libabigail/include/abg-ir.h
Dodji Seketeli 2cf9a18e8c Better handle several anonymous types of the same kind
This is a follow-up patch for the commit:

   43d56de Handle several member anonymous types of the same kind

It allows support for severan anonymous types even when these are not
members of a class/unions.

The patch introduces the concept of a scoped name.  It's a qualified
name for a decl made of the name of the decl appended to the
*unqualified* name of its scope.  Unlike for qualified names, the
scoped name won't have a "__anonymous_*__" string in its name if its
directly containing scope is not anonymous; a qualified name might
still have that string in its name because the decl has a parent scope
(not necessarily its directly containing scope though) that is
anonymous.

The patch goes on to update the logic for comparison of decls that are
anonymous.  For a decl which direct scope is *NOT* anonymous, the
scoped name is what's used in the comparison.  Otherwise, only the
name of the decl is used.

The patch also updates how we detect changes in data members and
member types, in the comparison engine.  It now uses the names of the
data members, rather than their qualified name.  This is in the scope
of the current class/union anyway.  The improvement is that the fact
that the class/union itself is anonymous (even if its anonymous name
changes to another anonymous name) won't have any spurious impact on
the detection of name change of the members.

The patch considers the change of an anonymous decl name which
anonymous name changes to another anonymous name as being harmless.

The patch updates the logic of category propagation in the comparison
engine.  Although a public typedef to private underlying type needs to
stay public and thus not propagate the PRIVATE_TYPE_CATEGORY from its
child diff node to himself, it still needs to suppress the changes to
the private underlying diff node that were suppressed (because of the
private-ness), unless that typedef has local changes.

	* include/abg-ir.h (decl_base::get_scoped_name): Declare new
	member function.
	(scope_decl::get_num_anonymous_member_{classes, unions, enums}):
	Declare new virtual member functions.
	(class_decl::get_num_anonymous_member_{classes, unions, enums}):
	Adjust to make these virtual.  It's not necessary but I feel
	redundancy is a kind of self-documentation here.
	* src/abg-comp-filter.cc (has_harmless_name_change): Consider
	anonymous name changes as harmless.
	* src/abg-comparison.cc
	(class_or_union_diff::ensure_lookup_tables_populated): Consider
	the names of the members rather than their qualified names.
	(suppression_categorization_visitor::visit_end): Suppress the
	changes to the private underlying diff node that were suppressed
	because of the private-ness, unless that typedef has local
	changes.
	* src/abg-dwarf-reader.cc (build_enum_type)
	(add_or_update_class_type, add_or_update_union_type): Handle
	anonymous types in namespaces as well, not just in class/unions.
	* src/abg-ir.cc (decl_base::priv::scoped_name_): Define new data
	member.
	(decl_base::get_scoped_name): Define new member function.
	(equals): For the decl_base overload, use scoped name in the
	comparison, unless the decl belongs to an anonymous type.  For the
	class_or_union_diff, only consider scoped_name during comparison.
	Avoid name comparison between anonymous types.
	(scope_decl::get_num_anonymous_member_{classes, unions, enums}):
	Define new member functions.
	(types_have_similar_structure): Do not compare names between
	anonymous types.
	(qualified_name_setter::do_update): Update scoped names too.
	* tests/data/test-abidiff/test-PR18791-report0.txt: Adjust.
	* tests/data/test-annotate/libtest23.so.abi: Likewise.
	* tests/data/test-annotate/test13-pr18894.so.abi: Likewise.
	* tests/data/test-annotate/test14-pr18893.so.abi: Likewise.
	* tests/data/test-annotate/test15-pr18892.so.abi: Likewise.
	* tests/data/test-annotate/test21-pr19092.so.abi: Likewise.
	* tests/data/test-diff-dwarf/test43-PR22913-report-0.txt:
	Likewise.
	* tests/data/test-diff-dwarf/test46-rust-report-0.txt: Likewise.
	* tests/data/test-diff-filter/test30-pr18904-rvalueref-report0.txt:
	Likewise.
	* tests/data/test-diff-filter/test30-pr18904-rvalueref-report1.txt:
	Likewise.
	* tests/data/test-diff-filter/test30-pr18904-rvalueref-report2.txt:
	Likewise.
	* tests/data/test-diff-filter/test31-pr18535-libstdc++-report-0.txt:
	Likewise.
	* tests/data/test-diff-filter/test31-pr18535-libstdc++-report-1.txt:
	Likewise.
	* tests/data/test-diff-filter/test33-report-0.txt: Likewise.
	* tests/data/test-diff-filter/test35-pr18754-no-added-syms-report-0.txt:
	Likewise.
	* tests/data/test-diff-filter/test44-anonymous-data-member-report-0.txt:
	Likewise.
	* tests/data/test-diff-pkg/libsigc++-2.0-0c2a_2.4.0-1_amd64--libsigc++-2.0-0v5_2.4.1-1ubuntu2_amd64-report-0.txt:
	Likewise.
	* tests/data/test-diff-pkg/nss-3.23.0-1.0.fc23.x86_64-report-0.txt:
	Likewise.
	* tests/data/test-diff-pkg/spice-server-0.12.4-19.el7.x86_64-0.12.8-1.el7.x86_64-report-0.txt:
	Likewise.
	* tests/data/test-diff-pkg/spice-server-0.12.4-19.el7.x86_64-0.12.8-1.el7.x86_64-report-1.txt:
	Likewise.
	* tests/data/test-diff-pkg/spice-server-0.12.4-19.el7.x86_64-0.12.8-1.el7.x86_64-report-2.txt:
	Likewise.
	* tests/data/test-diff-pkg/spice-server-0.12.4-19.el7.x86_64-0.12.8-1.el7.x86_64-report-3.txt:
	Likewise.
	* tests/data/test-read-dwarf/PR22015-libboost_iostreams.so.abi:
	Likewise.
	* tests/data/test-read-dwarf/PR22122-libftdc.so.abi: Likewise.
	* tests/data/test-read-dwarf/libtest23.so.abi: Likewise.
	* tests/data/test-read-dwarf/test10-pr18818-gcc.so.abi: Likewise.
	* tests/data/test-read-dwarf/test11-pr18828.so.abi: Likewise.
	* tests/data/test-read-dwarf/test12-pr18844.so.abi: Likewise.
	* tests/data/test-read-dwarf/test13-pr18894.so.abi: Likewise.
	* tests/data/test-read-dwarf/test14-pr18893.so.abi: Likewise.
	* tests/data/test-read-dwarf/test15-pr18892.so.abi: Likewise.
	* tests/data/test-read-dwarf/test16-pr18904.so.abi: Likewise.
	* tests/data/test-read-dwarf/test21-pr19092.so.abi: Likewise.
	* tests/data/test-read-dwarf/test22-pr19097-libstdc++.so.6.0.17.so.abi:
	Likewise.
	* tests/data/test-read-dwarf/test9-pr18818-clang.so.abi: Likewise.

Signed-off-by: Dodji Seketeli <dodji@redhat.com>
2019-05-09 15:19:05 +02:00

4554 lines
102 KiB
C++

// -*- Mode: C++ -*-
//
// Copyright (C) 2013-2019 Red Hat, Inc.
//
// This file is part of the GNU Application Binary Interface Generic
// Analysis and Instrumentation Library (libabigail). This library is
// free software; you can redistribute it and/or modify it under the
// terms of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 3, or (at your option) any
// later version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Lesser Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this program; see the file COPYING-LGPLV3. If
// not, see <http://www.gnu.org/licenses/>.
//
// Author: Dodji Seketeli
/// @file
///
/// Types of the main internal representation of libabigail.
///
/// This internal representation abstracts the artifacts that make up
/// an application binary interface.
#ifndef __ABG_IR_H__
#define __ABG_IR_H__
#include <assert.h>
#include <stdint.h>
#include <cstdlib>
#include <tr1/unordered_map>
#include "abg-fwd.h"
#include "abg-hash.h"
#include "abg-traverse.h"
/// @file
///
/// This file contains the declarations of the Internal Representation
/// of libabigail.
/// @defgroup Memory Memory management
/// @{
///
/// How objects' lifetime is handled in libabigail.
///
/// For memory management and garbage collection of libabigail's IR
/// artifacts, we use std::tr1::shared_ptr and std::tr1::weak_ptr.
///
/// When manipulating these IR artifacts, there are a few rules to keep in
/// mind.
///
/// <b>The declaration for a type is owned by only one scope </b>
///
/// This means that for each instance of abigail::type_base (a type) there
/// is an instance of abigail::scope_decl that owns a @ref
/// abigail::decl_base_sptr (a shared pointer to an abigail::decl_base)
/// that points to the declaration of that type. The
/// abigail::type_base_sptr is added to the scope using the function
/// abigail::add_decl_to_scope().
///
/// There is a kind of type that is usually not syntactically owned by
/// a scope: it's function type. In libabigail, function types are
/// represented by abigail::function_type and abigail::method_type.
/// These types must be owned by the translation unit they originate
/// from. Adding them to the translation unit must be done by a call
/// to the method function
/// abigail::translation::bind_function_type_life_time().
///
/// <b> A declaration that has a type does NOT own the type </b>
///
/// This means that, for instance, in an abigail::var_decl (a variable
/// declaration), the type of the declaration is not owned by the
/// declaration. In other (concrete) words, the variable declaration
/// doesn't have a shared pointer to the type. Rather, it has a *weak*
/// pointer to its type. That means that it has a data member of type
/// abigail::type_base_wptr that contains the type of the declaration.
///
/// But then abigail::var_decl::get_type() returns a shared pointer that
/// is constructed from the internal weak pointer to the type. That way,
/// users of the type of the var can own a temporary reference on it and
/// be assured that the type's life time is long enough for their need.
///
/// Likewise, data members, function and template parameters similarly
/// have weak pointers on their type.
///
/// If, for a reason, you really need to keep a type alive for the
/// entire lifetime of the type system, then you can bind the life
/// time of that type to the life time of the @ref environment that is
/// supposed to outlive the type system. You do that by passing the
/// type to the function environment::keep_type_alive().
///
/// @}
namespace abigail
{
/// The namespace of the internal representation of ABI artifacts like
/// types and decls.
namespace ir
{
// Inject some std::tr1 types in here.
using std::tr1::unordered_map;
/// A convenience typedef fo r an ordered set of size_t.
typedef unordered_set<size_t> pointer_set;
/// This is an abstraction of the set of resources necessary to manage
/// several aspects of the internal representations of the Abigail
/// library.
///
/// An environment can be seen as the boundaries in which all related
/// Abigail artifacts live. So before doing anything using this
/// library, the first thing to create is, well, you know it now, an
/// environment.
///
/// Note that the lifetime of environment objects must be longer than
/// the lifetime of any other type in the Abigail system. So a given
/// instance of @ref environment must stay around as long as you are
/// using libabigail. It's only when you are done using the library
/// that you can de-allocate the environment instance.
class environment
{
public:
/// A convenience typedef for a map of canonical types. The key is
/// the pretty representation string of a particular type and the
/// value is the vector of canonical types that have the same pretty
/// representation string.
typedef std::tr1::unordered_map<string,
std::vector<type_base_sptr> > canonical_types_map_type;
private:
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
public:
environment();
virtual ~environment();
canonical_types_map_type&
get_canonical_types_map();
const type_base_sptr&
get_void_type() const;
const type_base_sptr&
get_variadic_parameter_type() const;
bool
canonicalization_is_done() const;
void
canonicalization_is_done(bool);
bool
do_on_the_fly_canonicalization() const;
void
do_on_the_fly_canonicalization(bool f);
bool
decl_only_class_equals_definition() const;
void
decl_only_class_equals_definition(bool f) const;
bool
is_void_type(const type_base_sptr&) const;
bool
is_void_type(const type_base*) const;
bool
is_variadic_parameter_type(const type_base*) const;
bool
is_variadic_parameter_type(const type_base_sptr&) const;
interned_string
intern(const string&) const;
friend class class_or_union;
friend class class_decl;
friend class function_type;
friend void keep_type_alive(type_base_sptr);
}; // end class environment
class location_manager;
/// @brief The source location of a token.
