mirror of
https://github.com/dynup/kpatch
synced 2025-01-14 09:00:46 +00:00
562 lines
14 KiB
C
562 lines
14 KiB
C
/*
|
|
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
|
|
* Copyright (C) 2013-2014 Josh Poimboeuf <jpoimboe@redhat.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA,
|
|
* 02110-1301, USA.
|
|
*/
|
|
|
|
/* Contains the code for the core kpatch module. Each patch module registers
|
|
* with this module to redirect old functions to new functions.
|
|
*
|
|
* Each patch module can contain one or more new functions. This information
|
|
* is contained in the .patches section of the patch module. For each function
|
|
* patched by the module we must:
|
|
* - Call stop_machine
|
|
* - Ensure that no execution thread is currently in the old function (or has
|
|
* it in the call stack)
|
|
* - Add the new function address to the kpatch_funcs table
|
|
*
|
|
* After that, each call to the old function calls into kpatch_ftrace_handler()
|
|
* which finds the new function in the kpatch_funcs table and updates the
|
|
* return instruction pointer so that ftrace will return to the new function.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/preempt_mask.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/cacheflush.h>
|
|
#include "kpatch.h"
|
|
|
|
#define KPATCH_HASH_BITS 8
|
|
DEFINE_HASHTABLE(kpatch_func_hash, KPATCH_HASH_BITS);
|
|
|
|
DEFINE_SEMAPHORE(kpatch_mutex);
|
|
|
|
static int kpatch_num_registered;
|
|
|
|
static struct kobject *kpatch_root_kobj;
|
|
struct kobject *kpatch_patches_kobj;
|
|
EXPORT_SYMBOL_GPL(kpatch_patches_kobj);
|
|
|
|
struct kpatch_backtrace_args {
|
|
struct kpatch_module *kpmod;
|
|
int ret;
|
|
};
|
|
|
|
/*
|
|
* The kpatch core module has a state machine which allows for proper
|
|
* synchronization with kpatch_ftrace_handler() when it runs in NMI context.
|
|
*
|
|
* +-----------------------------------------------------+
|
|
* | |
|
|
* | +
|
|
* v +---> KPATCH_STATE_SUCCESS
|
|
* KPATCH_STATE_IDLE +---> KPATCH_STATE_UPDATING |
|
|
* ^ +---> KPATCH_STATE_FAILURE
|
|
* | +
|
|
* | |
|
|
* +-----------------------------------------------------+
|
|
*
|
|
* KPATCH_STATE_IDLE: No updates are pending. The func hash is valid, and the
|
|
* reader doesn't need to check func->op.
|
|
*
|
|
* KPATCH_STATE_UPDATING: An update is in progress. The reader must call
|
|
* kpatch_state_finish(KPATCH_STATE_FAILURE) before accessing the func hash.
|
|
*
|
|
* KPATCH_STATE_FAILURE: An update failed, and the func hash might be
|
|
* inconsistent (pending patched funcs might not have been removed yet). If
|
|
* func->op is KPATCH_OP_PATCH, then rollback to the previous version of the
|
|
* func.
|
|
*
|
|
* KPATCH_STATE_SUCCESS: An update succeeded, but the func hash might be
|
|
* inconsistent (pending unpatched funcs might not have been removed yet). If
|
|
* func->op is KPATCH_OP_UNPATCH, then rollback to the previous version of the
|
|
* func.
