins might be necessary.

Example 7.5: Instance-specific software

Tetris is the 1&1-internal name for the instance-specific customization plugin of Football.
Its size is about 1/3 of the whole Football system. The Tetris plugin is only useful at
the 1&1 Ionos ShaHoLin software instance, while the 2/3 generic parts are intended to
be useful for any MARS installation.

In general, most non-modularized instance-specific software is not based on higher
usability levels. Then the whole invest is practically not re-usable.

Tetris is an example how divergent requirements from broader usefulness desires
can be combined with instance-specific requirements. The basic idea is an extensible
plugin software architecture.

Manager Hint 7.9: Maximizing the usefulness KPI

In general, all three usefulness classes (globally useful / domain-specific generic /
instance-specific) are needed for a healthy enterprise. It is not possible to operate your
business purely with “globally useful software”.
On the other hand, operating your whole business with instance-specific software would
be theoretically possible, but extremely expensive, and likely un-economical / non-
competitive.
You can maximize the overall usefulness by using as much from the upper classes
as reasonably possible.

For example, you can make an inventory of all your software assets, including(!) free
ones from OpenSource your people are just downloading and installing, and evaluate
the usefulness according to the above classification, then determine the number of
instances for each asset, and finally create a weighteda KPI out of it.

150

7.2. Recommendations for Hard- and Software Project Setup

It is critical to not forget external OpenSource assets which cost nothing,
but heavily contribute to your business value, and/or contribute by risk reduction, etc.
Beware of SAP & relatives, typically there exists no inventory for them.

You might derive further sub-KPIs, such as per-asset TCO, or business value, or
risk indicators, etc.

As a side effect, you will likely find much more opportunities for long-term im-
provements of your enterprise than you can implement in short term. Evaluate their
potential, and prioritize accordingly.
aThe “size” or “development effort” for software components needs to be taken into account. They

can vary by some orders of magitudes. Treating them as “equal-sized bricks” would massively over-
emphasize tiny helper scripts. Since there is often some binary-only proprietary software, a possibly
weighting method could be the installed binary size in bytes. This will also lead to distortions, but
typically less significant than “uniform bricks”. Theoretically, you could discriminate between code
and data (e.g. images), but this might lead to a high effort for inventory. Simple solutions are better
in practice. Exceptional corrections can be applied when distortion are getting too high in certain
places.

As a manager, the big question is: how can you achieve better usefulness in long term? Just
use a KPI, or are there further aspects not modeled by KPIs?
For a better background, have a brief look at the following classification of architectural

potentials.

7.2.2.2. Architectural Levels of Genericity

Managers only interested in an overview may skip the rest after the first graphics, showing 3
different levels of genericity. Architects should not skip the examples.
Here is a classification of genericity according to its re-use potential.

Manager Hint 7.10: Genericity and re-use

Re-use means that each time something needs to be implemented, or each time some
requirements are changing, some new software components need not be implemented
from scratch, but already existing components / parts are just recycled and used in a
different way or in a different context.

In general, components / parts need to be constructed for re-use. When not
prepared for re-use, artefacts will be less useful, or even not useful for re-use at all.

A good way for re-use preparation is genericity. It means that something is only
“prepared for use”, by providing some concrete interface for both use and re-use, such
that any concrete usage is relatively easy.
In other words: although the first use is slightly more expensive because of intermediate
introduction of genericity and its documented or self-documenting(!) interfaces, any
later re-use will then be cheaper than making everything from scratch again. When re-
use is executed frequently enough, investments into genericity will pay off rapidly.

If you are unsatisfied with software development productivity in your com-
pany, consider the following. You need to explicitly request a certain level of genericity
as a preparation for long-term re-use. Otherwise, you likely won’t get it.

Reason: people want to finish their current projects as fast as possible, typi-
cally missing important opportunities for preparation of re-use (provided they have the
necessary skills). This behaviour is often heavily amplified by deadlines.

151

7. Advice for Managers and Architects

The following can be used to classify not only the genericity of software itself or of programming
styles, but also of software architectures (see section What is Architecture). The biggest
potential of genericity is when applied at architectural level:

Compositorical Genericity

Universal Genericity

Extensional Genericity re
−

u
s
e
 p

o
te

n
ti

a
l

1. Universal genericity means that potentially an infinite number of re-usage variants
(potential: ∞) can be derived easily, by configuration and/or by convention. A few
examples:

Example 7.6: Unix files

Invented in the 1970s, Unix files are extremely universal. They can hold anything,
from simple ASCII text to executables, and to complex database containers. This
is possible by a universally generic representation: a file is nothing but a
sequence of bytesa, with an arbitrary length, which can change dynamically at
runtime.

The genericity of Unix files is a striking example that sometimes less code
is more value! Unix files are simpler than the unnecessary complexity of
historical record-based predecessor file concepts.

The only invest for exploitation of fruitful generic simplification: care-
ful thinking before starting an implementation, best from experienced software
architects / experts. This can save you up to factors!
aPredecessor filesystems were typically more complex, e.g. a file was a sequence of records. There

was a variety of variants, like fixed-length records, variable-length records, indexed records,
etc. These had further problems, because the byte was not yet standardized as exactly 8 bit.
There were 6-bit bytes, or 12-bit bytes, etc.

Example 7.7: Business process languages

Business process languages like BMPL and their execution engines are modern
universally generic systems, but typically used for domain-specific purposes. There
you can see that both concepts usefulness vs genericity are orthogonal to each other
by some degree.

Example 7.8: Universal compilers / interpreters

LISP is one of the eldest programming languages in the world, invented 1959.
It can be used to express any mathematical problem, while only a subset of
them is actually computable, even by modern supercomputers. While the Unix
file as such is just a passive item and thus not prone to computability problems,
active items like LISP programs are Turing Complete, which is a two-sided
sword in practice. Although extremely capable, it is not easy to understand and to
control. Many modern IT risks (e.g. security risks) can be deduced from Turing
Completeness.

There are universally generic compilers and interpreters, for example parser
generators, which are not Turing Complete by their basic configuration language.

152

7.2. Recommendations for Hard- and Software Project Setup

Example 7.9: Macro mechanisms and C++ templates

Parameterization can be done via C preprocessor macros, or C++ templates, or
other macro processors. Macro substitution can not only be applied to program-
ming languages, but also to configuration data. An example is the systemd in-
terface of marsadm, see mars-user-manual.pdf. It suffices to define a certain
systemd unit template only once, and then let it automatically instantiate for
hundrets or thousands of LVs and their application stacks.

Manager Hint 7.11: Recommendation

Universal genericity has the highest potential, and should be always considered
for passive use cases. Several active systems, however, bear a relatively high risk
when Turing Complete, when not developed and maintained and operated by
highly skilled staff which can really deal with their complexity, and who are
really knowing what they are doing.