///
/// This represents the location of a token coming from a given
/// translation unit. This location is actually an abstraction of
/// cursor in the table of all the locations of all the tokens of the
/// translation unit. That table is managed by the @ref location_manager
/// type. To get the file path, line and column numbers associated to
/// a given instance of @ref location, you need to use the
/// location_manager::expand_location method.
class location
{
unsigned value_;
// The location manager to use to decode the value above. There is
// one location manager per translation unit, and the location
// manager's life time is managed by its translation unit.
location_manager* loc_manager_;
location(unsigned v, location_manager* m)
: value_(v), loc_manager_(m)
{}
/// Get the location manager to use to decode the value of this
/// location.
///
/// @return the location manager for the current location value.
location_manager*
get_location_manager() const
{return loc_manager_;}
public:
/// Copy constructor of the location.
///
/// @param l the location to copy from.
location(const location& l)
: value_(l.value_),
loc_manager_(l.loc_manager_)
{}
/// Assignment operator of the location.
///
/// @param l the location to assign to the current one.
location&
operator=(const location& l)
{
value_ = l.value_;
loc_manager_ = l.loc_manager_;
return *this;
}
/// Default constructor for the @ref location type.
location()
: value_(), loc_manager_()
{}
/// Get the value of the location.
unsigned
get_value() const
{return value_;}
/// Convert the location into a boolean.
///
/// @return true iff the value of the location is different from
/// zero.
operator bool() const
{return !!value_;}
/// Equality operator of the @ref location type.
///
/// @param other the other location to compare against.
///
/// @return true iff both locations are equal.
bool
operator==(const location &other) const
{return value_ == other.value_;}
/// "Less than" operator of the @ref location type.
///
/// @parm other the other location type to compare against.
///
/// @return true iff the current instance is less than the @p other
/// one.
bool
operator<(const location &other) const
{return value_ < other.value_;}
/// Expand the current location into a tripplet file path, line and
/// column number.
///
/// @param path the output parameter this function sets the expanded
/// path to.
///
/// @param line the output parameter this function sets the expanded
/// line number to.
///
/// @param column the output parameter this function sets the
/// expanded column number to.
void
expand(std::string& path, unsigned& line, unsigned& column) const;
string
expand(void) const;
friend class location_manager;
}; // end class location
/// @brief The entry point to manage locations.
///
/// This type keeps a table of all the locations for tokens of a
/// given translation unit.
class location_manager
{
struct priv;
/// Pimpl.
shared_ptr<priv> priv_;
public:
location_manager();
location
create_new_location(const std::string& fle, size_t lne, size_t col);
void
expand_location(const location& location, std::string& path,
unsigned& line, unsigned& column) const;
};
/// The base of an entity of the intermediate representation that is
/// to be traversed.
struct ir_traversable_base : public traversable_base
{
/// Traverse a given IR node and its children, calling an visitor on
/// each node.
///
/// @param v the visitor to call on each traversed node.
///
/// @return true if the all the IR node tree was traversed.
virtual bool
traverse(ir_node_visitor& v);
}; // end class ir_traversable_base
/// The hashing functor for using instances of @ref type_or_decl_base
/// as values in a hash map or set.
struct type_or_decl_hash
{
/// Function-call Operator to hash the string representation of an
/// ABI artifact.
///
/// @param artifact the ABI artifact to hash.
///
/// @return the hash value of the string representation of @p
/// artifact.
size_t
operator()(const type_or_decl_base *artifact) const
{
string repr = get_pretty_representation(artifact);
std::tr1::hash<string> do_hash;
return do_hash(repr);
}
/// Function-call Operator to hash the string representation of an
/// ABI artifact.
///
/// @param artifact the ABI artifact to hash.
///
/// @return the hash value of the string representation of @p
/// artifact.
size_t
operator()(const type_or_decl_base_sptr& artifact) const
{return operator()(artifact.get());}
}; // end struct type_or_decl_hash
/// The comparison functor for using instances of @ref
/// type_or_decl_base as values in a hash map or set.
struct type_or_decl_equal
{
/// The function-call operator to compare the string representations
/// of two ABI artifacts.
///
/// @param l the left hand side ABI artifact operand of the
/// comparison.
///
/// @param r the right hand side ABI artifact operand of the
/// comparison.
///
/// @return true iff the string representation of @p l equals the one
/// of @p r.
bool
operator()(const type_or_decl_base *l, const type_or_decl_base *r) const
{
string repr1 = get_pretty_representation(l);
string repr2 = get_pretty_representation(r);
return repr1 == repr2;
}
/// The function-call operator to compare the string representations
/// of two ABI artifacts.
///
/// @param l the left hand side ABI artifact operand of the
/// comparison.
///
/// @param r the right hand side ABI artifact operand of the
/// comparison.
///
/// @return true iff the string representation of @p l equals the one
/// of @p r.
bool
operator()(const type_or_decl_base_sptr &l,
const type_or_decl_base_sptr &r) const
{return operator()(l.get(), r.get());}
}; // end type_or_decl_equal
/// A convenience typedef for a hash set of type_or_decl_base_sptr
typedef unordered_set<type_or_decl_base_sptr,
type_or_decl_hash,
type_or_decl_equal> artifact_sptr_set_type;
/// A convenience typedef for a hash set of const type_or_decl_base*
typedef unordered_set<const type_or_decl_base*,
type_or_decl_hash,
type_or_decl_equal> artifact_ptr_set_type;
/// A convenience typedef for a map which key is a string and which
/// value is a @ref type_base_wptr.
typedef unordered_map<string, type_base_wptr> string_type_base_wptr_map_type;
/// A convenience typedef for a map which key is an @ref
/// interned_string and which value is a @ref type_base_wptr.
typedef unordered_map<interned_string, type_base_wptr, hash_interned_string>
istring_type_base_wptr_map_type;
/// A convenience typedef for a map which key is an @ref
/// interned_string and which value is a @ref type_base_wptr.
typedef unordered_map<interned_string,
type_or_decl_base_sptr,
hash_interned_string>
istring_type_or_decl_base_sptr_map_type;
/// This is a type that aggregates maps of all the kinds of types that
/// are supported by libabigail.
///
/// For instance, the type_maps contains a map of string to basic
/// type, a map of string to class type, a map of string to union
/// types, etc.
class type_maps
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
public:
type_maps();
bool
empty() const;
const istring_type_base_wptrs_map_type&
basic_types() const;
istring_type_base_wptrs_map_type&
basic_types();
const istring_type_base_wptrs_map_type&
class_types() const;
istring_type_base_wptrs_map_type&
class_types();
istring_type_base_wptrs_map_type&
union_types();
const istring_type_base_wptrs_map_type&
union_types() const;
istring_type_base_wptrs_map_type&
enum_types();
const istring_type_base_wptrs_map_type&
enum_types() const;
istring_type_base_wptrs_map_type&
typedef_types();
const istring_type_base_wptrs_map_type&
typedef_types() const;
istring_type_base_wptrs_map_type&
qualified_types();
const istring_type_base_wptrs_map_type&
qualified_types() const;
istring_type_base_wptrs_map_type&
pointer_types();
const istring_type_base_wptrs_map_type&
pointer_types() const;
istring_type_base_wptrs_map_type&
reference_types();
const istring_type_base_wptrs_map_type&
reference_types() const;
istring_type_base_wptrs_map_type&
array_types();
const istring_type_base_wptrs_map_type&
array_types() const;
const istring_type_base_wptrs_map_type&
subrange_types() const;
istring_type_base_wptrs_map_type&
subrange_types();
istring_type_base_wptrs_map_type&
function_types();
const istring_type_base_wptrs_map_type&
function_types() const;
}; // end class type_maps;
/// This is the abstraction of the set of relevant artefacts (types,
/// variable declarations, functions, templates, etc) bundled together
/// into a translation unit.
class translation_unit : public traversable_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
translation_unit();
public:
/// Convenience typedef for a shared pointer on a @ref global_scope.
typedef shared_ptr<scope_decl> global_scope_sptr;
/// The language of the translation unit.
enum language
{
LANG_UNKNOWN = 0,
LANG_Cobol74,
LANG_Cobol85,
LANG_C89,
LANG_C99,
LANG_C11,
LANG_C,
LANG_C_plus_plus_03,
LANG_C_plus_plus_11,
LANG_C_plus_plus_14,
LANG_C_plus_plus,
LANG_ObjC,
LANG_ObjC_plus_plus,
LANG_Fortran77,
LANG_Fortran90,
LANG_Fortran95,
LANG_Ada83,
LANG_Ada95,
LANG_Pascal83,
LANG_Modula2,
LANG_Java,
LANG_PL1,
LANG_UPC,
LANG_D,
LANG_Python,
LANG_Go,
LANG_Rust,
LANG_Mips_Assembler
};
public:
translation_unit(const ir::environment* env,
const std::string& path,
char address_size = 0);
virtual ~translation_unit();
const environment*
get_environment() const;
environment*
get_environment();
void
set_environment(const environment*);
language
get_language() const;
void
set_language(language l);
const std::string&
get_path() const;
void
set_path(const string&);
const std::string&
get_compilation_dir_path() const;
void
set_compilation_dir_path(const std::string&);
const std::string&
get_absolute_path() const;
void
set_corpus(corpus*);
const corpus*
get_corpus() const;
corpus*
get_corpus();
const scope_decl_sptr&
get_global_scope() const;
scope_decl_sptr&
get_global_scope();
const type_maps&
get_types() const;
type_maps&
get_types();
const vector<function_type_sptr>&
get_live_fn_types() const;
location_manager&
get_loc_mgr();
const location_manager&
get_loc_mgr() const;
bool
is_empty() const;
char
get_address_size() const;
void
set_address_size(char);
bool
is_constructed() const;
void
set_is_constructed(bool);
bool
operator==(const translation_unit&) const;
bool
operator!=(const translation_unit&) const;
void
bind_function_type_life_time(function_type_sptr) const;
virtual bool
traverse(ir_node_visitor& v);
friend function_type_sptr
lookup_function_type_in_translation_unit(const function_type& t,
const translation_unit& tu);
friend function_type_sptr
synthesize_function_type_from_translation_unit(const function_type& fn_type,
translation_unit& tu);
friend type_base_sptr
synthesize_type_from_translation_unit(const type_base_sptr& type,
translation_unit& tu);
};//end class translation_unit
string
translation_unit_language_to_string(translation_unit::language);
translation_unit::language
string_to_translation_unit_language(const string&);
bool
is_c_language(translation_unit::language l);
bool
is_cplus_plus_language(translation_unit::language l);
bool
is_java_language(translation_unit::language l);
bool
is_ada_language(translation_unit::language l);
bool
operator==(const translation_unit_sptr&, const translation_unit_sptr&);
bool
operator!=(const translation_unit_sptr&, const translation_unit_sptr&);
/// Access specifier for class members.
enum access_specifier
{
no_access,
public_access,
protected_access,
private_access,
};
class elf_symbol;
/// A convenience typedef for a shared pointer to elf_symbol.
typedef shared_ptr<elf_symbol> elf_symbol_sptr;
/// A convenience typedef for a weak pointer to elf_symbol.
typedef weak_ptr<elf_symbol> elf_symbol_wptr;
/// Convenience typedef for a map which key is a string and which
/// value if the elf symbol of the same name.
typedef std::tr1::unordered_map<string, elf_symbol_sptr>
string_elf_symbol_sptr_map_type;
/// Convenience typedef for a shared pointer to an
/// string_elf_symbol_sptr_map_type.
typedef shared_ptr<string_elf_symbol_sptr_map_type>
string_elf_symbol_sptr_map_sptr;
/// Convenience typedef for a vector of elf_symbol
typedef std::vector<elf_symbol_sptr> elf_symbols;
/// Convenience typedef for a map which key is a string and which
/// value is a vector of elf_symbol.
typedef std::tr1::unordered_map<string, elf_symbols>
string_elf_symbols_map_type;
/// Convenience typedef for a shared pointer to
/// string_elf_symbols_map_type.
typedef shared_ptr<string_elf_symbols_map_type> string_elf_symbols_map_sptr;
/// Abstraction of an elf symbol.
