mirror of
git://sourceware.org/git/libabigail.git
synced 2025-03-06 06:37:31 +00:00
symtab_reader: add support for ppc64 ELFv1 binaries
When loading the symtab from an ppc64 binary, also keep track of the function entry addresses as a key for the symbol lookup. That accommodates the differences in DWARF pointing to the function entry address while the symbol table points to the function pointer. The implementation is mostly copied and adopted from abg-dwarf-reader's read_context to add this functionality also to the new symtab reader. * src/abg-symtab-reader.cc (symtab::lookup_symbol): fall back to lookup the address in entry_addr_symbol_map_. (symtab::load): update the function entry address map for ppc64 targets. (symtab::update_function_entry_address_symbol_map): New function implementation. * src/abg-symtab-reader.h (symtab::entry_addr_symbol_map_): New data member. (symtab::update_function_entry_address_symbol_map): New function declaration. Reviewed-by: Giuliano Procida <gprocida@google.com> Reviewed-by: Dodji Seketeli <dodji@seketeli.org> Signed-off-by: Matthias Maennich <maennich@google.com>
This commit is contained in:
parent
e87f2672d9
commit
8bfdb0f548
@ -100,9 +100,17 @@ const elf_symbol_sptr&
|
||||
symtab::lookup_symbol(GElf_Addr symbol_addr) const
|
||||
{
|
||||
static const elf_symbol_sptr empty_result;
|
||||
const auto it = addr_symbol_map_.find(symbol_addr);
|
||||
if (it != addr_symbol_map_.end())
|
||||
return it->second;
|
||||
const auto addr_it = addr_symbol_map_.find(symbol_addr);
|
||||
if (addr_it != addr_symbol_map_.end())
|
||||
return addr_it->second;
|
||||
else
|
||||
{
|
||||
// check for a potential entry address mapping instead,
|
||||
// relevant for ppc ELFv1 binaries
|
||||
const auto entry_it = entry_addr_symbol_map_.find(symbol_addr);
|
||||
if (entry_it != entry_addr_symbol_map_.end())
|
||||
return entry_it->second;
|
||||
}
|
||||
return empty_result;
|
||||
}
|
||||
|
||||
@ -227,6 +235,7 @@ symtab::load_(Elf* elf_handle,
|
||||
std::unordered_set<std::string> exported_kernel_symbols;
|
||||
|
||||
const bool is_arm32 = elf_helpers::architecture_is_arm32(elf_handle);
|
||||
const bool is_ppc64 = elf_helpers::architecture_is_ppc64(elf_handle);
|
||||
|
||||
for (size_t i = 0; i < number_syms; ++i)
|
||||
{
|
||||
@ -338,11 +347,17 @@ symtab::load_(Elf* elf_handle,
|
||||
elf_helpers::maybe_adjust_et_rel_sym_addr_to_abs_addr(elf_handle,
|
||||
sym);
|
||||
|
||||
if (symbol_sptr->is_function() && is_arm32)
|
||||
// Clear bit zero of ARM32 addresses as per "ELF for the Arm
|
||||
// Architecture" section 5.5.3.
|
||||
// https://static.docs.arm.com/ihi0044/g/aaelf32.pdf
|
||||
symbol_value &= ~1;
|
||||
if (symbol_sptr->is_function())
|
||||
{
|
||||
if (is_arm32)
|
||||
// Clear bit zero of ARM32 addresses as per "ELF for the Arm
|
||||
// Architecture" section 5.5.3.
|
||||
// https://static.docs.arm.com/ihi0044/g/aaelf32.pdf
|
||||
symbol_value &= ~1;
|
||||
else if (is_ppc64)
|
||||
update_function_entry_address_symbol_map(elf_handle, sym,
|
||||
symbol_sptr);
|
||||
}
|
||||
|
||||
const auto result =
|
||||
addr_symbol_map_.emplace(symbol_value, symbol_sptr);
|
||||
@ -413,5 +428,86 @@ symtab::load_(string_elf_symbols_map_sptr function_symbol_map,
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Update the function entry symbol map to later allow lookups of this symbol
|
||||
/// by entry address as well. This is relevant for ppc64 ELFv1 binaries.
|
||||
///
|
||||
/// For ppc64 ELFv1 binaries, we need to build a function entry point address
|
||||
/// -> function symbol map. This is in addition to the function pointer ->
|
||||
/// symbol map. This is because on ppc64 ELFv1, a function pointer is
|
||||
/// different from a function entry point address.
|
||||
///
|
||||
/// On ppc64 ELFv1, the DWARF DIE of a function references the address of the
|
||||
/// entry point of the function symbol; whereas the value of the function
|
||||
/// symbol is the function pointer. As these addresses are different, if I we
|
||||
/// want to get to the symbol of a function from its entry point address (as
|
||||
/// referenced by DWARF function DIEs) we must have the two maps I mentionned
|
||||
/// right above.