2. Compositorical genericity is similar to the composibility of LEGO bricks: via a more
or less uniform standard interface, numerous re-combinations / compositions can be
easily created. Its potential is similar to permutations, thus factorial: O(n!).

Example 7.10: Pipe and filters style

A good example is an architectural style called pipe and filters style, which is
the heart of the Unix Philosophy. In the original Unix concept, a relatively low
number of simplea basic operators were used for creation of an extremely wide
variety of complex data processing pipelines.

There is a programming language which directly supports this style, called
Bash Script in its modern version.
aModern Unix-like systems including GNU/Linux have much more complex operators, some

with hundreds of options. Nevertheless, they can also be used for compositorical genericity.

Example 7.11: Stacked block devices

Linux has inherited the concept from Unix. In Unix, “everything is a file”, and
thus Unix devices are also represented as a file. Block devices are a special case,
where only certain access granularities like multiples of sectors are possible. Mod-
ern Linux has augmented the concept with several special operations, such as
BLKDISCARD and other ioctl() syscalls. Nevertheless, block devices are stackable,
for example for creation of software RAID. Stacks are very flexible, for example
you may place MARS on top of LVM on top of software RAID, or in a different
order, or you may insert SSD caches at various positions, etc. The number of
potential combinations is very high.

For usage of stacked block devices, you don’t need to be a programmer.
Exploiting compositorical genericity is possible from sysadmin space.

However, creation of a new stackable component is a completely different
story. Linux kernel programming requires completely different skills, and even
among kernel hackers a junior level is all else but sufficienta. As a manager, do
not confuse these HR requirements!
aC programming is one of many preconditions for kernel hacking. It is however not sufficient.

The Linux kernel is a technical universe in itself. While many userspace C programmers need
not deal with concurrency, or only with harmless standard cases, kernel programmers need

153

7. Advice for Managers and Architects

to know and have experiences with about a dozen of different concurrency models and their
concrete implementations. This is required for SMP scalability, weak memory semantics /
memory barrier hardware operations, RCU, and much more, in addition to classical interrupt-
driven concurrency models.

Example 7.12: Electrical engineering

Electrical engineers have used compositorical genericity even before the digital
computer had been invented. Their wiring diagrams are connecting basic func-
tional units, for example transistors or resistors, or whole sub-circuits.

Manager Hint 7.12: Established use case for compositorical genericity

By using Linux, you automatically get it via ssh commandlines used by sysadmins.
Experienced Linux seniors will confirm that its automation potential is beyond
anything having a graphical point-and-click interface. System administration for
several hundrets or thousands of servers would be an extreme effort, or almost
impossible otherwise.

Manager Hint 7.13: New use cases for compositorical genericity

There are much more use cases where compositorical genericity would be
extremely beneficial. Its potential is O(n!) where n is not the number of developers,
but the number of functor instancesa.

The biggest practical obstacle is that too few people know of its enormous
potential, and even less people have practical experiences with it in larger scale
systems, such as Distributed Systems. When you have few excellent people with
the necessary skills, don’t force them to use so-called “standard paradigms” like
OO, but let them exploit the much higher potential of compositorical genericity.
Often, they won’t be able to do so unless you help them by creating a special
friendly working environment.

Don’t be surprised when a single developer shows a productivity roughly
equivalent to 10 conventional OO developers, or even more.

Do not confuse the roles of sysadmins with the roles of developers. Just
because sysadmins usually are more used to pipe and filters style, this does not
magically convert them into developers. A developer for compositorical genericity
at large scale needs to know much more, at least at amaster’s level in computer
science, if not at a PhD level.

Do not populate a team with OO addicts or with people who don’t have the
necessary skills, if you want to exploit the potential of compositorical genericity.
Ask the inevitable experienced technical leader, who else may have the necessary
skills, in order to qualify as additional team member. There exists practically no
standard hiring profile at the job market.
aIn general, a functor of a certain type can be instantiated several times, even in the same

pipeline.

3. Extensional genericity means that an existing component needs to be re-used by
extending it. Its potential is only O(k) where k is a constant depending on your
development resources.

154

7.3. From OpenSource Consumers to Contributors to Leaders

Example 7.13: Classical OO = Object Orientation

No detailed explanation necessary, because many people already know what OO
inheritance is, and have some experiences with it.

Typically, programmer skills are required for non-trivial large-scale systems.
Pure sysadmin skills are often not sufficient.

There are lots of programmers at the job market, qualifying for OO. How-
ever, many of them are often lacking some sysadmin skills when HA operations
is required. Thus a mixed team with both skill sets is something you should con-
sider for enterprise-critical application stacks. In addition, automated testing
is highly recommendable.

Manager Hint 7.14: Classical OO = Object Orientation

Probably you are surprised that classical OO inheritance has the least potential,
only O(k), while alternatives are much better, e.g. O(n!) or O(∞).
Reason: for any new OO functionality, some skilled programmer has to write some
program code, which needs to be tested and made production-ready.

Thus real-life OO productivity is often lower than promised by advocates.

In general, programming language paradigms are orthogonal to levels of genericity. For
example, compositorical genericity can be implemented with OO languages.

Example 7.14: Genericity in the Linux kernel

The Linux kernel has more than 20 millions of lines of code written in C. Many people
are regarding C as an imperative language, some even condemning it as “high-level
assembler”. However, the kernel has many parts like stackable filesystems where OO
techniques are used. Several parts, like the dm = device mapper infrastructure, are more
or less following many principles from compositorical genericity. Universal genericity is
also present, for example in firewall rules execution engines. Few people seem to know
that even FP = Functional Programming style is possible in C, if you know how to do
it.

Good C programming requires some skills. People who really have those skills
are reaching a similar productivity than with other programming languages. Notice that
C has some unique application areas where other languages are practically out of the
gamea, such as kernel and deep system programming.

A good programmer is treating programming languages as tools, which have no
global pros and cons, but each of them is more or less well-suited for each specific
application area.
aSeveral years ago, some Java advocates were claiming that operating systems would be better written

in Java, thus C will vanish in the long term. This has not become true. Reason: it is not reasonably
possible to write a JVM = Java Virtual Machine in Java, while all major JVMs are written in C.

7.3. From OpenSource Consumers to Contributors to
Leaders

The basic idea of OpenSource is very simple:

155

7. Advice for Managers and Architects

Manager Hint 7.15: Fundamental idea of OpenSource

Several competitors and enthusiasts are meeting together in a common neutral play-
ground, also called commons or common land. Each is contributing something useful
to the commons.

As a result of collaboration, each of them is getting back more value than each
of them have contributed.