///
/// This is useful when a given corpus has been read from an ELF file.
/// In that case, a given decl might be associated to its underlying
/// ELF symbol, if that decl is publicly exported in the ELF file. In
/// that case, comparing decls might involve comparing their
/// underlying symbols as well.
class elf_symbol
{
public:
/// The type of a symbol.
enum type
{
NOTYPE_TYPE = 0,
OBJECT_TYPE,
FUNC_TYPE,
SECTION_TYPE,
FILE_TYPE,
COMMON_TYPE,
TLS_TYPE,
GNU_IFUNC_TYPE
};
/// The binding of a symbol.
enum binding
{
LOCAL_BINDING = 0,
GLOBAL_BINDING,
WEAK_BINDING,
GNU_UNIQUE_BINDING
};
/// The visibility of the symbol.
enum visibility
{
DEFAULT_VISIBILITY,
PROTECTED_VISIBILITY,
HIDDEN_VISIBILITY,
INTERNAL_VISIBILITY,
};
/// Inject the elf_symbol::version here.
class version;
private:
struct priv;
shared_ptr<priv> priv_;
elf_symbol();
elf_symbol(const environment* e,
size_t i,
size_t s,
const string& n,
type t,
binding b,
bool d,
bool c,
const version& ve,
visibility vi);
elf_symbol(const elf_symbol&);
elf_symbol&
operator=(const elf_symbol& s);
public:
static elf_symbol_sptr
create();
static elf_symbol_sptr
create(const environment* e,
size_t i,
size_t s,
const string& n,
type t,
binding b,
bool d,
bool c,
const version& ve,
visibility vi);
const environment*
get_environment() const;
void
set_environment(const environment*) const;
size_t
get_index() const;
void
set_index(size_t);
const string&
get_name() const;
void
set_name(const string& n);
type
get_type() const;
void
set_type(type t);
size_t
get_size() const;
void
set_size(size_t);
binding
get_binding() const;
void
set_binding(binding b);
version&
get_version() const;
void
set_version(const version& v);
void
set_visibility(visibility v);
visibility
get_visibility() const;
bool
is_defined() const;
void
is_defined(bool d);
bool
is_public() const;
bool
is_function() const;
bool
is_variable() const;
const elf_symbol_sptr
get_main_symbol() const;
elf_symbol_sptr
get_main_symbol();
bool
is_main_symbol() const;
elf_symbol_sptr
get_next_alias() const;
bool
has_aliases() const;
int
get_number_of_aliases() const;
void
add_alias(const elf_symbol_sptr&);
bool
is_common_symbol() const;
bool
has_other_common_instances() const;
elf_symbol_sptr
get_next_common_instance() const;
void
add_common_instance(const elf_symbol_sptr&);
const string&
get_id_string() const;
elf_symbol_sptr
get_alias_from_name(const string& name) const;
elf_symbol_sptr
get_alias_which_equals(const elf_symbol& other) const;
string
get_aliases_id_string(const string_elf_symbols_map_type& symtab,
bool include_symbol_itself = true) const;
string
get_aliases_id_string(bool include_symbol_itself = true) const;
static bool
get_name_and_version_from_id(const string& id,
string& name,
string& ver);
bool
operator==(const elf_symbol&) const;
bool
does_alias(const elf_symbol&) const;
}; // end class elf_symbol.
std::ostream&
operator<<(std::ostream& o, elf_symbol::type t);
std::ostream&
operator<<(std::ostream& o, elf_symbol::binding t);
bool
string_to_elf_symbol_type(const string&, elf_symbol::type&);
bool
string_to_elf_symbol_binding(const string&, elf_symbol::binding&);
bool
string_to_elf_symbol_visibility(const string&, elf_symbol::visibility&);
bool
operator==(const elf_symbol_sptr& lhs, const elf_symbol_sptr& rhs);
bool
operator!=(const elf_symbol_sptr& lhs, const elf_symbol_sptr& rhs);
bool
elf_symbols_alias(const elf_symbol& s1, const elf_symbol& s2);
void
compute_aliases_for_elf_symbol(const elf_symbol& symbol,
const string_elf_symbols_map_type& symtab,
vector<elf_symbol_sptr>& alias_set);
/// The abstraction of the version of an ELF symbol.
class elf_symbol::version
{
struct priv;
shared_ptr<priv> priv_;
public:
version();
version(const string& v,
bool is_default);
version(const version& v);
operator const string&() const;
const string&
str() const;
void
str(const string& s);
bool
is_default() const;
void
is_default(bool f);
bool
is_empty() const;
bool
operator==(const version& o) const;
bool
operator!=(const version& o) const;
version&
operator=(const version& o);
};// end class elf_symbol::version
class context_rel;
/// A convenience typedef for shared pointers to @ref context_rel
typedef shared_ptr<context_rel> context_rel_sptr;
/// The abstraction of the relationship between an entity and its
/// containing scope (its context). That relationship can carry
/// properties like access rights (if the parent is a class_decl),
/// etc.
///
/// But importantly, this relationship carries a pointer to the
/// actualy parent.
class context_rel
{
protected:
scope_decl* scope_;
enum access_specifier access_;
bool is_static_;
public:
context_rel()
: scope_(0),
access_(no_access),
is_static_(false)
{}
context_rel(scope_decl* s)
: scope_(s),
access_(no_access),
is_static_(false)
{}
context_rel(scope_decl* s,
access_specifier a,
bool f)
: scope_(s),
access_(a),
is_static_(f)
{}
scope_decl*
get_scope() const
{return scope_;}
access_specifier
get_access_specifier() const
{return access_;}
void
set_access_specifier(access_specifier a)
{access_ = a;}
bool
get_is_static() const
{return is_static_;}
void
set_is_static(bool s)
{is_static_ = s;}
void
set_scope(scope_decl* s)
{scope_ = s;}
bool
operator==(const context_rel& o)const
{
return (access_ == o.access_
&& is_static_ == o.is_static_);
}
/// Inequality operator.
///
/// @param o the other instance of @ref context_rel to compare the
/// current instance against.
///
/// @return true iff the current instance of @ref context_rel is
/// different from @p o.
bool
operator!=(const context_rel& o) const
{return !operator==(o);}
virtual ~context_rel();
};// end class context_rel
/// A bitfield that gives callers of abigail::ir::equals() some
/// insight about how different two internal representation artifacts
/// are.
enum change_kind
{
NO_CHANGE_KIND = 0,
/// This means that a given IR artifact has local differences, with
/// respect to the other artifact it was compared against. A local
/// change is a change that is carried by the artifact itself (or
/// its type), rather than by one off its sub-types.
///
/// Note that if this bit is set, then either one of the @ref
/// LOCAL_TYPE_CHANGE_KIND or LOCAL_NON_TYPE_CHANGE_KIND bit must be
/// set to, detailing what the kind of local change we have.
LOCAL_CHANGE_KIND = 1,
/// This means that a given IR artifact has a local type change. If
/// this bit is set, then the LOCAL_CHANGE_KIND bit must be set too.
LOCAL_TYPE_CHANGE_KIND = 1 << 1,
/// This means that a given IR artifact has a local non-type change.
/// That is a change that is carried by the artifact itself, not by
/// its type. If this bit is set, then the LOCAL_CHANGE_KIND bit
/// must be set too.
LOCAL_NON_TYPE_CHANGE_KIND = 1 << 2,
/// This means that a given IR artifact has changes in some of its
/// sub-types, with respect to the other artifact it was compared
/// against.
SUBTYPE_CHANGE_KIND = 1 << 3,
/// The masks below must always be the last enumerators.
ALL_LOCAL_CHANGES_MASK =
LOCAL_CHANGE_KIND | LOCAL_TYPE_CHANGE_KIND | LOCAL_NON_TYPE_CHANGE_KIND
};// end enum change_kind
change_kind
operator|(change_kind, change_kind);
change_kind
operator&(change_kind, change_kind);
change_kind&
operator|=(change_kind&, change_kind);
change_kind&
operator&=(change_kind&, change_kind);
bool
equals(const decl_base&, const decl_base&, change_kind*);
/// The base class of both types and declarations.
class type_or_decl_base : public ir_traversable_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
mutable priv_sptr priv_;
type_or_decl_base();
protected:
bool hashing_started() const;
void hashing_started(bool) const;
public:
type_or_decl_base(const environment*);
type_or_decl_base(const type_or_decl_base&);
virtual ~type_or_decl_base();
const environment*
get_environment() const;
environment*
get_environment();
void
set_environment(const environment*);
const corpus*
get_corpus() const;
corpus*
get_corpus();
void
set_translation_unit(translation_unit*);
const translation_unit*
get_translation_unit() const;
translation_unit*
get_translation_unit();
type_or_decl_base&
operator=(const type_or_decl_base&);
virtual bool
traverse(ir_node_visitor&);
virtual string
get_pretty_representation(bool internal = false) const = 0;
}; // end class type_or_decl_base
bool
operator==(const type_or_decl_base&, const type_or_decl_base&);
bool
operator==(const type_or_decl_base_sptr&, const type_or_decl_base_sptr&);
bool
operator!=(const type_or_decl_base_sptr&, const type_or_decl_base_sptr&);
void
set_environment_for_artifact(type_or_decl_base* artifact,
const environment* env);
void
set_environment_for_artifact(type_or_decl_base_sptr artifact,
const environment* env);
/// The base type of all declarations.
class decl_base : public virtual type_or_decl_base
{
// Forbidden
decl_base();
struct priv;
protected:
const interned_string&
peek_qualified_name() const;
void
set_qualified_name(const interned_string&) const;
const interned_string&
peek_temporary_qualified_name() const;
void
set_temporary_qualified_name(const interned_string&) const;
public:
// This is public because some internals of the library need to
// update it. But it's opaque to client code anyway, so no big
// deal. Also, it's not handled by a shared_ptr because accessing
// the data members of the priv struct for this decl_base shows up
// on performance profiles when dealing with big binaries with a lot
// of types; dereferencing the shared_ptr involves locking of some
// sort and that is slower than just dereferencing a pointer likere
// here. There are other types for which the priv pointer is
// managed using shared_ptr just fine, because those didn't show up
// during our performance profiling.
priv* priv_;
/// Facility to hash instances of decl_base.