|
|
*/
|
|
enum {
|
|
KPATCH_STATE_IDLE,
|
|
KPATCH_STATE_UPDATING,
|
|
KPATCH_STATE_SUCCESS,
|
|
KPATCH_STATE_FAILURE,
|
|
};
|
|
static atomic_t kpatch_state;
|
|
|
|
|
|
static inline void kpatch_state_idle(void)
|
|
{
|
|
int state = atomic_read(&kpatch_state);
|
|
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
|
|
atomic_set(&kpatch_state, KPATCH_STATE_IDLE);
|
|
}
|
|
|
|
static inline void kpatch_state_updating(void)
|
|
{
|
|
WARN_ON(atomic_read(&kpatch_state) != KPATCH_STATE_IDLE);
|
|
atomic_set(&kpatch_state, KPATCH_STATE_UPDATING);
|
|
}
|
|
|
|
/* If state is updating, change it to success or failure and return new state */
|
|
static inline int kpatch_state_finish(int state)
|
|
{
|
|
int result;
|
|
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
|
|
result = atomic_cmpxchg(&kpatch_state, KPATCH_STATE_UPDATING, state);
|
|
return result == KPATCH_STATE_UPDATING ? state : result;
|
|
}
|
|
|
|
static struct kpatch_func *kpatch_get_func(unsigned long ip)
|
|
{
|
|
struct kpatch_func *f;
|
|
|
|
/* Here, we have to use rcu safe hlist because of NMI concurrency */
|
|
hash_for_each_possible_rcu(kpatch_func_hash, f, node, ip)
|
|
if (f->old_addr == ip)
|
|
return f;
|
|
return NULL;
|
|
}
|
|
|
|
static struct kpatch_func *kpatch_get_prev_func(struct kpatch_func *f,
|
|
unsigned long ip)
|
|
{
|
|
hlist_for_each_entry_continue_rcu(f, node)
|
|
if (f->old_addr == ip)
|
|
return f;
|
|
return NULL;
|
|
}
|
|
|
|
void kpatch_backtrace_address_verify(void *data, unsigned long address,
|
|
int reliable)
|
|
{
|
|
struct kpatch_backtrace_args *args = data;
|
|
struct kpatch_module *kpmod = args->kpmod;
|
|
int i;
|
|
|
|
if (args->ret)
|
|
return;
|
|
|
|
for (i = 0; i < kpmod->num_funcs; i++) {
|
|
unsigned long func_addr, func_size;
|
|
struct kpatch_func *func, *active_func;
|
|
|
|
func = &kpmod->funcs[i];
|
|
active_func = kpatch_get_func(func->old_addr);
|
|
if (!active_func) {
|
|
/* patching an unpatched func */
|
|
func_addr = func->old_addr;
|
|
func_size = func->old_size;
|
|
} else {
|
|
/* repatching or unpatching */
|
|
func_addr = active_func->new_addr;
|
|
func_size = active_func->new_size;
|
|
}
|
|
|
|
if (address >= func_addr && address < func_addr + func_size) {
|
|
pr_err("activeness safety check failed for function "
|
|
"at address 0x%lx\n", func_addr);
|
|
args->ret = -EBUSY;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kpatch_backtrace_stack(void *data, char *name)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct stacktrace_ops kpatch_backtrace_ops = {
|
|
.address = kpatch_backtrace_address_verify,
|
|
.stack = kpatch_backtrace_stack,
|
|
.walk_stack = print_context_stack_bp,
|
|
};
|
|
|
|
/*
|
|
* Verify activeness safety, i.e. that none of the to-be-patched functions are
|
|
* on the stack of any task.
|
|
*
|
|
* This function is called from stop_machine() context.
|
|
*/
|
|
static int kpatch_verify_activeness_safety(struct kpatch_module *kpmod)
|
|
{
|
|
struct task_struct *g, *t;
|
|
int ret = 0;
|
|
|
|
struct kpatch_backtrace_args args = {
|
|
.kpmod = kpmod,
|
|
.ret = 0
|
|
};
|
|
|
|
/* Check the stacks of all tasks. */
|
|
do_each_thread(g, t) {
|
|
dump_trace(t, NULL, NULL, 0, &kpatch_backtrace_ops, &args);
|
|
if (args.ret) {
|
|
ret = args.ret;
|
|
goto out;
|
|
}
|
|
} while_each_thread(g, t);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Called from stop_machine */
|
|
static int kpatch_apply_patch(void *data)
|
|
{
|
|
struct kpatch_module *kpmod = data;
|
|
struct kpatch_func *funcs = kpmod->funcs;
|
|
int num_funcs = kpmod->num_funcs;
|
|
int i, ret;
|
|
|
|
ret = kpatch_verify_activeness_safety(kpmod);
|
|
if (ret) {
|
|
kpatch_state_finish(KPATCH_STATE_FAILURE);
|
|
return ret;
|
|
}
|
|
|
|
/* tentatively add the new funcs to the global func hash */
|
|
for (i = 0; i < num_funcs; i++)
|
|
hash_add_rcu(kpatch_func_hash, &funcs[i].node,
|
|
funcs[i].old_addr);
|
|
|
|
/* memory barrier between func hash add and state change */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Check if any inconsistent NMI has happened while updating. If not,
|
|
* move to success state.
|
|
*/
|
|
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
|
|
if (ret == KPATCH_STATE_FAILURE) {
|
|
pr_err("NMI activeness safety check failed\n");
|
|
|
|
/* Failed, we have to rollback patching process */
|
|
for (i = 0; i < num_funcs; i++)
|
|
hash_del_rcu(&funcs[i].node);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called from stop_machine */
|
|
static int kpatch_remove_patch(void *data)
|
|
{
|
|
struct kpatch_module *kpmod = data;
|
|
struct kpatch_func *funcs = kpmod->funcs;
|
|
int num_funcs = kpmod->num_funcs;
|
|
int ret, i;
|
|
|
|
ret = kpatch_verify_activeness_safety(kpmod);
|
|
if (ret) {
|
|
kpatch_state_finish(KPATCH_STATE_FAILURE);
|
|
return ret;
|
|
}
|
|
|
|
/* Check if any inconsistent NMI has happened while updating */
|
|
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
|
|
if (ret == KPATCH_STATE_FAILURE)
|
|
return -EBUSY;
|
|
|
|
/* Succeeded, remove all updating funcs from hash table */
|
|
for (i = 0; i < num_funcs; i++)
|
|
hash_del_rcu(&funcs[i].node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is where the magic happens. Update regs->ip to tell ftrace to return
|
|
* to the new function.