OpenSource is much more than a particular component. In fact, it is a whole
ecosystem.

This means: by definition, only globally useful software (see section Usefulness Scope of Soft-
ware) can qualify as OpenSource commons. In some cases, domain-specific generic software
may qualify also, but this needs to be checked.

This usability gap leaves you an opportunity for company-individual or product-
specific customization even of your own OpenSource components, provided you manage to
get an appropriate degree of genericity (see section Architectural Levels of Genericity).

Manager Hint 7.16: Best areas for OpenSource

Some people seem to fear that OpenSource might help their competitors too much.

When OpenSource is used for basic infrastructure instead of finished competitive
products, then a win-win situation is always improving competitiveness.

There are a few examples where even giving away a full product can improve
competitiveness. An example is Google Android.

In addition, each competitor may make better business by strengthening a whole
ecosystem, e.g. attracting more customers in total, etc.
In particular, this can make sense when competition is more between whole ecosystemsa,
than between individual companies.
aExample: today there is an increasing competition between the webhosting ecosystem (including

public blog software like WordPress), and account-based social media (e.g. Facebook & co).

Example 7.15:

The vast majority of companies will profit from the Linux kernel, because selling OS
software is not their core business.

Details 7.2:

Several ecosystems are already dominated by OpenSource. Commercial competi-
tors would not have a chance anywaya, because the world-wide total productivity
(e.g.scaling effects) of OpenSource is unbeatable in such areas.
aExceptions are confirming the rule: only certain near-by niches which aren’t covered by OpenSource

may have a chance for commercial products. When the nice is big enough, or when its importance
increases, some existing nearby OpenSource projects may extend their coverage, or some new projects
may jump in. The history of Linux has shown that even pre-existing elder commercial Unix systems
were marginalized, and several disappeared eventually.

Example 7.16:

MARS would not have a chance for long-term survival if it weren’t OpenSource.

156

7.3. From OpenSource Consumers to Contributors to Leaders

How to take advantage of OpenSource? The OSAMM = Open Source Adoption Maturity
Model is explained in simplified form at https://baloise.github.io/open-source/docs/
md/goals/uplift.html. More context can be found in Lofi Dewanto’s presentation https://
drive.google.com/file/d/1GHLogE3ibdyjPaYfK_O4ELVtvUcE051R/view, in particular slide
24. There are 3 levels of OpenSource adoption which are interesting for most companies:

1. Use. Typically, OpenSource software is just downloaded, possibly compiled (depending
on development model), and installed.

2. Contribute. Some code / documentation / feedback is flowing from in-house users back
to the public project.

3. Champion. Somebody in the company has a leading role in the public project, and is
thus leading a movement.

Manager Hint 7.17: Important OpenSource specialities

There are certain misconceptions about OpenSource, which can lead to fatal
failures. Here are some extremely important explanations:

• OpenSource is more about a movement than about the “software as such”.

• Several important OpenSource projects, like the Linux kernel, have been founded
by individuals and not by companies. Such projects are following different
rules than company projects.

Manager Hint 7.18: Rules in personal OpenSource projects

Managers who don’t know the written and un-written rules of personally led
OpenSource projects can easily create substantial damage, up to the destruction
of a (sub-)project.

The principles behind OpenSource movement rules can be found at Eric Raymond’s
articles from the 1990s and early 2000s. You need to understand that OpenSource
communities are a gift culture, aka meritocracy.

Example 7.17: Personal leadership in Linux

Practically everybody knows that Linus Torvalds has founded the Linux kernel. His
name is even encoded into the project name.

As you can read at http://www.kernel.org, there is no chance to submit a
patch originating from a company. Linus and the kernel hackers will simply ignore it.
Only patches submitted by individuals are acceptable at all. It would be bad style to
argue “you must accept this patch because I am from company XYZ, and I am paid by
my company to create this patch”. Even if the company name had three capital letters,
it wouldn’t help.

Example 7.18: Kernel modules like MARS

As mentioned above, MARS would have no long-term chance for survival unless
OpenSource. Since it is a Linux kernel module, it cannot exist independently from
Linux.

157

https://baloise.github.io/open-source/docs/md/goals/uplift.html
https://baloise.github.io/open-source/docs/md/goals/uplift.html
https://drive.google.com/file/d/1GHLogE3ibdyjPaYfK_O4ELVtvUcE051R/view
https://drive.google.com/file/d/1GHLogE3ibdyjPaYfK_O4ELVtvUcE051R/view
http://www.kernel.org

7. Advice for Managers and Architects

Consequence: anyone who wants to work at the core of the MARS project must
accept the same rules as for the Linux kernela.

Eric Raymond’s famous articles need to be obeyed, too. For example, as a
company you cannot decide to replace the founder of the project (which started only
upon personal initiative and not as a company project), with another person. Otherwise,
the public OpenSource project would be either dead, or it would necessarily lead to
a project fork. Only one of the forks could survive in long term, and be included
into mainstream Linux. Which one will become clear to you, once you have read Eric
Raymond’s articles (if you cannot guess it anyway from terms like meritocracy).
aExample: grsecurity was technically a sub-project of Linux, but did not comply to the rules of the

Linux community. Therefore it failed in 2017, after more of a decade of OpenSource activity. Some
of its remains are now migrated into mainstream, but not by the original founder of the technical
sub-project.

7.4. Recommendations for Design and Operation of
Storage Systems

7.4.1. Recommendations for Managers

When you are responsible for masses of enterprise-critical data, the most important point
is to get people with the right skills, in addition(!) to the right mindset, and to assign the
right roles to them.
Practical observation from many groups in many companies: which storage systems / archi-

tectures are in use, and how much they are really failure resistent and reliable, and how
much they are really scalable for their workload, and what is their TCO = Total Cost of
Ownership, does often not depend on real knowledge and on facts. It often depends randomly
on personal habits and pre-judgement of staff3.

In essence, this results in a gambling game how safe / cost-effective etc your critical
data really is.

In particular after company mergers, suchalike varieties need not remain a permanent
disadvantage. You may turn it into an advantage. Once you have enough reliable and validated
KPIs about each of the systems, and after you have checked that they are really comparable,
you can derive a detailed comparison of competing architectures and/or of their actual imple-
mentations. Then you may start merging some of the technical platforms, provided there is a
business case for it. Or, you may bleed out some old / obsolete technology.
When the game is about building up new functionality from scratch, it is much different.

There are two main possibilities:

1. check whether your best platform can be extended with the new functionality. Good
architectures are also easily extensible.

2. build a new platform.

The rest of this section focusses on architecture of new platforms. Always check whether existing
experience can be re-used.