struct hash;
/// ELF visibility
enum visibility
{
VISIBILITY_NONE,
VISIBILITY_DEFAULT,
VISIBILITY_PROTECTED,
VISIBILITY_HIDDEN,
VISIBILITY_INTERNAL
};
/// ELF binding
enum binding
{
BINDING_NONE,
BINDING_LOCAL,
BINDING_GLOBAL,
BINDING_WEAK
};
virtual void
set_scope(scope_decl*);
protected:
const context_rel*
get_context_rel() const;
context_rel*
get_context_rel();
void
set_context_rel(context_rel *c);
public:
decl_base(const environment* e,
const string& name,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
decl_base(const environment* e,
const interned_string& name,
const location& locus,
const interned_string& mangled_name = interned_string(),
visibility vis = VISIBILITY_DEFAULT);
decl_base(const environment*, const location&);
decl_base(const decl_base&);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator!=(const decl_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~decl_base();
virtual size_t
get_hash() const;
virtual string
get_pretty_representation(bool internal = false) const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual const interned_string&
get_scoped_name() const;
bool
get_is_in_public_symbol_table() const;
void
set_is_in_public_symbol_table(bool);
const location&
get_location() const;
void
set_location(const location& l);
const interned_string&
get_name() const;
const interned_string&
get_qualified_parent_name() const;
void
set_name(const string& n);
bool
get_is_anonymous() const;
void
set_is_anonymous(bool);
const interned_string&
get_linkage_name() const;
virtual void
set_linkage_name(const string& m);
scope_decl*
get_scope() const;
visibility
get_visibility() const;
void
set_visibility(visibility v);
friend type_base_sptr
canonicalize(type_base_sptr);
friend type_base_sptr
re_canonicalize(type_base_sptr);
friend bool
equals(const decl_base&, const decl_base&, change_kind*);
friend bool
equals(const var_decl&, const var_decl&, change_kind*);
friend decl_base_sptr
add_decl_to_scope(decl_base_sptr decl, scope_decl* scpe);
friend void
remove_decl_from_scope(decl_base_sptr);
friend decl_base_sptr
insert_decl_into_scope(decl_base_sptr,
vector<shared_ptr<decl_base> >::iterator,
scope_decl*);
friend enum access_specifier
get_member_access_specifier(const decl_base& d);
friend enum access_specifier
get_member_access_specifier(const decl_base_sptr& d);
friend void
set_member_access_specifier(decl_base& d,
access_specifier a);
friend bool
get_member_is_static(const decl_base& d);
friend bool
get_member_is_static(const decl_base_sptr& d);
friend void
set_member_is_static(const decl_base_sptr& d, bool s);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
get_member_function_is_virtual(const function_decl& f);
friend void
set_member_function_is_virtual(function_decl&, bool);
friend class class_decl;
friend class scope_decl;
};// end class decl_base
bool
operator==(const decl_base_sptr&, const decl_base_sptr&);
bool
operator==(const type_base_sptr&, const type_base_sptr&);
bool
operator!=(const type_base_sptr&, const type_base_sptr&);
std::ostream&
operator<<(std::ostream&, decl_base::visibility);
std::ostream&
operator<<(std::ostream&, decl_base::binding);
bool
equals(const scope_decl&, const scope_decl&, change_kind*);
/// A declaration that introduces a scope.
class scope_decl : public virtual decl_base
{
public:
/// Convenience typedef for a vector of @ref decl_base_sptr.
typedef std::vector<decl_base_sptr > declarations;
/// Convenience typedef for a vector of @ref function_type_sptr.
typedef std::vector<function_type_sptr > function_types;
/// Convenience typedef for a vector of @ref scope_decl_sptr.
typedef std::vector<scope_decl_sptr> scopes;
/// The type of the private data of @ref scope_decl.
struct priv;
/// A convenience typedef for a shared pointer to scope_decl::priv.
typedef shared_ptr<priv> priv_sptr;
private:
priv_sptr priv_;
scope_decl();
protected:
virtual decl_base_sptr
add_member_decl(const decl_base_sptr& member);
virtual decl_base_sptr
insert_member_decl(const decl_base_sptr& member,
declarations::iterator before);
virtual void
remove_member_decl(decl_base_sptr member);
public:
struct hash;
scope_decl(const environment* env,
const string& name, const location& locus,
visibility vis = VISIBILITY_DEFAULT);
scope_decl(const environment* env, location& l);
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
const declarations&
get_member_decls() const;
declarations&
get_member_decls();
virtual size_t
get_num_anonymous_member_classes() const;
virtual size_t
get_num_anonymous_member_unions() const;
virtual size_t
get_num_anonymous_member_enums() const;
scopes&
get_member_scopes();
const scopes&
get_member_scopes() const;
bool
is_empty() const;
bool
find_iterator_for_member(const decl_base*, declarations::iterator&);
bool
find_iterator_for_member(const decl_base_sptr, declarations::iterator&);
virtual bool
traverse(ir_node_visitor&);
virtual ~scope_decl();
friend decl_base_sptr
add_decl_to_scope(decl_base_sptr decl, scope_decl* scope);
friend decl_base_sptr
insert_decl_into_scope(decl_base_sptr decl,
scope_decl::declarations::iterator before,
scope_decl* scope);
friend void
remove_decl_from_scope(decl_base_sptr decl);
};//end class scope_decl
bool
operator==(const scope_decl_sptr&, const scope_decl_sptr&);
bool
operator!=(const scope_decl_sptr&, const scope_decl_sptr&);
/// Hasher for the @ref scope_decl type.
struct scope_decl::hash
{
size_t
operator()(const scope_decl& d) const;
size_t
operator()(const scope_decl* d) const;
};
/// This abstracts the global scope of a given translation unit.
///
/// Only one instance of this class must be present in a given
/// translation_unit. That instance is implicitely created the first
/// time translatin_unit::get_global_scope is invoked.
class global_scope : public scope_decl
{
translation_unit* translation_unit_;
global_scope(translation_unit *tu)
: type_or_decl_base(tu->get_environment()),
decl_base(tu->get_environment(), "", location()),
scope_decl(tu->get_environment(), "", location()),
translation_unit_(tu)
{}
public:
friend class translation_unit;
translation_unit*
get_translation_unit() const
{return translation_unit_;}
virtual ~global_scope();
};
bool
equals(const type_base&, const type_base&, change_kind*);
/// An abstraction helper for type declarations
class type_base : public virtual type_or_decl_base
{
struct priv;
public:
// This priv pointer is not handled by a shared_ptr because
// accessing the data members of the priv struct for this type_base
// shows up on performance profiles when dealing with big binaries
// with a lot of types; dereferencing the shared_ptr involves
// locking of some sort and that is slower than just dereferencing a
// pointer likere here. There are other types for which the priv
// pointer is managed using shared_ptr just fine, because those
// didn't show up during our performance profiling.
priv* priv_;
private:
// Forbid this.
type_base();
static type_base_sptr
get_canonical_type_for(type_base_sptr);
protected:
virtual void
on_canonical_type_set();
public:
/// A hasher for type_base types.
struct hash;
/// A hasher for types. It gets the dynamic type of the current
/// instance of type and hashes it accordingly. Note that the hashing
/// function of this hasher must be updated each time a new kind of
/// type is added to the IR.
struct dynamic_hash;
/// A hasher for shared_ptr<type_base> that will hash it based on the
/// runtime type of the type pointed to.
struct shared_ptr_hash;
type_base(const environment* e, size_t s, size_t a);
friend type_base_sptr canonicalize(type_base_sptr);
friend type_base_sptr re_canonicalize(type_base_sptr);
type_base_sptr
get_canonical_type() const;
type_base*
get_naked_canonical_type() const;
const interned_string&
get_cached_pretty_representation(bool internal = false) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator!=(const type_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~type_base();
virtual void
set_size_in_bits(size_t);
virtual size_t
get_size_in_bits() const;
virtual void
set_alignment_in_bits(size_t);
virtual size_t
get_alignment_in_bits() const;
};//end class type_base
/// Hash functor for instances of @ref type_base.
struct type_base::hash
{
size_t
operator()(const type_base& t) const;
size_t
operator()(const type_base* t) const;
size_t
operator()(const type_base_sptr t) const;
}; // end struct type_base::hash
/// A predicate for deep equality of instances of
/// type_base*
struct type_ptr_equal
{
bool
operator()(const type_base* l, const type_base* r) const
{
if (!!l != !!r)
return false;
if (l == r)
return true;
if (l)
return *l == *r;
return true;
}
};
/// A predicate for deep equality of instances of
/// shared_ptr<type_base>
struct type_shared_ptr_equal
{
bool
operator()(const type_base_sptr l, const type_base_sptr r) const
{
if (!!l != !!r)
return false;
if (l.get() == r.get())
return true;
if (l)
return *l == *r;
return true;
}
};
bool
equals(const type_decl&, const type_decl&, change_kind*);
/// A basic type declaration that introduces no scope.
class type_decl : public virtual decl_base, public virtual type_base
{
// Forbidden.
type_decl();
public:
/// Facility to hash instance of type_decl
struct hash;
type_decl(const environment* env,
const string& name,
size_t size_in_bits,
size_t alignment_in_bits,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_decl&) const;
bool operator!=(const type_decl&)const;
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~type_decl();
};// end class type_decl.
bool
equals(const scope_type_decl&, const scope_type_decl&, change_kind*);
bool
operator==(const type_decl_sptr&, const type_decl_sptr&);
bool
operator!=(const type_decl_sptr&, const type_decl_sptr&);
/// A type that introduces a scope.
class scope_type_decl : public scope_decl, public virtual type_base
{
scope_type_decl();
public:
/// Hasher for instances of scope_type_decl
struct hash;
scope_type_decl(const environment* env, const string& name,
size_t size_in_bits, size_t alignment_in_bits,
const location& locus, visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~scope_type_decl();
};
/// The abstraction of a namespace declaration
class namespace_decl : public scope_decl
{
public:
namespace_decl(const environment* env, const string& name,
const location& locus, visibility vis = VISIBILITY_DEFAULT);
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~namespace_decl();
bool is_empty_or_has_empty_sub_namespaces() const;
};// end class namespace_decl
bool
equals(const qualified_type_def&, const qualified_type_def&, change_kind*);
/// The abstraction of a qualified type.
class qualified_type_def : public virtual type_base, public virtual decl_base
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden.
qualified_type_def();
protected:
string build_name(bool, bool internal = false) const;
public:
/// A Hasher for instances of qualified_type_def
struct hash;
/// Bit field values representing the cv qualifiers of the
/// underlying type.
enum CV
{
CV_NONE = 0,
CV_CONST = 1,
CV_VOLATILE = 1 << 1,
CV_RESTRICT = 1 << 2
};
qualified_type_def(type_base_sptr type, CV quals, const location& locus);
virtual size_t
get_size_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const qualified_type_def&) const;
CV
get_cv_quals() const;
void
set_cv_quals(CV cv_quals);
string
get_cv_quals_string_prefix() const;
type_base_sptr
get_underlying_type() const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~qualified_type_def();
}; // end class qualified_type_def.
bool
operator==(const qualified_type_def_sptr&, const qualified_type_def_sptr&);
bool
operator!=(const qualified_type_def_sptr&, const qualified_type_def_sptr&);
qualified_type_def::CV
operator|(qualified_type_def::CV, qualified_type_def::CV);
qualified_type_def::CV&
operator|=(qualified_type_def::CV&, qualified_type_def::CV);
qualified_type_def::CV
operator&(qualified_type_def::CV, qualified_type_def::CV);
qualified_type_def::CV
operator~(qualified_type_def::CV);
std::ostream&
operator<<(std::ostream&, qualified_type_def::CV);
string
get_string_representation_of_cv_quals(const qualified_type_def::CV);
interned_string
get_name_of_qualified_type(const type_base_sptr& underlying_type,
qualified_type_def::CV quals,
bool qualified = true, bool internal = false);
qualified_type_def_sptr
lookup_qualified_type(const type_base_sptr&,
qualified_type_def::CV,
const translation_unit&);
bool
equals(const pointer_type_def&, const pointer_type_def&, change_kind*);
/// The abstraction of a pointer type.
class pointer_type_def : public virtual type_base, public virtual decl_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden.
