kpatch/kmod/core/core.c
2014-02-13 11:00:12 -06:00

322 lines
7.9 KiB
C

/*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2013 Josh Poimboeuf <jpoimboe@redhat.com>
*
* Contains the code for the core kpatch module. This module reads
* information from the patch modules, find new patched functions,
* and register those functions in the ftrace handlers the redirects
* the old function call to the new function code.
*
* Each patch module can contain one or more patched functions. This
* information is contained in the .patches section of the patch module. For
* each function patched by the module we must:
* - Call stop_machine
* - Ensure that no execution thread is currently in the function to be
* patched (or has the function in the call stack)
* - Add the new function address to the kpatch_funcs table
*
* After that, each call to the old function calls into kpatch_trampoline()
* which searches for a patched version of the function in the kpatch_funcs
* table. If a patched version is found, the return instruction pointer is
* overwritten to return to the new function.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/ftrace.h>
#include <asm/stacktrace.h>
#include <asm/cacheflush.h>
#include "kpatch.h"
#define KPATCH_MAX_FUNCS 256
struct kpatch_func kpatch_funcs[KPATCH_MAX_FUNCS+1];
static int kpatch_num_registered;
/* from trampoline.S */
extern void kpatch_trampoline(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs);
/*
* Deal with some of the peculiarities caused by the trampoline being called
* from __ftrace_ops_list_func instead of directly from ftrace_regs_caller.
*/
void kpatch_ftrace_hacks(void)
{
#define TRACE_INTERNAL_BIT (1<<11)
#define trace_recursion_clear(bit) do { (current)->trace_recursion &= ~(bit); } while (0)
trace_recursion_clear(TRACE_INTERNAL_BIT);
preempt_enable_notrace();
}
static int kpatch_num_funcs(struct kpatch_func *f)
{
int i;
for (i = 0; f[i].old_func_name; i++)
;
return i;
}
struct ktrace_backtrace_args {
struct kpatch_func *funcs;
int ret;
};
void kpatch_backtrace_address_verify(void *data, unsigned long address,
int reliable)
{
struct kpatch_func *f;
struct ktrace_backtrace_args *args = data;
if (args->ret)
return;
for (f = args->funcs; f->old_func_name; f++)
if (address >= f->old_func_addr &&
address < f->old_func_addr_end)
goto unsafe;
return;
unsafe:
printk("kpatch: activeness safety check failed for '%s()'\n",
f->old_func_name);
args->ret = -EBUSY;
}
static int kpatch_backtrace_stack(void *data, char *name)
{
return 0;
}
struct stacktrace_ops kpatch_backtrace_ops = {
.address = kpatch_backtrace_address_verify,
.stack = kpatch_backtrace_stack,
.walk_stack = print_context_stack_bp,
};
/*
* Verify activeness safety, i.e. that none of the to-be-patched functions are
* on the stack of any task.
*
* This function is called from stop_machine() context.
*/
static int kpatch_verify_activeness_safety(struct kpatch_func *funcs)
{
struct task_struct *g, *t;
int ret = 0;
struct ktrace_backtrace_args args = {
.funcs = funcs,
.ret = 0
};
/* Check the stacks of all tasks. */
do_each_thread(g, t) {
dump_trace(t, NULL, NULL, 0, &kpatch_backtrace_ops, &args);
if (args.ret) {
ret = args.ret;
goto out;
}
} while_each_thread(g, t);
/* TODO: for preemptible support we would need to ensure that functions
* on top of the stack are actually seen on the stack.