As explained throughout section Scalability Arguments from Architecture, there are
many pitfalls, and there are only few people who know them, because more people are working

3This can be seen in a bigger company (e.g. after mergers etc) when very different architectures have been
built by different teams for very similar usecases, although they are sometimes even roughly comparable in
size and workload.

158

7.4. Recommendations for Design and Operation of Storage Systems

in small-scale systems than in large-scale enterprise ones. There are so many lots of people at
the market who claim to have some experience, but in reality they don’t know what they don’t
know (second-order ignorance).
Second-order ignorance is very dangerous, even for affected people themselves, because they

are in good faith about their own skills, and that they would be able to control everything
(sometimes they really want to control literally everything, even other people who have more
real experience and knowledge). See for example wrong assumptions and “false proofs” about
scalability, derived from different use cases (or even from workstation workloads). See the
failed scalability scenario in section Example Failures of Scalability where some freelancers
were consulted as “external experts”.

Manager Hint 7.19: Pitfall “false experts”

Check your information sources! There is a systematic reason for ill-informed
“experts”: the internet.

On the internet, you can find a lot of so-called “best practices”. Many of them prop-
agating badly scaling storage architectures for enterprise workloads, sometimes even generally
claiming they would “scale very well”, which is however often based on assumptions instead
of knowledge (and rarely based on measurements at the right measurement points for deriv-
ing substantial knowledge about your real application behaviour). Literally anyone can post
incorrectly generalized “best practices” to the internet. Together with second-order ignorance
about the non-transferability of “success stories” from usecase A to usecase B (resulting in false
“proofs”), the internet is creating information bubbles.

Example 7.19: Superfluous load balancers

Good examples are HTTP or other IP-based load balancers placed in front of VMs.
Almost always, this is an expensive ill-design.

Notice: as long as multiple VM instances are hosted on one hypervisor iron,
load balancers are most likely completely uselessa. Instead, just assign more physical
resources to a single VM. Only when the application load is really so high that 1 VM
would fill up a hypervisor completely, only then a load balancer might be potentially
useful. However, first check that there are enough RAM and SMP hardware threads.
Only when state-of-the-art multi-socket CPUs with ≈ 128 or more CPU threads would
be insufficient for a very high connection rate, and after tuning measures like PHP
OpCache were not sufficient, a load balancer or another means for load distribution
could become necessary.

Even then, there are often more intelligent alternative solutions, like wide-area
distributed input traffic partitioning to geo-distributed servers, in place of a central
load balancer acting as a SPOF in a single datacenter. For example, source-IP based
routing can partition global traffic into per-continent datacenters, drastically reducing
application traffic latencies. In essence, this is coarse granularity sharding at global level.
aReason: on SMP servers, there already exists a “load balancer”. The kernel and its process scheduler

can do even better than any external load balancer, by better distribution of physical CPUs to
processes, and by exploitation of shared memory, for example shared filesystem kernel caches,
such as the Dentry Cache, and the fscache / Page Cache. Exceptions would only occur when
there were per-VM global bottlenecks, such as interdependent processes. For instance, it is easy to
misconfigure Apache logfiles to become such a bottleneck. Just fix such misconfigurations, before
claiming that SMP scalability would be limited.

In a nutshell: compared to the scalability of sharding, load balancers would be only
suitable for small-scale scalability. However, small-scale scalability is much easier to achieve

159

7. Advice for Managers and Architects

via hardware-based SMP = Symmetric MultiProcessing, at least in most4 cases.

Never start a design with a load balancer by default. Only use load balancers when there
is well-founded strong evidence that other scalability measures won’t suffice. In particular, it
needs to be very clear that sharding is really impossible, which in turn implies that there exists
only 1 big customer, and that its data cannot be partitioned at all.

Manager Hint 7.20: Cost explosion by superfluous load balancers

Unnecessary load balancers are causing follow-up cost by increased complexity. In
addition to the load balancer hardware and its setup / administration, multiple servers
and/or VMs need to be set up and administered.

If you just need a redirection mechanism, read sections What is Location Trans-
parency and Where to implement Location Transparency.

For example, the traffic from BGP = Border Gateway Protocol is executed by your
ordinary network routers, without additional hardware, and they can distribute
sharded traffic to wide-area geo-locations. In comparison, load balancers are just re-
stricted overkill.

Never accept a system design with a mandatory load balancer. It will likely imply
a BigCluster-like architecture, though typically only implemented as a SmallCluster.

Details 7.3:

Mandatory load balancers are oftena creating some O(n2) behaviour, showing
up somewhere, often unexpectedly. Even when reduced to O(n), load balancers are
close to the opposite of sharding at concept level, because they try to distribute an
unpartitioned load to servers needing shared data similar to DSM (see section 4.3.5),
instead of first partitioning the data and thus also partitioning the corresponding traffic.
Read section Error Propagation to Client Mountpoints about typical real scalability and
reliability. When this doesn’t help, read section Example Failures of Scalability where
the load balancer was a major source(!) of massive scalability problems.

Do not mis-use load balancer hardware for achieving location transparency.
Suchalike would need to be called “load redirector ” in place of “load balancer ”. You
pay a lot of money for functionality you don’t need, see also section Layering Rules
and their Importance. Traffic redirection is both cheaper and more performant when
executed by your ordinary network routers.

Sharding architectures typically don’t need any load balancers, although they are
massively scalable horizontally . Typically, they rely on the scalability of DNS, and
of IP routing. Notice: when DNS would reach its scalability limit, then the internet as
such would not scale anymore.

In comparison, a load balancer is a SPOB = Single Point Of Bottleneck, where
the traffic must physically flow through (thereby increasing hops and latencies), instead
of dynamic wide-area routing.
aThere are some rare potential exceptions, like game servers rendering scenes in realtime, consuming
massive CPU and/or GPU power in relation to network bandwidth. Even there, sharding is often a
better alternative. In contrast, ordinary video streaming typically consumes very low CPU power,
because file streaming is executed by kernel sendpage() and partly offloaded to DMA hardware

4Personally, I have never seen a situation where a load balancer was really necessary. In all example cases,
they were superfluous. In a few cases, they were even counter-productive.

160

7.4. Recommendations for Design and Operation of Storage Systems

acceleration.

Manager Hint 7.21: Load balancers vs sharding

As a manger, if you “buy” a mandatory load balancer, there is a high risk for
architecturally hindering long-term scalability by sharding.

Check whether people are really experts, when they want to solve suspected(!)
scalability problems via mandatory load balancers. It is just poor system design, often
inducing DSM problems, and producing unnecessary follow-up cost. Unfortunately, load
balancers are systematically promoted by internet information bubbles.

Real knowledge originates from evaluated sources, such as scientific publications which
have undergone at least some minimum quality check, and which are trying to describe their
preconditions and operating environments as precisely5 as possible.