pointer_type_def();
public:
/// A hasher for instances of pointer_type_def
struct hash;
pointer_type_def(const type_base_sptr& pointed_to_type, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const pointer_type_def&) const;
const type_base_sptr
get_pointed_to_type() const;
type_base*
get_naked_pointed_to_type() const;
virtual void
get_qualified_name(interned_string&, bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~pointer_type_def();
}; // end class pointer_type_def
bool
operator==(const pointer_type_def_sptr&, const pointer_type_def_sptr&);
bool
operator!=(const pointer_type_def_sptr&, const pointer_type_def_sptr&);
bool
equals(const reference_type_def&, const reference_type_def&, change_kind*);
/// Abstracts a reference type.
class reference_type_def : public virtual type_base, public virtual decl_base
{
type_base_wptr pointed_to_type_;
bool is_lvalue_;
// Forbidden.
reference_type_def();
public:
/// Hasher for intances of reference_type_def.
struct hash;
reference_type_def(const type_base_sptr pointed_to_type,
bool lvalue, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const reference_type_def&) const;
type_base_sptr
get_pointed_to_type() const;
bool
is_lvalue() const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~reference_type_def();
}; // end class reference_type_def
bool
operator==(const reference_type_def_sptr&, const reference_type_def_sptr&);
bool
operator!=(const reference_type_def_sptr&, const reference_type_def_sptr&);
bool
equals(const array_type_def&, const array_type_def&, change_kind*);
/// The abstraction of an array type.
class array_type_def : public virtual type_base, public virtual decl_base
{
private:
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden.
array_type_def();
public:
/// Hasher for intances of array_type_def.
struct hash;
class subrange_type;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::subrange
typedef shared_ptr<subrange_type> subrange_sptr;
/// Convenience typedef for a vector of @ref subrange_sptr
typedef std::vector<subrange_sptr> subranges_type;
/// Abstraction for an array range type, like in Ada, or just for an
/// array dimension like in C or C++.
class subrange_type : public virtual type_base, public virtual decl_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden.
subrange_type();
public:
/// This class is to hold the value of the bound of a subrange.
/// The value can be either signed or unsigned, at least when it
/// comes from DWARF. The class keeps the sign information, but
/// allows users to access the value as signed or unsigned as they
/// see fit.
class bound_value
{
public:
enum signedness
{
UNSIGNED_SIGNEDNESS,
SIGNED_SIGNEDNESS
};
private:
signedness s_;
public:
union
{
uint64_t unsigned_;
int64_t signed_;
} v_;
bound_value();
bound_value(uint64_t);
bound_value(int64_t);
enum signedness get_signedness() const;
void set_signedness(enum signedness s);
int64_t get_signed_value() const;
uint64_t get_unsigned_value();
void set_unsigned(uint64_t v);
void set_signed(int64_t v);
}; //end class bound_value
/// Hasher for an instance of array::subrange
struct hash;
subrange_type(const environment* env,
const string& name,
bound_value lower_bound,
bound_value upper_bound,
type_base_sptr& underlying_type,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
subrange_type(const environment* env,
const string& name,
bound_value lower_bound,
bound_value upper_bound,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
subrange_type(const environment* env,
const string& name,
bound_value upper_bound,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
type_base_sptr
get_underlying_type() const;
void
set_underlying_type(const type_base_sptr &);
int64_t
get_upper_bound() const;
int64_t
get_lower_bound() const;
void
set_upper_bound(int64_t ub);
void
set_lower_bound(int64_t lb);
uint64_t
get_length() const;
bool
is_infinite() const;
void
is_infinite(bool);
translation_unit::language
get_language() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const subrange_type& o) const;
bool
operator!=(const subrange_type& o) const;
string
as_string() const;
static string
vector_as_string(const vector<subrange_sptr>&);
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
traverse(ir_node_visitor&);
}; // end class subrange_type
array_type_def(const type_base_sptr type,
const std::vector<subrange_sptr>& subs,
const location& locus);
translation_unit::language
get_language() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
const type_base_sptr
get_element_type() const;
void
set_element_type(const type_base_sptr& element_type);
virtual void
append_subrange(subrange_sptr sub);
virtual void
append_subranges(const std::vector<subrange_sptr>& subs);
virtual int
get_dimension_count() const;
virtual bool
is_infinite() const;
virtual string
get_pretty_representation(bool internal = false) const;
virtual string
get_subrange_representation() const;
virtual bool
traverse(ir_node_visitor& v);
const location&
get_location() const;
const std::vector<subrange_sptr>&
get_subranges() const;
virtual ~array_type_def();
}; // end class array_type_def
array_type_def::subrange_type*
is_subrange_type(const type_or_decl_base *type);
array_type_def::subrange_sptr
is_subrange_type(const type_or_decl_base_sptr &type);
bool
equals(const enum_type_decl&, const enum_type_decl&, change_kind*);
/// Abstracts a declaration for an enum type.
class enum_type_decl : public virtual type_base, public virtual decl_base
{
public:
/// A hasher for an enum_type_decl.
struct hash;
/// Enumerator Datum.
class enumerator;
/// Convenience typedef for a list of @ref enumerator.
typedef std::vector<enumerator> enumerators;
private:
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
enum_type_decl();
public:
/// Constructor of an enum type declaration.
///
/// @param name the name of the enum
///
/// @param locus the locus at which the enum appears in the source
/// code.
///
/// @param underlying_type the underlying type of the enum
///
/// @param enms a list of enumerators for this enum.
///
/// @param mangled_name the mangled name of the enum type.
///
/// @param vis the visibility of instances of this type.
enum_type_decl(const string& name,
const location& locus,
type_base_sptr underlying_type,
enumerators& enms,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
type_base_sptr
get_underlying_type() const;
const enumerators&
get_enumerators() const;
enumerators&
get_enumerators();
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~enum_type_decl();
friend bool
enum_has_non_name_change(const enum_type_decl& l,
const enum_type_decl& r,
change_kind* k);
}; // end class enum_type_decl
bool
operator==(const enum_type_decl_sptr& l, const enum_type_decl_sptr& r);
bool
operator!=(const enum_type_decl_sptr& l, const enum_type_decl_sptr& r);
bool
enum_has_non_name_change(const enum_type_decl& l,
const enum_type_decl& r,
change_kind* k);
/// The abstraction of an enumerator
class enum_type_decl::enumerator
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
public:
enumerator();
enumerator(const environment* env, const string& name, int64_t value);
enumerator(const enumerator&);
enumerator&
operator=(const enumerator&);
bool
operator==(const enumerator& other) const;
bool
operator!=(const enumerator& other) const;
const environment*
get_environment() const;
const interned_string&
get_name() const;
const interned_string&
get_qualified_name(bool internal = false) const;
void
set_name(const string& n);
int64_t
get_value() const;
void
set_value(int64_t v);
enum_type_decl*
get_enum_type() const;
void
set_enum_type(enum_type_decl*);
}; // end class enum_type_def::enumerator
bool
equals(const typedef_decl&, const typedef_decl&, change_kind*);
/// The abstraction of a typedef declaration.
class typedef_decl : public virtual type_base, public virtual decl_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
typedef_decl();
public:
/// Hasher for the typedef_decl type.
struct hash;
typedef_decl(const string& name,
const type_base_sptr underlying_type,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
virtual size_t
get_size_in_bits() const;
virtual size_t
get_alignment_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual string
get_pretty_representation(bool internal = false) const;
type_base_sptr
get_underlying_type() const;
virtual bool
traverse(ir_node_visitor&);
virtual ~typedef_decl();
};// end class typedef_decl
/// The abstraction for a data member context relationship. This
/// relates a data member to its parent class.
///
/// The relationship carries properties like the offset of the data
/// member, if applicable.
class dm_context_rel : public context_rel
{
protected:
bool is_laid_out_;
size_t offset_in_bits_;
public:
dm_context_rel()
: context_rel(),
is_laid_out_(!is_static_),
offset_in_bits_(0)
{}
dm_context_rel(scope_decl* s,
bool is_laid_out,
size_t offset_in_bits,
access_specifier a,
bool is_static)
: context_rel(s, a, is_static),
is_laid_out_(is_laid_out),
offset_in_bits_(offset_in_bits)
{}
dm_context_rel(scope_decl* s)
: context_rel(s),
is_laid_out_(!is_static_),
offset_in_bits_(0)
{}
bool
get_is_laid_out() const
{return is_laid_out_;}
void
set_is_laid_out(bool f)
{is_laid_out_ = f;}
size_t
get_offset_in_bits() const
{return offset_in_bits_;}
void
set_offset_in_bits(size_t o)
{offset_in_bits_ = o;}
bool
operator==(const dm_context_rel& o) const
{
if (!context_rel::operator==(o))
return false;
return (is_laid_out_ == o.is_laid_out_
&& offset_in_bits_ == o.offset_in_bits_);
}
bool
operator!=(const dm_context_rel& o) const
{return !operator==(o);}
virtual ~dm_context_rel();
};// end class class_decl::dm_context_rel
bool
equals(const var_decl&, const var_decl&, change_kind*);
bool
equals_modulo_cv_qualifier(const array_type_def*, const array_type_def*);
/// Abstracts a variable declaration.
class var_decl : public virtual decl_base
{
struct priv;
shared_ptr<priv> priv_;
// Forbidden
var_decl();
virtual void
set_scope(scope_decl*);
public:
/// Hasher for a var_decl type.
struct hash;
/// Equality functor to compare pointers to variable_decl.
struct ptr_equal;
var_decl(const string& name,
type_base_sptr type,
const location& locus,
const string& mangled_name,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
virtual bool
operator==(const decl_base&) const;
const type_base_sptr
get_type() const;
const type_base*
get_naked_type() const;
binding
get_binding() const;
void
set_binding(binding b);
void
set_symbol(const elf_symbol_sptr& sym);
const elf_symbol_sptr&
get_symbol() const;
var_decl_sptr
clone() const;
interned_string
get_id() const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual size_t
get_hash() const;
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~var_decl();
friend void
set_data_member_offset(var_decl_sptr m, uint64_t o);
friend uint64_t
get_data_member_offset(const var_decl_sptr m);
friend uint64_t
get_data_member_offset(const var_decl& m);
friend void
set_data_member_is_laid_out(var_decl_sptr m, bool l);
friend bool
get_data_member_is_laid_out(const var_decl& m);
friend bool
get_data_member_is_laid_out(const var_decl_sptr m);
}; // end class var_decl
bool
equals(const function_decl&, const function_decl&, change_kind*);
/// Abstraction for a function declaration.
class function_decl : public virtual decl_base
{
struct priv;
// This priv pointer is not handled by a shared_ptr because
// accessing the data members of the priv struct for this
// function_decl shows up on performance profiles when dealing with
// big binaries with a lot of types; dereferencing the shared_ptr
// involves locking of some sort and that is slower than just
// dereferencing a pointer likere here. There are other types for
// which the priv pointer is managed using shared_ptr just fine,
// because those didn't show up during our performance profiling.
priv* priv_;
public:
/// Hasher for function_decl
struct hash;
/// Equality functor to compare pointers to function_decl
struct ptr_equal;
/// Abstraction for the parameter of a function.
class parameter;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::parameter
typedef shared_ptr<parameter> parameter_sptr;
/// Convenience typedef for a vector of @ref parameter_sptr
typedef std::vector<parameter_sptr> parameters;
function_decl(const string& name,
function_type_sptr function_type,
bool declared_inline,
const location& locus,
const string& mangled_name,
visibility vis,
binding bind);
function_decl(const string& name,
type_base_sptr fn_type,
bool declared_inline,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
virtual string
get_pretty_representation(bool internal = false) const;
string
get_pretty_representation_of_declarator (bool internal = false) const;
const std::vector<parameter_sptr >&
get_parameters() const;
void
append_parameter(parameter_sptr parm);
void
append_parameters(std::vector<parameter_sptr >& parms);
parameters::const_iterator
get_first_non_implicit_parm() const;
const function_type_sptr
get_type() const;
const function_type*
get_naked_type() const;
const type_base_sptr
get_return_type() const;
void
set_type(const function_type_sptr& fn_type);
void
set_symbol(const elf_symbol_sptr& sym);
const elf_symbol_sptr&
get_symbol() const;
bool
is_declared_inline() const;
binding
get_binding() const;
function_decl_sptr
clone() const;
virtual bool
operator==(const decl_base& o) const;
/// Return true iff the function takes a variable number of
/// parameters.