*/
out:
return ret;
}
/* Called from stop_machine */
static int kpatch_apply_patch(void *data)
{
int ret, num_global_funcs, num_new_funcs;
struct kpatch_func *funcs = data;
ret = kpatch_verify_activeness_safety(funcs);
if (ret)
goto out;
num_global_funcs = kpatch_num_funcs(kpatch_funcs);
num_new_funcs = kpatch_num_funcs(funcs);
if (num_global_funcs + num_new_funcs > KPATCH_MAX_FUNCS) {
printk("kpatch: exceeded maximum # of patched functions (%d)\n",
KPATCH_MAX_FUNCS);
ret = -E2BIG;
goto out;
}
memcpy(&kpatch_funcs[num_global_funcs], funcs,
num_new_funcs * sizeof(struct kpatch_func));
/* TODO: sync_core? */
out:
return ret;
}
static struct ftrace_ops kpatch_ftrace_ops __read_mostly = {
.func = kpatch_trampoline,
.flags = FTRACE_OPS_FL_SAVE_REGS,
};
int kpatch_register(struct module *mod, void *kpatch_patches,
void *kpatch_patches_end)
{
int ret = 0;
int ret2;
int i;
int num_patches;
struct kpatch_patch *patches;
struct kpatch_func *funcs, *f;
pr_err("loading patch module \"%s\"", mod->name);
num_patches = (kpatch_patches_end - kpatch_patches) / sizeof(*patches);
patches = kpatch_patches;
funcs = kmalloc((num_patches + 1) * sizeof(*funcs), GFP_KERNEL); /*TODO: error handling, free, etc */
for (i = 0; i < num_patches; i++) {
funcs[i].old_func_addr = patches[i].orig;
funcs[i].old_func_addr_end = patches[i].orig_end;
funcs[i].new_func_addr = patches[i].new;
funcs[i].mod = mod;
funcs[i].old_func_name = "TODO";
/* Do any needed incremental patching. */
for (f = kpatch_funcs; f->old_func_name; f++) {
if (funcs[i].old_func_addr == f->old_func_addr) {
funcs[i].old_func_addr = f->new_func_addr;
ref_module(funcs[i].mod, f->mod);
}
}
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, patches[i].orig,
0, 0);
if (ret) {
printk("kpatch: can't set ftrace filter at "
"%lx '%s' (%d)\n",
funcs[i].old_func_addr, funcs[i].old_func_name, ret);
goto out;
}
}
memset(&funcs[num_patches], 0, sizeof(*funcs));
/* Register the ftrace trampoline if it hasn't been done already. */
if (!kpatch_num_registered++) {
ret = register_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
printk("kpatch: can't register ftrace function \n");
goto out;
}
}
/*
* Idle the CPUs, verify activeness safety, and atomically make the new
* functions visible to the trampoline.
*/
ret = stop_machine(kpatch_apply_patch, funcs, NULL);
if (ret) {
if (!--kpatch_num_registered) {
ret2 = unregister_ftrace_function(&kpatch_ftrace_ops);
if (ret2)
printk("kpatch: unregister failed (%d)\n",
ret2);
}
goto out;
}
out:
return ret;
}
EXPORT_SYMBOL(kpatch_register);
/* Called from stop_machine */
static int kpatch_remove_patch(void *data)
{
int num_remove_funcs, i, ret = 0;
struct kpatch_func *funcs = data;
ret = kpatch_verify_activeness_safety(funcs);
if (ret)
goto out;
for (i = 0; i < KPATCH_MAX_FUNCS; i++) /* TODO iterate by pointer */
if (kpatch_funcs[i].old_func_addr == funcs->old_func_addr)
break;
if (i == KPATCH_MAX_FUNCS) {
ret = -EINVAL;
goto out;
}
num_remove_funcs = kpatch_num_funcs(funcs);
memset(&kpatch_funcs[i], 0,
num_remove_funcs * sizeof(struct kpatch_func));
for ( ;kpatch_funcs[i + num_remove_funcs].old_func_name; i++)
memcpy(&kpatch_funcs[i], &kpatch_funcs[i + num_remove_funcs],
sizeof(struct kpatch_func));
out:
return ret;
}
int kpatch_unregister(struct module *mod)
{
int ret = 0;
struct kpatch_func *funcs, *f;
int num_funcs, i;
num_funcs = kpatch_num_funcs(kpatch_funcs);
funcs = kmalloc((num_funcs + 1) * sizeof(*funcs), GFP_KERNEL);
for (f = kpatch_funcs, i = 0; f->old_func_name; f++)
if (f->mod == mod)
memcpy(&funcs[i++], f, sizeof(*funcs));
memset(&funcs[i], 0, sizeof(*funcs));
ret = stop_machine(kpatch_remove_patch, funcs, NULL);
if (ret)
goto out;
if (!--kpatch_num_registered) {
ret = unregister_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
printk("kpatch: can't unregister ftrace function\n");
goto out;
}
}
for (f = funcs; f->old_func_name; f++) {
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, f->old_func_addr,
1, 0);
if (ret) {
printk("kpatch: can't remove ftrace filter at "
"%lx '%s' (%d)\n",
f->old_func_addr, f->old_func_name, ret);
goto out;
}
}
out:
kfree(funcs);
return ret;
}
EXPORT_SYMBOL(kpatch_unregister);
MODULE_LICENSE("GPL");