Real experts will tell you when they don’t know something. In addition, they will tell
you multiple ways for obtaining such information, such as measurements, simulation, etc. In
addition, real experts are able to do well-founded measurements and deriving forecasts from
them. Later, when it works, their forecasts were roughly correct. Check the quality of forecasts
afterwards!
If you don’t have anyone in your teams who knows how caching really works, or if it is

a single guy who cannot withstand the pressure from a whole group of “alpha animals”, you
are running an increased risk of unnecessary expenses6, worse services (indirect cost), failed
projects, and sometimes even resulting in loss of market share and/or of stock exchange value.
The problem is that it looks so easy, as if everyone could build a large(!) storage and/or

application system, with ease. It looks easy once a small prototype is running at a workstation.
Some people believe that “just spend some more money” would all which is needed. Unfortu-
nately, both “marketing drones” from commercial storage vendors, and even a few OpenSource
advocates, are propagating this dangerous mindset.
As a responsible manager, how can you detect dangerous partly knowledge?
Good indicators are wrong usage of the term “architecture” (see definition in section What is

Architecture), and/or confusion of architecture with implementation. When somebody
confuses7 this, he does not really have an overview of different architectural solution classes.
Instead, such people are tending to propagate their random “favourite solution” or their random
“favourite product”. For you as a responsible, this increases the risk of getting a non-optimum,
or possibly even a bad / dangerous solution.
Another good indicator is advocacy of load balancers. See above boxes about the size of

their real application area and their real value. Do not confuse people’s belief with deep knowl-
edge about Operating Systems and Distributed Systems. The latter also requires substantial
theoretical background, in addition to practical experience.
Not everything which works in a garage, or in a student pool, or in the testlab (whether it’s

yours or from a commercial storage vendor), or in a PoC with so-called “friendly customers”,
is well-suited for large enterprises and their critical data (measured in petabytes / billions of
files / etc), or is the optimum solution for TCO. Some rules of thumb, out of experience and
observation:

• For each 1 or 2 orders of magnitude of the size of your data, you will need better
methods for safe construction and operation, as would be sufficient for lower demands.

5Therefore, chances are better to get a real expert when he has some (higher) academic degrees, and was
working in the area for a longer time.

6I know of cases which have produced unnecessary direct cost of at least € 20 millions, not counting further
indirect cost such as power and rackspace consumption.

7Notice that there exist people who use the term “architecture” inadvertly. They even don’t even know that
they are confusing architecture with implementation. Pure usage of a certain term is no clear indicator that
somebody is really an expert.

161

7. Advice for Managers and Architects

• For each 3 to 4 orders of magnitude (sometimes even for less), you will need better
architectures, and people who can deal with them.

• For each 1 or 2 orders of magntitude of criticality of your data (measured by losses in case
of certain incidents), you will also need better architecture, not just better components.

Manager Hint 7.22: Important advice

If you start a new platform from scratch, always start with a good architecture.

Once a platform is in production, even with a small number of customers, it becomes increasingly
difficult to change its fundamental architecture. While bugs can be relatively easily fixed, and
while single components can be exchanged with some effort, changing an architecture may turn
out close to impossible, or at least very expensive.

7.4.2. Recommendations for Architects
In order of precedence, do the following:

1. Fix and/or limit and/or tune the application .
Some extreme examples:

• When you encounter a classical Unix fork bomb, you have no chance against it.
Even the “best and the most expensive hardware8” is unable to successfully run a
fork bomb. The only countermeasure is limitation of resources. Reason: unlimited
resources do not exist on earth.

• If you think that this were only of academic interest: several types of internetDDOS
attacks are acting like a fork bomb, and Apache is also acting similar to a fork
bomb when not configured properly. This is not about academics, it is about your
survival (in the sense of Darwin).

• If you think it cannot hurt you because you are running fast-cgi or another ap-
plication scheme where forks are not part of the game (e.g. databases and many
others): please notice that network queues are often acting as a replacement for
processes. Overflow of queues can have a similar effect than fork bombs from the
viewpoint of customers: they simply don’t get the service they are expecting.

• If you think this cannot hurt you, because you are working in a completely different
area from Apache: any type of IP-based network traffic can show queueing behaviour.
Complex queuing systems can show “unexpected” behaviour, and sometimes even a
dangerous one.

• Real-life example for application-level problems: some percentage of WordPress cus-
tomers are typically and systematically misconfiguring their wp-cron cron jobs.
They create backups of their website, which include their old backups. Result: in
each generation of the backups, the needed disk space will roughly double. Even
if you had “unlimited storage” on top of the “best and the most expensive storage
system”, and even if you would like to give “unlimited storage” to your customers, it
simply cannot work at all. Exponential growth is exponential growth. After a few
months of this kind of daily backup, you would need more storage than atoms exist
in the whole universe. You must introduce some quota limits somewhere. And you
must ensure that the wp-cron misconfiguration is fixed, whoever is responsible for
fixing it.

• Another WordPress example: the wp-cron configuration syntax is not easily under-
standable by laymen. It is easy to misconfigure such that a backup is created once
per minute. As long as the website is very small, this will not even be noticed by
sysadmins. However, for bigger websites (and they are typically growing over time),
the IO load may increase to a point until even asynchronous replication over 10Gig
interfaces cannot catch up. Even worse: the next run of wp-cron may start before

8There is an old joke from the 1980s: a Cray is a computer capable of running an endless loop in 10 seconds.

162

7.4. Recommendations for Design and Operation of Storage Systems

the old one has finished within a minute. Again, there is no chance except fixing the
root cause at application level.

2. Choose the right overall architecture (not limited to storage).
An impressive example for architectural (cf section What is Architecture) ill-design can
be found in section Example Failures of Scalability. Important explanations are in sec-
tion 4.4.2, in particular subsection Influence Factors at Scalability, and section 4.4.4 on
page 102. A strategic example is in subsection Case Study: Example Scalability Scenario.
It is absolutely necessary to know the standard cache hierarchy of Unix (similarly also
found in Windows) from section Performance Arguments from Architecture. More expla-
nations are in this manual at many places.

In general, major ill-designs of overall architectures (end-to-end) cannot be fixed
at component level. Even the “best tuning of the world” executed by the “best tuning
expert” on top of the “best and most expensive storage components over the best storage
network of the world” cannot compensate major ill-designs, such as O(n2) behaviour,
or disregarding of Kirchhoff’s laws (see section Kirchhoff’s Law: Suitability of Storage
Networks).

Similarly for reliability: if you have problems with too many and/or too large
incidents affecting too many customers, read sections Reliability Arguments from Archi-
tecture and Reliability Differences CentralStorage vs Sharding.