///
/// @return true if the function taks a variable number
/// of parameters.
bool
is_variadic() const;
virtual size_t
get_hash() const;
interned_string
get_id() const;
virtual bool
traverse(ir_node_visitor&);
virtual ~function_decl();
}; // end class function_decl
bool
operator==(const function_decl_sptr& l, const function_decl_sptr& r);
bool
operator!=(const function_decl_sptr& l, const function_decl_sptr& r);
bool
function_decls_alias(const function_decl& f1, const function_decl& f2);
bool
equals(const function_decl::parameter&,
const function_decl::parameter&,
change_kind*);
/// A comparison functor to compare pointer to instances of @ref
/// type_or_decl_base.
struct type_or_decl_base_comp
{
/// Comparison operator for ABI artifacts.
///
/// @param f the first ABI artifact to consider for the comparison.
///
/// @param s the second ABI artifact to consider for the comparison.
///
/// @return true iff @p f is lexicographically less than than @p s.
bool
operator()(const type_or_decl_base *f,
const type_or_decl_base *s)
{
function_decl *f_fn = is_function_decl(f), *s_fn = is_function_decl(s);
if (f_fn && s_fn)
return function_decl_is_less_than(*f_fn, *s_fn);
var_decl *f_var = is_var_decl(f), *s_var = is_var_decl(s);
if (f_var && s_var)
return get_name(f_var) < get_name(s_var);
string l_repr = get_pretty_representation(f),
r_repr = get_pretty_representation(s);
return l_repr < r_repr;
}
/// Comparison operator for ABI artifacts.
///
/// @param f the first ABI artifact to consider for the comparison.
///
/// @param s the second ABI artifact to consider for the comparison.
///
/// @return true iff @p f is lexicographically less than than @p s.
bool
operator()(const type_or_decl_base_sptr& f,
const type_or_decl_base_sptr& s)
{return operator()(f.get(), s.get());}
}; // end struct type_or_decl_base_comp
/// Abstraction of a function parameter.
class function_decl::parameter : public decl_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
public:
/// Hasher for an instance of function::parameter
struct hash;
parameter(const type_base_sptr type,
unsigned index,
const string& name,
const location& loc,
bool variadic_marker = false);
parameter(const type_base_sptr type,
unsigned index,
const string& name,
const location& loc,
bool variadic_marker,
bool is_artificial);
parameter(const type_base_sptr type,
const string& name,
const location& loc,
bool variadic_marker = false,
bool is_artificial = false);
parameter(const type_base_sptr type,
unsigned index = 0,
bool variadic_marker = false);
const type_base_sptr
get_type()const;
interned_string
get_type_name() const;
const string
get_type_pretty_representation() const;
interned_string
get_name_id() const;
unsigned
get_index() const;
void
set_index(unsigned i);
bool
get_artificial() const;
void
set_artificial(bool f);
bool
get_variadic_marker() const;
bool
operator==(const parameter& o) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual size_t
get_hash() const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual string
get_pretty_representation(bool internal = false) const;
}; // end class function_decl::parameter
bool
operator==(const function_decl::parameter_sptr&,
const function_decl::parameter_sptr&);
/// A hashing functor for a function_decl::parameter.
struct function_decl::parameter::hash
{
size_t
operator()(const function_decl::parameter&) const;
size_t
operator()(const function_decl::parameter*) const;
size_t
operator()(const function_decl::parameter_sptr) const;
}; // end struct function_decl::parameter::hash
function_decl::parameter*
is_function_parameter(const type_or_decl_base*);
function_decl::parameter_sptr
is_function_parameter(const type_or_decl_base_sptr tod);
bool
equals(const function_type&, const function_type&, change_kind*);
/// Abstraction of a function type.
class function_type : public virtual type_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
public:
/// Hasher for an instance of function_type
struct hash;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::parameter
typedef shared_ptr<function_decl::parameter> parameter_sptr;
/// Convenience typedef for a vector of @ref parameter_sptr
typedef std::vector<parameter_sptr> parameters;
priv_sptr priv_;
private:
function_type();
public:
function_type(type_base_sptr return_type,
const parameters& parms,
size_t size_in_bits,
size_t alignment_in_bits);
function_type(type_base_sptr return_type,
size_t size_in_bits,
size_t alignment_in_bits);
function_type(const environment* env,
size_t size_in_bits,
size_t alignment_in_bits);
type_base_sptr
get_return_type() const;
void
set_return_type(type_base_sptr t);
const parameters&
get_parameters() const;
const parameter_sptr
get_parm_at_index_from_first_non_implicit_parm(size_t) const;
void
set_parameters(const parameters &p);
void
append_parameter(parameter_sptr parm);
bool
is_variadic() const;
parameters::const_iterator
get_first_non_implicit_parm() const;
const interned_string&
get_cached_name(bool internal = false) const;
virtual bool
operator==(const type_base&) const;
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~function_type();
friend bool
equals(const function_type&, const function_type&, change_kind*);
};//end class function_type
/// The hashing functor for @ref function_type.
struct function_type::hash
{
size_t
operator()(const function_type& t) const;
size_t
operator()(const function_type* t) const;
size_t
operator()(const function_type_sptr t) const;
};// end struct function_type::hash
/// Abstracts the type of a class member function.
class method_type : public function_type
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
method_type();
public:
/// Hasher for intances of method_type
struct hash;
method_type(type_base_sptr return_type,
class_or_union_sptr class_type,
const std::vector<function_decl::parameter_sptr>& parms,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(type_base_sptr return_type,
type_base_sptr class_type,
const std::vector<function_decl::parameter_sptr>& parms,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(class_or_union_sptr class_type,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(const environment* env,
size_t size_in_bits,
size_t alignment_in_bits);
class_or_union_sptr
get_class_type() const;
void
set_class_type(const class_or_union_sptr& t);
void set_is_const(bool);
bool get_is_const() const;
virtual ~method_type();
virtual string
get_pretty_representation(bool internal = false) const;
friend interned_string
get_method_type_name(const method_type& fn_type, bool internal);
};// end class method_type.
/// The base class of templates.
class template_decl : public virtual decl_base
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
template_decl();
public:
/// Hasher.
struct hash;
template_decl(const environment* env,
const string& name,
const location& locus,
visibility vis = VISIBILITY_DEFAULT);
void
add_template_parameter(const template_parameter_sptr p);
const std::list<template_parameter_sptr>&
get_template_parameters() const;
virtual bool
operator==(const template_decl& o) const;
virtual ~template_decl();
};//end class template_decl
/// Base class for a template parameter. Client code should use the
/// more specialized type_template_parameter,
/// non_type_template_parameter and template_template_parameter below.
class template_parameter
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
template_parameter();
public:
/// Hashers.
struct hash;
struct dynamic_hash;
struct shared_ptr_hash;
template_parameter(unsigned index,
template_decl_sptr enclosing_tdecl);
virtual bool
operator==(const template_parameter&) const;
bool
operator!=(const template_parameter&) const;
unsigned
get_index() const;
const template_decl_sptr
get_enclosing_template_decl() const;
bool
get_hashing_has_started() const;
void
set_hashing_has_started(bool f) const;
virtual ~template_parameter();
};//end class template_parameter
struct template_decl::hash
{
size_t
operator()(const template_decl& t) const;
};// end struct template_decl::hash
/// Abstracts a type template parameter.
class type_tparameter : public template_parameter, public virtual type_decl
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
type_tparameter();
public:
/// Hasher.
struct hash;
type_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
const location& locus);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const template_parameter&) const;
virtual bool
operator==(const type_tparameter&) const;
virtual ~type_tparameter();
};// end class type_tparameter.
/// Abstracts non type template parameters.
class non_type_tparameter : public template_parameter, public virtual decl_base
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
type_base_wptr type_;
// Forbidden
non_type_tparameter();
public:
/// Hasher.
struct hash;
non_type_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
type_base_sptr type,
const location& locus);
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_parameter&) const;
const type_base_sptr
get_type() const;
virtual ~non_type_tparameter();
};// end class non_type_tparameter
/// Hasher for the @ref non_type_tparameter type.
struct non_type_tparameter::hash
{
size_t
operator()(const non_type_tparameter& t) const;
size_t
operator()(const non_type_tparameter* t) const;
};
class template_tparameter;
/// Abstracts a template template parameter.
class template_tparameter : public type_tparameter, public template_decl
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
template_tparameter();
public:
/// A hasher for instances of template_tparameter
struct hash;
template_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
const location& locus);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const template_parameter&) const;
virtual bool
operator==(const template_decl&) const;
virtual ~template_tparameter();
};
/// This abstracts a composition of types based on template type
/// parameters. The result of the composition is a type that can be
/// referred to by a template non-type parameter. Instances of this
/// type can appear at the same level as template parameters, in the
/// scope of a template_decl.
class type_composition : public template_parameter, public virtual decl_base
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
type_composition();
public:
struct hash;
type_composition(unsigned index,
template_decl_sptr tdecl,
type_base_sptr composed_type);
const type_base_sptr
get_composed_type() const;
void
set_composed_type(type_base_sptr t);
virtual size_t
get_hash() const;
virtual ~type_composition();
};
/// Hasher for the @ref type_composition type.
struct type_composition::hash
{
size_t
operator()(const type_composition& t) const;
size_t
operator()(const type_composition* t) const;
}; //struct type_composition::hash
/// Abstract a function template declaration.
class function_tdecl : public template_decl, public scope_decl
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
function_tdecl();
public:
/// Hash functor for function templates.
struct hash;
struct shared_ptr_hash;
function_tdecl(const environment* env,
const location& locus,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
function_tdecl(function_decl_sptr pattern,
const location& locus,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_decl&) const;
virtual bool
operator==(const function_tdecl&) const;
void
set_pattern(shared_ptr<function_decl> p);
shared_ptr<function_decl>
get_pattern() const;
binding
get_binding() const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~function_tdecl();
}; // end class function_tdecl.
/// Abstract a class template.
class class_tdecl : public template_decl, public scope_decl
{
class priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
// Forbidden
class_tdecl();
public:
/// Hashers.
struct hash;
struct shared_ptr_hash;
class_tdecl(const environment* env, const location& locus,
visibility vis = VISIBILITY_DEFAULT);
class_tdecl(class_decl_sptr pattern,
const location& locus,
visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_decl&) const;
virtual bool
operator==(const class_tdecl&) const;
void
set_pattern(class_decl_sptr p);
shared_ptr<class_decl>
get_pattern() const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_tdecl();
};// end class class_tdecl
/// The base class for member types, data members and member
/// functions. Its purpose is mainly to carry the access specifier
/// (and possibly other properties that might be shared by all class
/// members) for the member.
class member_base
{
protected:
enum access_specifier access_;
bool is_static_;
private:
// Forbidden
member_base();
public:
/// Hasher.
struct hash;
member_base(access_specifier a, bool is_static = false)
: access_(a), is_static_(is_static)
{}
/// Getter for the access specifier of this member.
///
/// @return the access specifier for this member.
access_specifier
get_access_specifier() const
{return access_;}
/// Setter for the access specifier of this member.
///
/// @param a the new access specifier.
void
set_access_specifier(access_specifier a)
{access_ = a;}
/// @return true if the member is static, false otherwise.
bool
get_is_static() const
{return is_static_;}
/// Set a flag saying if the parameter is static or not.