|
|
*
|
|
* If there are multiple patch modules that have registered to patch the same
|
|
* function, the last one to register wins, as it'll be first in the hash
|
|
* bucket.
|
|
*/
|
|
void notrace kpatch_ftrace_handler(unsigned long ip, unsigned long parent_ip,
|
|
struct ftrace_ops *fops,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kpatch_func *func;
|
|
int state;
|
|
|
|
preempt_disable_notrace();
|
|
|
|
if (likely(!in_nmi()))
|
|
func = kpatch_get_func(ip);
|
|
else {
|
|
/* Checking for NMI inconsistency */
|
|
state = kpatch_state_finish(KPATCH_STATE_FAILURE);
|
|
|
|
/* no memory reordering between state and func hash read */
|
|
smp_rmb();
|
|
|
|
func = kpatch_get_func(ip);
|
|
|
|
if (likely(state == KPATCH_STATE_IDLE))
|
|
goto done;
|
|
|
|
if (state == KPATCH_STATE_SUCCESS) {
|
|
/*
|
|
* Patching succeeded. If the function was being
|
|
* unpatched, roll back to the previous version.
|
|
*/
|
|
if (func && func->op == KPATCH_OP_UNPATCH)
|
|
func = kpatch_get_prev_func(func, ip);
|
|
} else {
|
|
/*
|
|
* Patching failed. If the function was being patched,
|
|
* roll back to the previous version.
|
|
*/
|
|
if (func && func->op == KPATCH_OP_PATCH)
|
|
func = kpatch_get_prev_func(func, ip);
|
|
}
|
|
}
|
|
done:
|
|
if (func)
|
|
regs->ip = func->new_addr;
|
|
|
|
preempt_enable_notrace();
|
|
}
|
|
|
|
static struct ftrace_ops kpatch_ftrace_ops __read_mostly = {
|
|
.func = kpatch_ftrace_handler,
|
|
.flags = FTRACE_OPS_FL_SAVE_REGS,
|
|
};
|
|
|
|
/* Remove kpatch_funcs from ftrace filter */
|
|
static void kpatch_remove_funcs_from_filter(struct kpatch_func *funcs,
|
|
int num_funcs)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < num_funcs; i++) {
|
|
struct kpatch_func *func = &funcs[i];
|
|
|
|
/*
|
|
* If any other modules have also patched this function, don't
|
|
* remove its ftrace handler.
|
|
*/
|
|
if (kpatch_get_func(func->old_addr))
|
|
continue;
|
|
|
|
/* Remove the ftrace handler for this function. */
|
|
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, func->old_addr,
|
|
1, 0);
|
|
|
|
WARN(ret, "can't remove ftrace filter at address 0x%lx (rc=%d)",
|
|
func->old_addr, ret);
|
|
}
|
|
}
|
|
|
|
int kpatch_register(struct kpatch_module *kpmod)
|
|
{
|
|
int ret, i;
|
|
struct kpatch_func *funcs = kpmod->funcs;
|
|
int num_funcs = kpmod->num_funcs;
|
|
|
|
if (!kpmod->mod || !funcs || !num_funcs)
|
|
return -EINVAL;
|
|
|
|
kpmod->enabled = false;
|
|
|
|
down(&kpatch_mutex);
|
|
|
|
if (!try_module_get(kpmod->mod)) {
|
|
ret = -ENODEV;
|
|
goto err_up;
|
|
}
|
|
|
|
for (i = 0; i < num_funcs; i++) {
|
|
struct kpatch_func *func = &funcs[i];
|
|
|
|
func->op = KPATCH_OP_PATCH;
|
|
|
|
/*
|
|
* If any other modules have also patched this function, it
|
|
* already has an ftrace handler.
|
|
*/
|
|
if (kpatch_get_func(func->old_addr))
|
|
continue;
|
|
|
|
/* Add an ftrace handler for this function. */
|
|
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, func->old_addr,
|
|
0, 0);
|
|
if (ret) {
|
|
pr_err("can't set ftrace filter at address 0x%lx\n",
|
|
func->old_addr);
|
|
num_funcs = i;
|
|
goto err_rollback;
|
|
}
|
|
}
|
|
|
|
/* Register the ftrace trampoline if it hasn't been done already. */
|
|
if (!kpatch_num_registered) {
|
|
ret = register_ftrace_function(&kpatch_ftrace_ops);
|
|
if (ret) {
|
|
pr_err("can't register ftrace handler\n");
|
|
goto err_rollback;
|
|
}
|
|
}
|
|
kpatch_num_registered++;
|
|
|
|
/* memory barrier between func hash and state write */
|
|
smp_wmb();
|
|
|
|
kpatch_state_updating();
|
|
|
|
/*
|
|
* Idle the CPUs, verify activeness safety, and atomically make the new
|
|
* functions visible to the trampoline.