3. Choice and tuning of components.
No further explanations necessary, because most people already know this. In case you
think this is the only way: no, it is typically the worst and typically only the last resort
when compared to the previous enumeration items. See example in section Example Fail-
ures of Scalability.
Exception: choice of wrong components with insufficient properties for your particular
application / use case, or even hard restrictions as mentioned in section What is Archi-
tecture. But this is an architectural problem in reality, and belongs to the previous item,
not to this one.

163

Part III.

Appendices

164

A. Mathematical Model of Architectural
Reliability

The assumptions used in the model are explained in detail in section 4.3.1.2 on page 80. Here
is a quick recap of the main parameters:

• n is the number of basic storage units. It is also used for the number of application units,
assumed to be the same.

• k is the replication degree, or number of replicas. In general, you will have to deploy
N = k ∗ n storage servers for getting n basic storage units. This applies to any of the
competing architectures.

• s is the architecture-dependent spread exponent: it tells whether a storage incident will
spread to the application units. Examples: s = 0 means that there is no spread between
storage unit failures and application unit failures, other than a local 1:1 one. s = 1 means
that an uncompensated storage node incident will cause n application incidents.

• p is the probability of a storage server incident. In the examples at section 4.3 on page 79,
a fixed p = 0.0001 was used for easy understanding, but the following formulae should
also hold for any other p ∈ (0, 1).

• T is the observational period, introduced for convenience of understanding. The following
can also be computed independently from any T , as long as the probability p does not
change over time, which is assumed. Because T is only here for convenience of under-
standing, we set it to T = 1/p. In the examples from section 4.3.1.2 on page 80, a fixed
T = 10, 000 hours was used.

A.1. Formula for DRBD / MARS
We need not discrimiate between a storage failure probability S and an application failure
probability A because applications are run locally at the storage servers 1:1. The probability
for failure of a single shard consisting of k nodes is

Ap(k) = pk

because all k shard members have to be down all at the same time. In section 4.3.1.2 on
page 80 we assumed that there is no cross-communication between shards. Therefore they
are completely independent from each other, and the total downtime of n shards during the
observational period T is

Ap,T (k, n) = T ∗ n ∗ pk

When introducing the spread exponent s, the formula turns into

As,p,T (k, n) = T ∗ ns+1 ∗ pk

A.2. Formula for Unweighted BigCluster
This is based on the Bernoulli formula. The probability that exactly k̄ storage nodes out of
N = k ∗ n total storage nodes are down is

S̄p(k̄, N) =

(
N

k̄

)
∗ pk̄ ∗ (1− p)N−k̄

165

A. Mathematical Model of Architectural Reliability

Similarly, the probability for getting k or more storage node failures (up to N) at the same
time is

Sp(k,N) =

N∑
k̄=k

S̄p(k̄, N) =

N∑
k̄=k

(
N

k̄

)
∗ pk̄ ∗ (1− p)N−k̄

By replacingN with k∗n (for conversion of the x axis into basic storage units) and by introducing
T we get

Sp,T (k, n) = T ∗
k∗n∑
k̄=k

(
k ∗ n
k̄

)
∗ pk̄ ∗ (1− p)k∗n−k̄

For comparability with DRBDorMARS, we have to compute the application downtime A instead
of the storage downtime S, which depends on the spread exponent s as follows:

As,p,T (k, n) = ns+1 ∗ Sp,T (k, n) = ns+1 ∗ T ∗
k∗n∑
k̄=k

(
k ∗ n
k̄

)
∗ pk̄ ∗ (1− p)k∗n−k̄

Notice that at s = 0 we have introduced a factor of n, which corresponds to the hashing effect
(teardown of n application instances by a single uncompensated storage incident) as described
in section 4.3.1.2 on page 80.

A.3. Formula for SizeWeighted BigCluster
In difference to above, we need to introduce a correction factor by the fraction of affected
objects, relative to basic storage units. Otherwise the y axis would not stay comparable due to
different units.
For the special case of k = 1, there is no difference to above.
For the special case of k = 2 replica, the correction factor is 1/(N − 1), because we assume

that all the replica of the affected first node are uniformly spread to all other nodes, which is
N − 1. The probability for hitting the intersection of the first node with the second node is
thus 1/(N − 1).
For higher values of k, and with a similar argument (never put another replica of the same

object onto the same storage node) we get the correction factor as

C(k,N) =

k−1∏
l=1

1

N − l

Hint: there are maximum k physical replicas on the disks. For higher values of k̄ ≥ k, there
are

(
k̄
k

)
combinations of object intersections (when assuming that the number of objects on a

node is very large such and no further object repetition can occur execpt for the k-fold replica
placement). Thus the generalization to k̄ ≥ k is

C(k, k̄, N) =

(
k̄

k

) k−1∏
l=1

1

N − l

By inserting this into the above fomula, we get

As,p,T (k, n) = ns+1 ∗ T ∗
k∗n∑
k̄=k

C(k, k̄, k ∗ n) ∗
(
k ∗ n
k̄

)
∗ pk̄ ∗ (1− p)k∗n−k̄

166

B. Draft Definition of “*Scalabilty”

Here is a proposal of a hopefully more valuable definition of multiple variants of “*scalability”
(as a DRAFT denoted in quotes) for computer science . Certainly, this draft needs some
improvements. However, the author does not know a better definition, without the mentioned
academic deficiencies from section 2.9. This draft tries to compensate much of them by
introduction of some necessary properties for enterprise-grade real-life systems, which
need to satisfy the management body of a company, which in turn needs to satisfy their stock
holders.

For some index i the following has been already determined (otherwise a definition of
“*scalability” in the following sense is not possible):

(1) An existing real-life computer hardware or software system or sub-system Si

(2) An existing and measurable real-life workload Wi

(3) From Si and Wi an actual SLA conformance value C(Si,Wi) between 0% and 100%
has been determined by measurement, and checked for validity.

(4) An SLA conformance target T0 between 0% and 100% had been given by an external
product management, where the index 0 does not depend on i.

Now for another j > i the following can be determined (or at least predicted) for a future
point in time, and checked for validity (or at least for sufficient prediction accuracy):

(1b) it is possible to augment Si to a truly bigger system Sj with Sj ⊃ Si

(2b) it is possible to increase the old workload Wito a greater workload Wj with Wj ⊃
Wi

(3c) it is possible to determine (or at least predict) the new SLA conformance value
C(Sj ,Wj)

The new system Sj is called a “better scaling system” than Si if and only if
C(Sj ,Wj) ≥ C(Si,Wi)

This draft definition just tries to obey some bare minimum as needed by today’s enter-
prises. In practice, the workloads Wi and Wj must be somewhat harder: they must conform
to the needs of both the company and enough of its customers (defined by SLA) who are
using the current system Si, and will use the future system Sj .