///
/// @param f set to true if the member is static, false otherwise.
void
set_is_static(bool f)
{is_static_ = f;}
virtual bool
operator==(const member_base& o) const;
};// end class member_base
/// Abstraction of the declaration of a method.
class method_decl : public function_decl
{
method_decl();
virtual void
set_scope(scope_decl*);
public:
method_decl(const string& name, method_type_sptr type,
bool declared_inline, const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
method_decl(const string& name,
function_type_sptr type,
bool declared_inline,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
method_decl(const string& name, type_base_sptr type,
bool declared_inline, const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
virtual void
set_linkage_name(const string&);
/// @return the type of the current instance of the
/// method_decl.
const method_type_sptr
get_type() const;
void
set_type(const method_type_sptr fn_type)
{function_decl::set_type(fn_type);}
friend bool
get_member_function_is_ctor(const function_decl&);
friend void
set_member_function_is_ctor(function_decl&, bool);
friend void
set_member_function_is_ctor(const function_decl_sptr&, bool);
friend bool
get_member_function_is_dtor(const function_decl&);
friend void
set_member_function_is_dtor(function_decl&, bool);
friend void
set_member_function_is_dtor(const function_decl_sptr&, bool);
friend bool
get_member_function_is_static(const function_decl&);
friend void
set_member_function_is_static(const function_decl&, bool);
friend bool
get_member_function_is_const(const function_decl&);
friend void
set_member_function_is_const(function_decl&, bool);
friend void
set_member_function_is_const(const function_decl_sptr&, bool);
friend bool
member_function_has_vtable_offset(const function_decl&);
friend ssize_t
get_member_function_vtable_offset(const function_decl&);
friend void
set_member_function_vtable_offset(function_decl&, ssize_t);
friend void
set_member_function_vtable_offset(const function_decl_sptr&, ssize_t);
friend bool
get_member_function_is_virtual(const function_decl&);
friend void
set_member_function_is_virtual(function_decl&, bool);
virtual ~method_decl();
};// end class method_decl
bool
operator==(const method_decl_sptr& l, const method_decl_sptr& r);
bool
operator!=(const method_decl_sptr& l, const method_decl_sptr& r);
/// The base type of @ref class_decl and @ref union_decl
class class_or_union : public scope_type_decl
{
public:
struct priv;
priv *priv_;
private:
// Forbidden
class_or_union();
protected:
virtual decl_base_sptr
add_member_decl(const decl_base_sptr&);
virtual decl_base_sptr
insert_member_decl(decl_base_sptr member, declarations::iterator before);
virtual void
remove_member_decl(decl_base_sptr);
public:
/// Hasher.
struct hash;
/// Convenience typedef
/// @{
typedef vector<type_base_sptr> member_types;
typedef vector<var_decl_sptr> data_members;
typedef vector<method_decl_sptr> member_functions;
typedef unordered_map<ssize_t, member_functions> virtual_mem_fn_map_type;
typedef unordered_map<string, method_decl*> string_mem_fn_ptr_map_type;
/// @}
class_or_union(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
const location& locus, visibility vis,
member_types& mbrs, data_members& data_mbrs,
member_functions& member_fns);
class_or_union(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
const location& locus, visibility vis);
class_or_union(const environment* env, const string& name,
bool is_declaration_only = true);
virtual void
set_size_in_bits(size_t);
virtual size_t
get_size_in_bits() const;
virtual size_t
get_alignment_in_bits() const;
virtual void
set_alignment_in_bits(size_t);
typedef_decl_sptr
get_naming_typedef() const;
void
set_naming_typedef(const typedef_decl_sptr&);
bool
get_is_declaration_only() const;
void
set_is_declaration_only(bool f);
void
set_definition_of_declaration(class_or_union_sptr);
const class_or_union_sptr
get_definition_of_declaration() const;
const class_or_union*
get_naked_definition_of_declaration() const;
decl_base_sptr
get_earlier_declaration() const;
void
set_earlier_declaration(decl_base_sptr declaration);
void
insert_member_type(type_base_sptr t,
declarations::iterator before);
void
add_member_type(type_base_sptr t);
type_base_sptr
add_member_type(type_base_sptr t, access_specifier a);
void
remove_member_type(type_base_sptr t);
const member_types&
get_member_types() const;
virtual size_t
get_num_anonymous_member_classes() const;
virtual size_t
get_num_anonymous_member_unions() const;
virtual size_t
get_num_anonymous_member_enums() const;
type_base_sptr
find_member_type(const string& name) const;
void
add_data_member(var_decl_sptr v, access_specifier a,
bool is_laid_out, bool is_static,
size_t offset_in_bits);
const data_members&
get_data_members() const;
const var_decl_sptr
find_data_member(const string&) const;
const data_members&
get_non_static_data_members() const;
void
add_member_function(method_decl_sptr f,
access_specifier a,
bool is_static, bool is_ctor,
bool is_dtor, bool is_const);
void
add_member_function(method_decl_sptr f,
access_specifier a,
bool is_virtual,
size_t vtable_offset,
bool is_static, bool is_ctor,
bool is_dtor, bool is_const);
const member_functions&
get_member_functions() const;
const method_decl*
find_member_function(const string& mangled_name) const;
method_decl*
find_member_function(const string& mangled_name);
const method_decl*
find_member_function_from_signature(const string& s) const;
method_decl*
find_member_function_from_signature(const string& s);
void
add_member_function_template(member_function_template_sptr);
const member_function_templates&
get_member_function_templates() const;
void
add_member_class_template(member_class_template_sptr m);
const member_class_templates&
get_member_class_templates() const;
bool
has_no_member() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const class_or_union&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_or_union();
friend method_decl_sptr
copy_member_function(class_or_union_sptr& t,
const method_decl*m);
friend method_decl_sptr
copy_member_function(class_or_union_sptr& t,
const method_decl_sptr& m);
friend void
fixup_virtual_member_function(method_decl_sptr method);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
equals(const class_or_union&, const class_or_union&, change_kind*);
friend bool
equals(const class_decl&, const class_decl&, change_kind*);
friend class method_decl;
friend class class_decl;
}; // end class class_or_union
method_decl_sptr
copy_member_function(const class_or_union_sptr& clazz,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const class_or_union_sptr& clazz,
const method_decl* f);
/// Hasher for the @ref class_or_union type
struct class_or_union::hash
{
size_t
operator()(const class_or_union& t) const;
size_t
operator()(const class_or_union* t) const;
}; // end struct class_decl::hash
/// Abstracts a class declaration.
class class_decl : public class_or_union
{
// Forbidden
class_decl();
protected:
virtual decl_base_sptr
insert_member_decl(decl_base_sptr member, declarations::iterator before);
public:
/// Hasher.
struct hash;
/// Forward declarations.
class base_spec;
/// Convenience typedef
/// @{
typedef shared_ptr<base_spec> base_spec_sptr;
typedef vector<base_spec_sptr> base_specs;
/// @}
protected:
virtual void
on_canonical_type_set();
private:
struct priv;
// This priv it's not handled by a shared_ptr because accessing the
// data members of the priv struct for this class_decl shows up on
// performance profiles when dealing with big binaries with a lot of
// types; dereferencing the shared_ptr involves locking of some sort
// and that is slower than just dereferencing a pointer likere here.
// There are other types for which the priv pointer is managed using
// shared_ptr just fine, because those didn't show up during our
// performance profiling.
priv * priv_;
public:
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus,
visibility vis, base_specs& bases,
member_types& mbrs, data_members& data_mbrs,
member_functions& member_fns);
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus, visibility vis);
class_decl(const environment* env, const string& name, bool is_struct,
bool is_declaration_only = true);
const class_decl_sptr
get_definition_of_declaration() const;
const class_decl*
get_naked_definition_of_declaration() const;
virtual string
get_pretty_representation(bool internal = false) const;
void
is_struct(bool f);
bool
is_struct() const;
void
add_base_specifier(shared_ptr<base_spec> b);
const base_specs&
get_base_specifiers() const;
class_decl_sptr
find_base_class(const string&) const;
const member_functions&
get_virtual_mem_fns() const;
const virtual_mem_fn_map_type&
get_virtual_mem_fns_map() const;
void
sort_virtual_mem_fns();
bool
has_no_base_nor_member() const;
bool
has_virtual_member_functions() const;
bool
has_virtual_bases() const;
bool
has_vtable() const;
ssize_t
get_biggest_vtable_offset() const;
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const class_decl&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_decl();
friend void
fixup_virtual_member_function(method_decl_sptr method);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
equals(const class_decl&, const class_decl&, change_kind*);
friend class method_decl;
friend class class_or_union;
};// end class class_decl
bool
equals(const class_decl&, const class_decl&, change_kind*);
method_decl_sptr
copy_member_function(const class_decl_sptr& clazz,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const class_decl_sptr& clazz,
const method_decl* f);
void
fixup_virtual_member_function(method_decl_sptr method);
/// Hasher for the @ref class_decl type
struct class_decl::hash
{
size_t
operator()(const class_decl& t) const;
size_t
operator()(const class_decl* t) const;
}; // end struct class_decl::hash
enum access_specifier
get_member_access_specifier(const decl_base&);
enum access_specifier
get_member_access_specifier(const decl_base_sptr&);
void
set_member_access_specifier(decl_base&,
access_specifier);
void
set_member_access_specifier(const decl_base_sptr&,
access_specifier);
std::ostream&
operator<<(std::ostream&, access_specifier);
bool
operator==(const class_decl_sptr& l, const class_decl_sptr& r);
bool
operator!=(const class_decl_sptr& l, const class_decl_sptr& r);
bool
equals(const class_decl::base_spec&,
const class_decl::base_spec&,
change_kind*);
/// Abstraction of a base specifier in a class declaration.
class class_decl::base_spec : public member_base,
public virtual decl_base
{
struct priv;
typedef shared_ptr<priv>priv_sptr;
priv_sptr priv_;
// Forbidden
base_spec();
public:
/// Hasher.
struct hash;
base_spec(const class_decl_sptr& base, access_specifier a,
long offset_in_bits = -1, bool is_virtual = false);
base_spec(const type_base_sptr& base, access_specifier a,
long offset_in_bits = -1, bool is_virtual = false);
class_decl_sptr
get_base_class() const;
bool
get_is_virtual() const;
long
get_offset_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const member_base&) const;
virtual size_t
get_hash() const;
virtual bool
traverse(ir_node_visitor&);
};// end class class_decl::base_spec
bool
operator==(const class_decl::base_spec_sptr& l,
const class_decl::base_spec_sptr& r);
bool
operator!=(const class_decl::base_spec_sptr& l,
const class_decl::base_spec_sptr& r);
class_decl::base_spec*
is_class_base_spec(type_or_decl_base*);
class_decl::base_spec_sptr
is_class_base_spec(type_or_decl_base_sptr);
/// Abstracts a union type declaration.
class union_decl : public class_or_union
{
// Forbid
union_decl();
public:
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis, member_types& mbrs,
data_members& data_mbrs, member_functions& member_fns);
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis);
union_decl(const environment* env, const string& name,
bool is_declaration_only = true);
virtual string
get_pretty_representation(bool internal = false) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const union_decl&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~union_decl();
}; // union_decl
bool
equals(const union_decl&, const union_decl&, change_kind*);
method_decl_sptr
copy_member_function(const union_decl_sptr& union_type,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const union_decl_sptr& union_type,
const method_decl* f);
/// Abstraction of a member function context relationship. This
/// relates a member function to its parent class.
class mem_fn_context_rel : public context_rel
{
protected:
bool is_virtual_;
ssize_t vtable_offset_in_bits_;
bool is_constructor_;
bool is_destructor_;
bool is_const_;
public:
mem_fn_context_rel()
: context_rel(),
is_virtual_(false),
vtable_offset_in_bits_(-1),
is_constructor_(false),
is_destructor_(false),
is_const_(false)
{}
mem_fn_context_rel(scope_decl* s)
: context_rel(s),
is_virtual_(false),
vtable_offset_in_bits_(-1),
is_constructor_(false),
is_destructor_(false),
is_const_(false)
{}
mem_fn_context_rel(scope_decl* s,
bool is_constructor,
bool is_destructor,
bool is_const,
bool is_virtual,
size_t vtable_offset_in_bits,
access_specifier access,
bool is_static)
: context_rel(s, access, is_static),
is_virtual_(is_virtual),
vtable_offset_in_bits_(vtable_offset_in_bits),
is_constructor_(is_constructor),
is_destructor_(is_destructor),
is_const_(is_const)
{}
bool
is_virtual() const
{return is_virtual_;}
void
is_virtual(bool is_virtual)
{is_virtual_ = is_virtual;}
/// Getter for the vtable offset property.