|
||||
///
|
||||
/// In other words, we need a map that associates a function entry point
|
||||
/// address with the symbol of that function, to be able to get the function
|
||||
/// symbol that corresponds to a given function DIE, on ppc64.
|
||||
///
|
||||
/// The value of the function pointer (the value of the symbol) usually refers
|
||||
/// to the offset of a table in the .opd section. But sometimes, for a symbol
|
||||
/// named "foo", the corresponding symbol named ".foo" (note the dot before
|
||||
/// foo) which value is the entry point address of the function; that entry
|
||||
/// point address refers to a region in the .text section.
|
||||
///
|
||||
/// So we are only interested in values of the symbol that are in the .opd
|
||||
/// section.
|
||||
///
|
||||
/// @param elf_handle the ELF handle to operate on
|
||||
///
|
||||
/// @param native_symbol the native Elf symbol to update the entry for
|
||||
///
|
||||
/// @param symbol_sptr the internal symbol to associte the entry address with
|
||||
void
|
||||
symtab::update_function_entry_address_symbol_map(
|
||||
Elf* elf_handle, GElf_Sym* native_symbol, const elf_symbol_sptr& symbol_sptr)
|
||||
{
|
||||
const GElf_Addr fn_desc_addr = native_symbol->st_value;
|
||||
const GElf_Addr fn_entry_point_addr =
|
||||
elf_helpers::lookup_ppc64_elf_fn_entry_point_address(elf_handle,
|
||||
fn_desc_addr);
|
||||
|
||||
const std::pair<addr_symbol_map_type::const_iterator, bool>& result =
|
||||
entry_addr_symbol_map_.emplace(fn_entry_point_addr, symbol_sptr);
|
||||
|
||||
const addr_symbol_map_type::const_iterator it = result.first;
|
||||
const bool was_inserted = result.second;
|
||||
if (!was_inserted
|
||||
&& elf_helpers::address_is_in_opd_section(elf_handle, fn_desc_addr))
|
||||
{
|
||||
// Either
|
||||
//
|
||||
// 'symbol' must have been registered as an alias for
|
||||
// it->second->get_main_symbol()
|
||||
//
|
||||
// Or
|
||||
//
|
||||
// if the name of 'symbol' is foo, then the name of it2->second is
|
||||
// ".foo". That is, foo is the name of the symbol when it refers to the
|
||||
// function descriptor in the .opd section and ".foo" is an internal name
|
||||
// for the address of the entry point of foo.
|
||||
//
|
||||
// In the latter case, we just want to keep a reference to "foo" as .foo
|
||||
// is an internal name.
|
||||
|
||||
const bool two_symbols_alias =
|
||||
it->second->get_main_symbol()->does_alias(*symbol_sptr);
|
||||
const bool symbol_is_foo_and_prev_symbol_is_dot_foo =
|
||||
(it->second->get_name() == std::string(".") + symbol_sptr->get_name());
|
||||
|
||||
ABG_ASSERT(two_symbols_alias
|
||||
|| symbol_is_foo_and_prev_symbol_is_dot_foo);
|
||||
|
||||
if (symbol_is_foo_and_prev_symbol_is_dot_foo)
|
||||
// Let's just keep a reference of the symbol that the user sees in the
|
||||
// source code (the one named foo). The symbol which name is prefixed
|
||||
// with a "dot" is an artificial one.
|
||||
entry_addr_symbol_map_[fn_entry_point_addr] = symbol_sptr;
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace symtab_reader
|
||||
} // end namespace abigail
|
||||
|
@ -276,12 +276,20 @@ private:
|
||||
typedef std::unordered_map<GElf_Addr, elf_symbol_sptr> addr_symbol_map_type;
|
||||
addr_symbol_map_type addr_symbol_map_;
|
||||
|
||||
/// Lookup map function entry address -> symbol
|
||||
addr_symbol_map_type entry_addr_symbol_map_;
|
||||
|
||||
bool
|
||||
load_(Elf* elf_handle, ir::environment* env, symbol_predicate is_suppressed);
|
||||
|
||||
bool
|
||||
load_(string_elf_symbols_map_sptr function_symbol_map,
|
||||
string_elf_symbols_map_sptr variables_symbol_map);
|
||||
|
||||
void
|
||||
update_function_entry_address_symbol_map(Elf* elf_handle,
|
||||
GElf_Sym* native_symbol,
|
||||
const elf_symbol_sptr& symbol_sptr);
|
||||
};
|
||||
|
||||
/// Helper class to allow range-for loops on symtabs for C++11 and later code.
|
||||
|
Loading…
Reference in New Issue
Block a user