Important: the current and future systems must obey some more business-relevant conditions,
such as cost / risk / etc. Details would be out of scope of this guide.

Notice: we just have defined the term “better scaling” (or its potential contrary “worse
scaling”) on a given system. But this is not yet a definition of “scalability” as many people
would like. Now comes the key in mathematical terms:

167

B. Draft Definition of “*Scalabilty”

A. an existing system Si is called “currently scalable” , if and only if some index j > i
exists, which satisfies

(1) Sj ⊃ Si

(2) Wj ⊃Wi

(3) C(Sj ,Wj) ≥ C(Si,Wi) ≥ T0

In management speak: when the workload is increasing from the currentWi to some future
Wj , it must be possible to upgrade the current system Si to some future Sj without violation
of the SLA target T0, and not even just worsening the current service level (which means that
the SLA could be potentially strengthened).

This does not include the cost of the upgrade, and some other business-relevant side
effects like non-linear impact onto personal cost or datacenter cost or some external limitations
etc. This should be added to a future improved version of this definition, which is just an
attempt to convert an academic view of the problem space to a more practical view onto it.

B. an existing system Si is called “unscalable” , if and only if no index j > i exists,
which satisfies

(1) Sj ⊇ Si (notice that the hardware and/or software may stay unmodified)

(2) Wj ⊃Wi

(3) C(Sj ,Wj) ≥ T0 (notice that the current Si may be already overloaded)

C. an existing system Si is called “limited scalable” , if and only if it was “currently
scalable” somewhen in the past, and now it is neither “currently scalable” (see A) nor
“unscalable” (see C).
D. the pure term “scalable” without any prefix is deliberately either undefined, or
defined as \error.

Important for managers: when a relevant future system Sj exists which will be scalable
from the current Si, but there exists no even greater k > j which would be “future scalable” :=
“currently scalable” in future, then you will reach some1 Scalability Limit of your concrete
system Si.

1In general, the mathematical lattice theory tells us that a Scalability Limit does not need to be unique, e.g.
when following different hardware upgrade paths.

168

C. GNU Free Documentation License

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation , Inc.
<http :// fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document , but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual , textbook , or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it , either commercially or noncommercially.
Secondarily , this License preserves for the author and publisher a way
to get credit for their work , while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License , which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software , because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work , regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work , in any medium , that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world -wide , royalty -free license , unlimited in duration , to use that
work under the conditions stated herein. The "Document", below ,
refers to any such manual or work. Any member of the public is a
licensee , and is addressed as "you". You accept the license if you
copy , modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim , or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front -matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document ’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus , if the Document is in
part a textbook of mathematics , a Secondary Section may not explain
any mathematics .) The relationship could be a matter of historical
connection with the subject or with related matters , or of legal ,
commercial , philosophical , ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated , as being those of Invariant Sections , in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not

169

C. GNU Free Documentation License

allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed ,
as Front -Cover Texts or Back -Cover Texts , in the notice that says that
the Document is released under this License. A Front -Cover Text may
be at most 5 words , and a Back -Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine -readable copy ,
represented in a format whose specification is available to the
general public , that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor , and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup , or absence of markup , has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque ".

Examples of suitable formats for Transparent copies include plain
ASCII without markup , Texinfo input format , LaTeX input format , SGML
or XML using a publicly available DTD , and standard -conforming simple
HTML , PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG , XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors , SGML or XML for which the DTD and/or
processing tools are not generally available , and the
machine -generated HTML , PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means , for a printed book , the title page itself ,
plus such following pages as are needed to hold , legibly , the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such , "Title Page" means
the text near the most prominent appearance of the work ’s title ,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below , such as "Acknowledgements",
"Dedications", "Endorsements", or "History ".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License , but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium , either
commercially or noncommercially , provided that this License , the
copyright notices , and the license notice saying this License applies
to the Document are reproduced in all copies , and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However , you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies , under the same conditions stated above , and
you may publicly display copies.

170

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document , numbering more than 100, and the
Document ’s license notice requires Cover Texts , you must enclose the
copies in covers that carry , clearly and legibly , all these Cover
Texts: Front -Cover Texts on the front cover , and Back -Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers , as long as they preserve
the title of the Document and satisfy these conditions , can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly , you should put the first ones listed (as many as fit
reasonably) on the actual cover , and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine -readable Transparent
copy along with each Opaque copy , or state in or with each Opaque copy
a computer -network location from which the general network -using
public has access to download using public -standard network protocols
a complete Transparent copy of the Document , free of added material.
If you use the latter option , you must take reasonably prudent steps ,
when you begin distribution of Opaque copies in quantity , to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested , but not required , that you contact the authors of the
Document well before redistributing any large number of copies , to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above , provided that you release
the Modified Version under precisely this License , with the Modified
Version filling the role of the Document , thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition , you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers , if any) a title distinct
from that of the Document , and from those of previous versions
(which should , if there were any , be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page , as authors , one or more persons or entities
responsible for authorship of the modifications in the Modified
Version , together with at least five of the principal authors of the
Document (all of its principal authors , if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version , as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include , immediately after the copyright notices , a license notice

giving the public permission to use the Modified Version under the
terms of this License , in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document ’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title , and add

to it an item stating at least the title , year , new authors , and
publisher of the Modified Version as given on the Title Page. If

171

C. GNU Free Documentation License

there is no section Entitled "History" in the Document , create one
stating the title , year , authors , and publisher of the Document as
given on its Title Page , then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location , if any , given in the Document for
public access to a Transparent copy of the Document , and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself , or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section , and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document ,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements ". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front -matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document , you may at your option designate some or all
of these sections as invariant. To do this , add their titles to the
list of Invariant Sections in the Modified Version ’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties --for example , statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front -Cover Text , and a
passage of up to 25 words as a Back -Cover Text , to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front -Cover Text and one of Back -Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover , previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one , on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License , under the terms defined in section 4 above for modified
versions , provided that you include in the combination all of the
Invariant Sections of all of the original documents , unmodified , and
list them all as Invariant Sections of your combined work in its
license notice , and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License , and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents , make the title of each such section unique by
adding at the end of it, in parentheses , the name of the original
author or publisher of that section if known , or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination , you must combine any sections Entitled "History"
in the various original documents , forming one section Entitled
"History "; likewise combine any sections Entitled "Acknowledgements",

172

and any sections Entitled "Dedications ". You must delete all sections
Entitled "Endorsements ".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License , and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection , provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection , and
distribute it individually under this License , provided you insert a
copy of this License into the extracted document , and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works , in or on a volume of a storage or
distribution medium , is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation ’s users beyond what the individual works permit.
When the Document is included in an aggregate , this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document , then if the Document is less than one half of
the entire aggregate , the Document ’s Cover Texts may be placed on
covers that bracket the Document within the aggregate , or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification , so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders , but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License , and all the license notices in the
Document , and any Warranty Disclaimers , provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer , the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy , modify , sublicense , or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy , modify , sublicense , or distribute it is void , and
will automatically terminate your rights under this License.