///
/// This is the vtable offset of the member function of this
/// relation.
///
/// @return the vtable offset property of the relation.
size_t
vtable_offset() const
{return vtable_offset_in_bits_;}
/// Setter for the vtable offset property.
///
/// This is the vtable offset of the member function of this
/// relation.
///
/// @partam s the new vtable offset.
void
vtable_offset(size_t s)
{vtable_offset_in_bits_ = s;}
/// Getter for the 'is-constructor' property.
///
/// This tells if the member function of this relation is a
/// constructor.
///
/// @return the is-constructor property of the relation.
bool
is_constructor() const
{return is_constructor_;}
/// Setter for the 'is-constructor' property.
///
/// @param f the new value of the the property. Is true if this is
/// for a constructor, false otherwise.
void
is_constructor(bool f)
{is_constructor_ = f;}
/// Getter for the 'is-destructor' property.
///
/// Tells if the member function of this relation is a destructor.
///
/// @return the is-destructor property of the relation;
bool
is_destructor() const
{return is_destructor_;}
/// Setter for the 'is-destructor' property.
///
/// @param f the new value of the property. Is true if this is for
/// a destructor, false otherwise.
void
is_destructor(bool f)
{is_destructor_ = f;}
/// Getter for the 'is-const' property.
///
/// Tells if the member function of this relation is a const member
/// function.
///
/// @return the 'is-const' property of the relation.
bool
is_const() const
{return is_const_;}
/// Setter for the 'is-const' property.
///
/// @param f the new value of the property. Is true if this is for
/// a const entity, false otherwise.
void
is_const(bool f)
{is_const_ = f;}
virtual ~mem_fn_context_rel();
}; // end class mem_fn_context_rel
method_decl*
is_method_decl(const type_or_decl_base*);
method_decl*
is_method_decl(const type_or_decl_base&);
method_decl_sptr
is_method_decl(const type_or_decl_base_sptr&);
const var_decl*
lookup_data_member(const type_base* type,
const char* dm_name);
const function_decl::parameter*
get_function_parameter(const decl_base* fun,
unsigned parm_num);
/// Abstract a member function template.
class member_function_template : public member_base, public virtual decl_base
{
bool is_constructor_;
bool is_const_;
shared_ptr<function_tdecl> fn_tmpl_;
// Forbiden
member_function_template();
public:
/// Hasher.
struct hash;
member_function_template(function_tdecl_sptr f,
access_specifier access, bool is_static,
bool is_constructor, bool is_const)
: type_or_decl_base(f->get_environment()),
decl_base(f->get_environment(), f->get_name(), location()),
member_base(access, is_static), is_constructor_(is_constructor),
is_const_(is_const), fn_tmpl_(f)
{}
bool
is_constructor() const
{return is_constructor_;}
bool
is_const() const
{return is_const_;}
operator const function_tdecl& () const
{return *fn_tmpl_;}
function_tdecl_sptr
as_function_tdecl() const
{return fn_tmpl_;}
virtual bool
operator==(const member_base& o) const;
virtual bool
traverse(ir_node_visitor&);
};// end class member_function_template
bool
operator==(const member_function_template_sptr& l,
const member_function_template_sptr& r);
bool
operator!=(const member_function_template_sptr& l,
const member_function_template_sptr& r);
/// Abstracts a member class template template
class member_class_template
: public member_base,
public virtual decl_base
{
shared_ptr<class_tdecl> class_tmpl_;
// Forbidden
member_class_template();
public:
/// Hasher.
struct hash;
member_class_template(class_tdecl_sptr c,
access_specifier access, bool is_static)
: type_or_decl_base(c->get_environment()),
decl_base(c->get_environment(), c->get_name(), location()),
member_base(access, is_static),
class_tmpl_(c)
{}
operator const class_tdecl& () const
{ return *class_tmpl_; }
class_tdecl_sptr
as_class_tdecl() const
{return class_tmpl_;}
virtual bool
operator==(const member_base& o) const;
virtual bool
operator==(const member_class_template&) const;
virtual bool
traverse(ir_node_visitor& v);
};// end class member_class_template
bool
operator==(const member_class_template_sptr& l,
const member_class_template_sptr& r);
bool
operator!=(const member_class_template_sptr& l,
const member_class_template_sptr& r);
// Forward declarations for select nested hashers.
struct type_base::shared_ptr_hash
{
size_t
operator()(const shared_ptr<type_base> t) const;
};
struct type_base::dynamic_hash
{
size_t
operator()(const type_base* t) const;
};
/// A hashing functor for instances and pointers of @ref var_decl.
struct var_decl::hash
{
size_t
operator()(const var_decl& t) const;
size_t
operator()(const var_decl* t) const;
}; //end struct var_decl::hash
/// A comparison functor for pointers to @ref var_decl.
struct var_decl::ptr_equal
{
/// Return true if the two instances of @ref var_decl are equal.
///
/// @param l the first variable to compare.
///
/// @param r the second variable to compare.
///
/// @return true if @p l equals @p r.
bool
operator()(const var_decl* l, const var_decl* r) const
{
if (l == r)
return true;
if (!!l != !!r)
return false;
return (*l == *r);
}
};// end struct var_decl::ptr_equal
/// A hashing functor fo instances and pointers of @ref function_decl.
struct function_decl::hash
{
size_t
operator()(const function_decl& t) const;
size_t
operator()(const function_decl* t) const;
};//end struct function_decl::hash
/// Equality functor for instances of @ref function_decl
struct function_decl::ptr_equal
{
/// Tests if two pointers to @ref function_decl are equal.
///
/// @param l the first pointer to @ref function_decl to consider in
/// the comparison.
///
/// @param r the second pointer to @ref function_decl to consider in
/// the comparison.
///
/// @return true if the two functions @p l and @p r are equal, false
/// otherwise.
bool
operator()(const function_decl* l, const function_decl* r) const
{
if (l == r)
return true;
if (!!l != !!r)
return false;
return (*l == *r);
}
};// function_decl::ptr_equal
/// The hashing functor for class_decl::base_spec.
struct class_decl::base_spec::hash
{
size_t
operator()(const base_spec& t) const;
};
/// The hashing functor for member_base.
struct member_base::hash
{
size_t
operator()(const member_base& m) const;
};
/// The hashing functor for member_function_template.
struct member_function_template::hash
{
size_t
operator()(const member_function_template& t) const;
};
/// The hashing functor for member_class_template
struct member_class_template::hash
{
size_t
operator()(const member_class_template& t) const;
};
struct function_tdecl::hash
{
size_t
operator()(const function_tdecl& t) const;
};
struct function_tdecl::shared_ptr_hash
{
size_t
operator()(const shared_ptr<function_tdecl> f) const;
};
struct class_tdecl::hash
{
size_t
operator()(const class_tdecl& t) const;
};
struct class_tdecl::shared_ptr_hash
{
size_t
operator()(const shared_ptr<class_tdecl> t) const;
};
/// The base class for the visitor type hierarchy used for traversing
/// a translation unit.
///
/// Client code willing to get notified for a certain kind of node
/// during the IR traversal might want to define a visitor class that
/// inherit ir_node_visitor, overload the ir_node_visitor::visit_begin()
/// or ir_node_visitor::visit_end() method of its choice, and provide
/// and implementation for it. If either
/// ir_node_visitor::visit_begin() or ir_node_visitor::visit_end()
/// return false, it means the traversal has to stop immediately after
/// the methods' return. If the methods return true, it means the
/// traversal keeps going.
///
/// That new visitor class would then be passed to e.g,
/// translation_unit::traverse or to the traverse method of any type
/// where the traversal is supposed to start from.
class ir_node_visitor : public node_visitor_base
{
struct priv;
typedef shared_ptr<priv> priv_sptr;
priv_sptr priv_;
public:
ir_node_visitor();
void allow_visiting_already_visited_type_node(bool);
bool allow_visiting_already_visited_type_node() const;
void mark_type_node_as_visited(type_base *);
void forget_visited_type_nodes();
bool type_node_has_been_visited(type_base*) const;
virtual bool visit_begin(decl_base*);
virtual bool visit_end(decl_base*);
virtual bool visit_begin(scope_decl*);
virtual bool visit_end(scope_decl*);
virtual bool visit_begin(type_base*);
virtual bool visit_end(type_base*);
virtual bool visit_begin(scope_type_decl*);
virtual bool visit_end(scope_type_decl*);
virtual bool visit_begin(type_decl*);
virtual bool visit_end(type_decl*);
virtual bool visit_begin(namespace_decl*);
virtual bool visit_end(namespace_decl*);
virtual bool visit_begin(qualified_type_def*);
virtual bool visit_end(qualified_type_def*);
virtual bool visit_begin(pointer_type_def*);
virtual bool visit_end(pointer_type_def*);
virtual bool visit_begin(reference_type_def*);
virtual bool visit_end(reference_type_def*);
virtual bool visit_begin(array_type_def*);
virtual bool visit_end(array_type_def*);
virtual bool visit_begin(array_type_def::subrange_type*);
virtual bool visit_end(array_type_def::subrange_type*);
virtual bool visit_begin(enum_type_decl*);
virtual bool visit_end(enum_type_decl*);
virtual bool visit_begin(typedef_decl*);
virtual bool visit_end(typedef_decl*);
virtual bool visit_begin(function_type*);
virtual bool visit_end(function_type*);
virtual bool visit_begin(var_decl*);
virtual bool visit_end(var_decl*);
virtual bool visit_begin(function_decl*);
virtual bool visit_end(function_decl*);
virtual bool visit_begin(function_decl::parameter*);
virtual bool visit_end(function_decl::parameter*);
virtual bool visit_begin(function_tdecl*);
virtual bool visit_end(function_tdecl*);
virtual bool visit_begin(class_tdecl*);
virtual bool visit_end(class_tdecl*);
virtual bool visit_begin(class_or_union *);
virtual bool visit_end(class_or_union *);
virtual bool visit_begin(class_decl*);
virtual bool visit_end(class_decl*);
virtual bool visit_begin(union_decl*);
virtual bool visit_end(union_decl*);
virtual bool visit_begin(class_decl::base_spec*);
virtual bool visit_end(class_decl::base_spec*);
virtual bool visit_begin(member_function_template*);
virtual bool visit_end(member_function_template*);
virtual bool visit_begin(member_class_template*);
virtual bool visit_end(member_class_template*);
}; // end struct ir_node_visitor
// Debugging facility
void
fns_to_str(vector<function_decl*>::const_iterator a_begin,
vector<function_decl*>::const_iterator a_end,
vector<function_decl*>::const_iterator b_begin,
vector<function_decl*>::const_iterator b_end,
std::ostream& o);
}// end namespace ir
} // end namespace abigail
#endif // __ABG_IR_H__