|
|
*/
|
|
ret = stop_machine(kpatch_apply_patch, kpmod, NULL);
|
|
|
|
/* NMI handlers can return to normal now */
|
|
kpatch_state_idle();
|
|
|
|
/*
|
|
* Wait for all existing NMI handlers to complete so that they don't
|
|
* see any changes to funcs or funcs->op that might occur after this
|
|
* point.
|
|
*
|
|
* Any NMI handlers starting after this point will see the IDLE state.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
if (ret)
|
|
goto err_unregister;
|
|
|
|
for (i = 0; i < num_funcs; i++)
|
|
funcs[i].op = KPATCH_OP_NONE;
|
|
|
|
/* TODO: need TAINT_KPATCH */
|
|
pr_notice_once("tainting kernel with TAINT_USER\n");
|
|
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
|
|
|
|
pr_notice("loaded patch module \"%s\"\n", kpmod->mod->name);
|
|
|
|
kpmod->enabled = true;
|
|
|
|
up(&kpatch_mutex);
|
|
return 0;
|
|
|
|
err_unregister:
|
|
if (kpatch_num_registered == 1) {
|
|
int ret2 = unregister_ftrace_function(&kpatch_ftrace_ops);
|
|
if (ret2) {
|
|
pr_err("ftrace unregister failed (%d)\n", ret2);
|
|
goto err_rollback;
|
|
}
|
|
}
|
|
kpatch_num_registered--;
|
|
err_rollback:
|
|
kpatch_remove_funcs_from_filter(funcs, num_funcs);
|
|
module_put(kpmod->mod);
|
|
err_up:
|
|
up(&kpatch_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kpatch_register);
|
|
|
|
int kpatch_unregister(struct kpatch_module *kpmod)
|
|
{
|
|
struct kpatch_func *funcs = kpmod->funcs;
|
|
int num_funcs = kpmod->num_funcs;
|
|
int i, ret;
|
|
|
|
WARN_ON(!kpmod->enabled);
|
|
|
|
down(&kpatch_mutex);
|
|
|
|
for (i = 0; i < num_funcs; i++)
|
|
funcs[i].op = KPATCH_OP_UNPATCH;
|
|
|
|
/* memory barrier between func hash and state write */
|
|
smp_wmb();
|
|
|
|
kpatch_state_updating();
|
|
|
|
ret = stop_machine(kpatch_remove_patch, kpmod, NULL);
|
|
|
|
/* NMI handlers can return to normal now */
|
|
kpatch_state_idle();
|
|
|
|
/*
|
|
* Wait for all existing NMI handlers to complete so that they don't
|
|
* see any changes to funcs or funcs->op that might occur after this
|
|
* point.
|
|
*
|
|
* Any NMI handlers starting after this point will see the IDLE state.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
if (ret) {
|
|
for (i = 0; i < num_funcs; i++)
|
|
funcs[i].op = KPATCH_OP_NONE;
|
|
goto out;
|
|
}
|
|
|
|
if (kpatch_num_registered == 1) {
|
|
ret = unregister_ftrace_function(&kpatch_ftrace_ops);
|
|
if (ret)
|
|
WARN(1, "can't unregister ftrace handler");
|
|
else
|
|
kpatch_num_registered--;
|
|
}
|
|
|
|
kpatch_remove_funcs_from_filter(funcs, num_funcs);
|
|
|
|
pr_notice("unloaded patch module \"%s\"\n", kpmod->mod->name);
|
|
|
|
kpmod->enabled = false;
|
|
module_put(kpmod->mod);
|
|
|
|
out:
|
|
up(&kpatch_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kpatch_unregister);
|
|
|
|
static int kpatch_init(void)
|
|
{
|
|
kpatch_root_kobj = kobject_create_and_add("kpatch", kernel_kobj);
|
|
if (!kpatch_root_kobj)
|
|
return -ENOMEM;
|
|
|
|
kpatch_patches_kobj = kobject_create_and_add("patches",
|
|
kpatch_root_kobj);
|
|
if (!kpatch_patches_kobj)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kpatch_exit(void)
|
|
{
|
|
kobject_put(kpatch_patches_kobj);
|
|
kobject_put(kpatch_root_kobj);
|
|
}
|
|
|
|
module_init(kpatch_init);
|
|
module_exit(kpatch_exit);
|
|
MODULE_LICENSE("GPL");
|