However , if you cease all violation of this License , then your license
from a particular copyright holder is reinstated (a) provisionally ,
unless and until the copyright holder explicitly and finally
terminates your license , and (b) permanently , if the copyright holder
fails to notify you of the violation by some reasonable means prior to

173

C. GNU Free Documentation License

60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means , this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder , and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new , revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version , but may differ in
detail to address new problems or concerns. See
http ://www.gnu.org/copyleft /.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it , you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License , you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used , that proxy ’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC -BY-SA" means the Creative Commons Attribution -Share Alike 3.0
license published by Creative Commons Corporation , a not -for -profit
corporation with a principal place of business in San Francisco ,
California , as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document , in whole or in
part , as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License , and if all works that were first published under this License
somewhere other than this MMC , and subsequently incorporated in whole or
in part into the MMC , (1) had no cover texts or invariant sections , and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC -BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written , include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

174

Permission is granted to copy , distribute and/or modify this document
under the terms of the GNU Free Documentation License , Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections , no Front -Cover Texts , and no Back -Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License ".

If you have Invariant Sections , Front -Cover Texts and Back -Cover Texts ,
replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES , with the
Front -Cover Texts being LIST , and with the Back -Cover Texts being LIST.

If you have Invariant Sections without Cover Texts , or some other
combination of the three , merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code , we
recommend releasing these examples in parallel under your choice of
free software license , such as the GNU General Public License ,
to permit their use in free software.

175

	Preface
	Purpose
	Scope
	Audience
	How to use this document
	Related documents
	Table of Contents

	Geo-Redundancy for Managers and Consultants Plus Background for Responsibles / Architects / Project Members / Sysadmins / etc
	Management Summary
	Important Concepts
	What is Architecture
	What is Backup
	What is Replication
	What is Location Transparency
	What is HA = High Availability
	What is Geo-Redundancy
	What is Cloud Storage
	What is SDS = Software Defined Storage
	What is Scalability
	What is an Object Store
	What is Sharding

	Architectural Principles and Properties
	Fundamental Requirements for Geo-Redundancy
	Architectural Properties of Cloud Storage
	Suitability of Architectures for Cloud Storage
	Kirchhoff's Law: Suitability of Storage Networks
	Layering Rules and their Importance
	Negative Example: object store implementations mis-used as backend for block devices / directory or pointer structures / POSIX filesystems
	Positive Example: ShaHoLin storage + application stack
	Negative Example: Inappropriate Replication Layering
	VM replication and Dijkstra.
	Operational environment conditions for MARS.
	Sysadmin Perspective.
	User Perspective.
	Management Perspective.

	Potentially Negative Example: layering directory-alike structures on top of billions of eventually consistent objects

	Granularity at Architecture
	Granularities for Achieving Strict Consistency
	Granularity for Achieving Eventually Consistent

	Flexibility of Handover / Failover Granularities
	Where to implement Location Transparency
	Granularity of Cross-Datacenter and Geo-Redundant Handover / Failover

	Architectures of Cloud Storage / Software Defined Storage
	Performance Arguments from Architecture
	Performance Penalties by Choice of Replication Layer
	Performance Tradeoffs from Load Distribution

	Distributed vs Local: Scalability Arguments from Architecture
	Definition of Sharding
	Variants of Sharding
	FlexibleSharding
	Principle of Background Migration

	Reliability Arguments from Architecture
	Storage Server Node Failures
	Simple Intuitive Explanation in a Nutshell
	Detailed Explanation of BigCluster Reliability

	Optimum Reliability from Architecture
	Error Propagation to Client Mountpoints
	Similarities and Differences to Copysets
	Similarities
	Differences

	Explanations from DSM and WorkingSet Theory

	Scalability Arguments from Architecture
	Example Failures of Scalability
	Setup 1 (NFS)
	Setup 2 (ocfs2)
	Setup 3 (glusterfs as a substitute for NFS / ocfs2)
	Setup 4 (glusterfs replication as a substitute for DRBD)
	Setup5 (Sharding on top of DRBD)

	Properties of Storage Scalability
	Influence Factors at Scalability

	Case Study: Example Scalability Scenario
	Theoretical Solution: CentralStorage
	Theoretical Solution: BigCluster
	Current Solution: LocalSharding, sometimes RemoteSharding

	Scalability of Filesystem Layer vs Block Layer

	Point-in-time Replication via ZFS Snapshots
	Local vs Centralized Storage
	Internal Redundancy Degree
	Capacity Differences
	Caching Differences
	Latencies and Throughput
	Reliability Differences CentralStorage vs Sharding
	Proprietary vs OpenSource

	Cost Arguments
	Cost Arguments from Technology
	Raw Storage Price Comparison
	Waste-Corrected Storage Price Comparison

	Cost Arguments from Architecture

	MARS for Consultants and Architects Plus Background for Interested Managers / Responsibles / Project Members / Sysadmins / etc
	Use Cases for MARS
	Network Bottlenecks
	Behaviour of DRBD
	Behaviour of MARS

	Long Distances / High Latencies
	Explanation via CAP Theorem
	CAP Differences between DRBD and MARS
	CAP Commonalities between DRBD and MARS

	Higher Consistency Guarantees vs Actuality

	Requirements of Long-Distance Replication
	Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication
	General Cluster Models
	Handover / Failover Reasons and Scenarios
	Granularity and Layering Hierarchy for Long Distances
	Discussion of Handover / Failover Methods
	Failover Methods
	STONITH-like Methods
	ITON = Ignore The Other Node

	Handover Methods
	Hybrid Methods

	Special Requirements for Long Distances

	Advice for Managers and Architects
	Maturity Considerations for Managers
	Maturity of Architectures
	Maturity of MARS

	Recommendations for Hard- and Software Project Setup
	Hardware Projects and Virtualization
	Physical Hardware vs Virtual Hardware
	Storage Hardware

	Software Project Recommendations
	Usefulness Scope of Software
	Architectural Levels of Genericity

	From OpenSource Consumers to Contributors to Leaders
	Recommendations for Design and Operation of Storage Systems
	Recommendations for Managers
	Recommendations for Architects

	Appendices
	Mathematical Model of Architectural Reliability
	Formula for DRBD / MARS
	Formula for Unweighted BigCluster
	Formula for SizeWeighted BigCluster

	Draft Definition of “*Scalabilty”
	GNU Free Documentation License

